aboutsummaryrefslogblamecommitdiffstats
path: root/lib/asn1/src/asn1ct_imm.erl
blob: 321d32ef179e26078152da79ae4195c0f28119b3 (plain) (tree)
1
2
3
4
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238


                   
                                                        















                                                                         

                                                                     
                                 

                                                  

                                                                   
                                                                 

                                                          



                                                     
                                       




                                                                           
                                                   
                    
                                                   






                                        

                                       















                                                     






                              


                                                

                                        
                                          

                                         
                                               







                                                                     








                                                                    
                                 
                                                 

                                 





                                                                        



                                                         
                                                        
                                                     
                                                                 
                                                                   
                                         
                                         






                                                                    
                                                      
                                                           
                                                         
                                                       


                                                
                                            
                                                       
 
                                             
                                                     
 
                             
                                          
 







                                                               
 



                                                        



             




























                                                                           








                                                                          
                                                              


































































                                                                          







                                                                 








                                                                            







                                                                             
                                   

















                                                                      
 






                                                                            






























                                                                            


                                                   
 

                                                                        
                                     

                              


                                                                            

                                       




                                            
                                                             
                                     





















                                                                 





                                                        
























                                                              


                                              


                         

                            





                                 

                            
                
 



                    



















                                                                        
                
                                                         
                                             






                                            
                                                
                                                         
                                              
                                

                            


                                                         













                                                           






                                                                              
                                             








































                                                                             




                                                            

































                                                                           









                                                               






















































































                                                                    
   













                                                    

                                                           






































































                                                                 































                                                                    

                                                


                                                     








                                               
































                                                                 

                        
                                                     
               




                                                               





                                                               

















                                                      




                                     






















                                                                



                                                        


                                                      


                                           























































                                                             










                                                    




                                       








                                    






                                                      

                                       
                                     
                                  
                                   








                                        

                                        
                                                 
             
                                                 

                                                









                                                           


















                                                                           









                                                                     
                                                                          









































































































                                                                        








                                                                         


























































































































                                                                      








                                                   






















































































                                                                         
















































































































































































                                                                             

                                              

                    





                                                           







































                                                                  

                                               






















                                                                     


                                                         

                                           

                                                        


                      


                                                    


                                                          






                                                                
   












































































































































































































































































































































































































































































































































































                                                                                    


















                                 



                                                    
        











                                                   


                                               

                      














                                                           


                              





                                    

                                    

































                                            






















































                                                               
                                                                































































































































                                                                      





                                   




















                                                                        



                                     

























                                                                                  

                                

                                  

                                      
















                                                            
                           




                             



                                                                   

                           


                                
 








                                                








                                                              






                                                



                                  

                                        





                                             

                                             

                             






















                                                  












                                                                          



                                                             






                                              




















                                                 






























































                                                                             
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2012-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%
-module(asn1ct_imm).
-export([per_dec_raw_bitstring/2,
	 per_dec_boolean/0,per_dec_enumerated/2,per_dec_enumerated/3,
	 per_dec_extension_map/1,
	 per_dec_integer/2,per_dec_k_m_string/3,
	 per_dec_length/3,per_dec_named_integer/3,
	 per_dec_octet_string/2,per_dec_open_type/1,per_dec_real/1,
	 per_dec_restricted_string/1]).
-export([per_dec_constrained/3,per_dec_normally_small_number/1]).
-export([per_enc_bit_string/4,per_enc_legacy_bit_string/4,
	 per_enc_boolean/2,
	 per_enc_choice/3,per_enc_enumerated/3,
	 per_enc_integer/3,per_enc_integer/4,
	 per_enc_null/2,
	 per_enc_k_m_string/4,per_enc_octet_string/3,
	 per_enc_legacy_octet_string/3,
	 per_enc_open_type/2,
	 per_enc_restricted_string/3,
	 per_enc_small_number/2]).
-export([per_enc_extension_bit/2,per_enc_extensions/4,per_enc_optional/3]).
-export([per_enc_sof/5]).
-export([enc_absent/3,enc_append/1,enc_element/2]).
-export([enc_cg/2]).
-export([optimize_alignment/1,optimize_alignment/2,
	 dec_slim_cg/2,dec_code_gen/2]).
-export([effective_constraint/2]).
-import(asn1ct_gen, [emit/1]).

-record(st, {var,
	     base}).

dec_slim_cg(Imm0, BytesVar) ->
    {Imm,_} = optimize_alignment(Imm0),
    asn1ct_name:new(v),
    [H|T] = atom_to_list(asn1ct_name:curr(v)) ++ "@",
    VarBase = [H-($a-$A)|T],
    St0 = #st{var=0,base=VarBase},
    {Res,Pre,_} = flatten(Imm, BytesVar, St0),
    dcg_list_outside(Pre),
    Res.

dec_code_gen(Imm, BytesVar) ->
    emit(["begin",nl]),
    {Dst,DstBuf} = dec_slim_cg(Imm, BytesVar),
    emit([",",nl,
	  "{",Dst,",",DstBuf,"}",nl,
	  "end"]),
    ok.

optimize_alignment(Imm) ->
    opt_al(Imm, unknown).

optimize_alignment(Imm, Al) ->
    opt_al(Imm, Al).


per_dec_boolean() ->
    {map,{get_bits,1,[1]},[{0,false},{1,true}]}.

per_dec_enumerated([{V,_}], _Aligned) ->
    {value,V};
per_dec_enumerated(NamedList0, Aligned) ->
    Ub = length(NamedList0) - 1,
    Constraint = [{'ValueRange',{0,Ub}}],
    Int = per_dec_integer(Constraint, Aligned),
    EnumTail = case matched_range(Int) of
		   {0,Ub} ->
		       %% The error case can never happen.
		       [];
		   _ ->
		       [enum_error]
	       end,
    NamedList = per_dec_enumerated_fix_list(NamedList0, EnumTail, 0),
    {map,Int,NamedList}.

per_dec_enumerated(BaseNamedList, NamedListExt0, Aligned) ->
    Base = per_dec_enumerated(BaseNamedList, Aligned),
    NamedListExt = per_dec_enumerated_fix_list(NamedListExt0,
					       [enum_default], 0),
    Ext = {map,per_dec_normally_small_number(Aligned),NamedListExt},
    bit_case(Base, Ext).

per_dec_extension_map(Aligned) ->
    Len = per_dec_normally_small_length(Aligned),
    {get_bits,Len,[1,bitstring]}.

per_dec_integer(Constraint0, Aligned) ->
    Constraint = effective_constraint(integer, Constraint0),
    per_dec_integer_1(Constraint, Aligned).

per_dec_length(SingleValue, _, _Aligned) when is_integer(SingleValue) ->
    {value,SingleValue};
per_dec_length({{Fixed,Fixed},[]}, AllowZero, Aligned) ->
    bit_case(per_dec_length(Fixed, AllowZero, Aligned),
	     per_dec_length(no, AllowZero, Aligned));
per_dec_length({{_,_}=Constr,[]}, AllowZero, Aligned) ->
    bit_case(per_dec_length(Constr, AllowZero, Aligned),
	     per_dec_length(no, AllowZero, Aligned));
per_dec_length({Lb,Ub}, _AllowZero, Aligned) when is_integer(Lb),
						  is_integer(Lb) ->
    per_dec_constrained(Lb, Ub, Aligned);
per_dec_length(no, AllowZero, Aligned) ->
    decode_unconstrained_length(AllowZero, Aligned).

per_dec_named_integer(Constraint, NamedList0, Aligned) ->
    Int = per_dec_integer(Constraint, Aligned),
    NamedList = [{K,V} || {V,K} <- NamedList0] ++ [integer_default],
    {map,Int,NamedList}.

per_dec_k_m_string(StringType, Constraint, Aligned) ->
    SzConstr = effective_constraint(bitstring, Constraint),
    N = string_num_bits(StringType, Constraint, Aligned),
    Imm = dec_string(SzConstr, N, Aligned, k_m_string),
    Chars = char_tab(Constraint, StringType, N),
    convert_string(N, Chars, Imm).

per_dec_octet_string(Constraint, Aligned) ->
    dec_string(Constraint, 8, Aligned, 'OCTET STRING').

per_dec_raw_bitstring(Constraint, Aligned) ->
    dec_string(Constraint, 1, Aligned, 'BIT STRING').

per_dec_open_type(Aligned) ->
    dec_string(no, 8, Aligned, open_type).

per_dec_real(Aligned) ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,real_common,decode_real,[V]},
			com,Buf,"}"])
	  end,
    {call,Dec,
     {get_bits,decode_unconstrained_length(true, Aligned),
      [8,binary,{align,Aligned}]}}.

per_dec_restricted_string(Aligned) ->
    DecLen = decode_unconstrained_length(true, Aligned),
    {get_bits,DecLen,[8,binary]}.

%%%
%%% Encoding.
%%%

per_enc_bit_string(Val, [], Constraint0, Aligned) ->
    {B,[[],Bits]} = mk_vars([], [bits]),
    Constraint = effective_constraint(bitstring, Constraint0),
    B ++ [{call,erlang,bit_size,[Val],Bits}|
	  per_enc_length(Val, 1, Bits, Constraint, Aligned, 'BIT STRING')];
per_enc_bit_string(Val0, NNL0, Constraint0, Aligned) ->
    {B,[Val,Bs,Bits,Positions]} = mk_vars(Val0, [bs,bits,positions]),
    NNL = lists:keysort(2, NNL0),
    Constraint = effective_constraint(bitstring, Constraint0),
    ExtraArgs = case constr_min_size(Constraint) of
		    no -> [];
		    Lb -> [Lb]
		end,
    ToBs = case ExtraArgs of
	       [] ->
		   {call,per_common,bs_drop_trailing_zeroes,[Val]};
	       [Lower] ->
		   {call,per_common,adjust_trailing_zeroes,[Val,Lower]}
	   end,
    B ++ [{'try',
	   [bit_string_name2pos_fun(NNL, Val)],
	   {Positions,
	    [{call,per_common,bitstring_from_positions,
	      [Positions|ExtraArgs]}]},
	   [ToBs],Bs},
	  {call,erlang,bit_size,[Bs],Bits}|
	  per_enc_length(Bs, 1, Bits, Constraint, Aligned, 'BIT STRING')].

per_enc_legacy_bit_string(Val0, [], Constraint0, Aligned) ->
    {B,[Val,Bs,Bits]} = mk_vars(Val0, [bs,bits]),
    Constraint = effective_constraint(bitstring, Constraint0),
    ExtraArgs = case constr_min_size(Constraint) of
		    no -> [];
		    Lb -> [Lb]
		end,
    B ++ [{call,per_common,to_bitstring,[Val|ExtraArgs],Bs},
	  {call,erlang,bit_size,[Bs],Bits}|
	  per_enc_length(Bs, 1, Bits, Constraint, Aligned, 'BIT STRING')];
per_enc_legacy_bit_string(Val0, NNL0, Constraint0, Aligned) ->
    {B,[Val,Bs,Bits,Positions]} = mk_vars(Val0, [bs,bits,positions]),
    NNL = lists:keysort(2, NNL0),
    Constraint = effective_constraint(bitstring, Constraint0),
    ExtraArgs = case constr_min_size(Constraint) of
		    no -> [];
		    Lb -> [Lb]
		end,
    B ++ [{'try',
	   [bit_string_name2pos_fun(NNL, Val)],
	   {Positions,
	    [{call,per_common,bitstring_from_positions,
	      [Positions|ExtraArgs]}]},
	   [{call,per_common,to_named_bitstring,[Val|ExtraArgs]}],Bs},
	  {call,erlang,bit_size,[Bs],Bits}|
	  per_enc_length(Bs, 1, Bits, Constraint, Aligned, 'BIT STRING')].

per_enc_boolean(Val0, _Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    B++build_cond([[{eq,Val,false},{put_bits,0,1,[1]}],
		   [{eq,Val,true},{put_bits,1,1,[1]}]]).

per_enc_choice(Val0, Cs0, _Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Cs = [[{eq,Val,Tag}|opt_choice(Imm)] || {Tag,Imm} <- Cs0],
    B++build_cond(Cs).

per_enc_enumerated(Val0, {Root,Ext}, Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Constr = enumerated_constraint(Root),
    RootCs = per_enc_enumerated_root(Root, [{put_bits,0,1,[1]}],
				     Val, Constr, Aligned),
    ExtCs = per_enc_enumerated_ext(Ext, Val, Aligned),
    B++[{'cond',RootCs++ExtCs++enumerated_error(Val)}];
per_enc_enumerated(Val0, Root, Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Constr = enumerated_constraint(Root),
    Cs = per_enc_enumerated_root(Root, [], Val, Constr, Aligned),
    B++[{'cond',Cs++enumerated_error(Val)}].

enumerated_error(Val) ->
    [['_',{error,Val}]].

per_enc_integer(Val0, Constraint0, Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Constraint = effective_constraint(integer, Constraint0),
    B ++ per_enc_integer_1(Val, Constraint, Aligned).

per_enc_integer(Val0, NNL, Constraint0, Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Constraint = effective_constraint(integer, Constraint0),
    Cs = [[{eq,Val,N}|per_enc_integer_1(V, Constraint, Aligned)] ||
	     {N,V} <- NNL],
    case per_enc_integer_1(Val, Constraint, Aligned) of
	[{'cond',IntCs}] ->
	    B ++ [{'cond',Cs++IntCs}];
	Other ->
	    B ++ [{'cond',Cs++[['_'|Other]]}]
    end.

per_enc_null(_Val, _Aligned) ->
    [].

per_enc_k_m_string(Val0, StringType, Constraint, Aligned) ->
    {B,[Val,Bin,Len]} = mk_vars(Val0, [bin,len]),
    SzConstraint = effective_constraint(bitstring, Constraint),
    Unit = string_num_bits(StringType, Constraint, Aligned),
    Chars0 = char_tab(Constraint, StringType, Unit),
    Enc = case Unit of
	      16 ->
		  {call,per_common,encode_chars_16bit,[Val],Bin};
	      32 ->
		  {call,per_common,encode_big_chars,[Val],Bin};
	      8 ->
		  {call,erlang,list_to_binary,[Val],Bin};
	      _ ->
		  case enc_char_tab(Chars0) of
		      notab ->
			  {call,per_common,encode_chars,[Val,Unit],Bin};
		      {tab,Tab} ->
			  {call,per_common,encode_chars,[Val,Unit,Tab],Bin};
		      {compact_map,Map} ->
			  {call,per_common,encode_chars_compact_map,
			   [Val,Unit,Map],Bin}
		  end
	  end,
    case Unit of
	8 ->
	    B ++ [Enc,{call,erlang,byte_size,[Bin],Len}];
	_ ->
	    B ++ [{call,erlang,length,[Val],Len},Enc]
    end ++ per_enc_length(Bin, Unit, Len, SzConstraint, Aligned, k_m_string).

per_enc_open_type(Imm0, Aligned) ->
    Imm = case Aligned of
	      true ->
		  %% Temporarily make the implicit 'align' done by
		  %% complete/1 explicit to facilitate later
		  %% optimizations: the absence of 'align' can be used
		  %% as an indication that complete/1 can be replaced
		  %% with a cheaper operation such as
		  %% iolist_to_binary/1. The redundant 'align' will be
		  %% optimized away later.
		  Imm0 ++ [{put_bits,0,0,[1,align]}];
	      false ->
		  Imm0
	  end,
    {[],[[],Val,Len,Bin]} = mk_vars([], [output,len,bin]),
    [{list,Imm,Val},
     {call,enc_mod(Aligned),complete,[Val],Bin},
     {call,erlang,byte_size,[Bin],Len}|
     per_enc_length(Bin, 8, Len, Aligned)].

per_enc_octet_string(Bin, Constraint0, Aligned) ->
    {B,[[],Len]} = mk_vars([], [len]),
    Constraint = effective_constraint(bitstring, Constraint0),
    B ++ [{call,erlang,byte_size,[Bin],Len}|
	  per_enc_length(Bin, 8, Len, Constraint, Aligned, 'OCTET STRING')].

per_enc_legacy_octet_string(Val0, Constraint0, Aligned) ->
    {B,[Val,Bin,Len]} = mk_vars(Val0, [bin,len]),
    Constraint = effective_constraint(bitstring, Constraint0),
    B ++ [{call,erlang,iolist_to_binary,[Val],Bin},
	  {call,erlang,byte_size,[Bin],Len}|
	  per_enc_length(Bin, 8, Len, Constraint, Aligned, 'OCTET STRING')].

per_enc_restricted_string(Val0, {M,F}, Aligned) ->
    {B,[Val,Bin,Len]} = mk_vars(Val0, [bin,len]),
    B ++ [{call,M,F,[Val],Bin},
	  {call,erlang,byte_size,[Bin],Len}|
	  per_enc_length(Bin, 8, Len, Aligned)].

per_enc_small_number(Val, Aligned) ->
    build_cond([[{lt,Val,64},{put_bits,Val,7,[1]}],
		['_',{put_bits,1,1,[1]}|
		 per_enc_unsigned(Val, Aligned)]]).

per_enc_extension_bit(Val0, _Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    B++build_cond([[{eq,Val,[]},{put_bits,0,1,[1]}],
		   ['_',{put_bits,1,1,[1]}]]).

per_enc_extensions(Val0, Pos0, NumBits, Aligned) when NumBits > 0 ->
    Pos = Pos0 + 1,
    {B,[Val,Bitmap]} = mk_vars(Val0, [bitmap]),
    Length = per_enc_small_length(NumBits, Aligned),
    PutBits = case NumBits of
		  1 -> [{put_bits,1,1,[1]}];
		  _ -> [{put_bits,Bitmap,NumBits,[1]}]
	      end,
    B++[{call,per_common,extension_bitmap,[Val,Pos,Pos+NumBits],Bitmap},
	{list,[{'cond',[[{eq,Bitmap,0}],
			['_'|Length ++ PutBits]]}],
	 {var,"Extensions"}}].

per_enc_optional(Val0, {Pos,DefVals}, _Aligned) when is_integer(Pos),
						     is_list(DefVals) ->
    {B,Val} = enc_element(Pos, Val0),
    Zero = {put_bits,0,1,[1]},
    One = {put_bits,1,1,[1]},
    B++[{'cond',
	 [[{eq,Val,DefVal},Zero] || DefVal <- DefVals] ++ [['_',One]]}];
per_enc_optional(Val0, {Pos,{call,M,F,A}}, _Aligned) when is_integer(Pos) ->
    {B,Val} = enc_element(Pos, Val0),
    {[],[[],Tmp]} = mk_vars([], [tmp]),
    Zero = {put_bits,0,1,[1]},
    One = {put_bits,1,1,[1]},
    B++[{call,M,F,[Val|A],Tmp},
	{'cond',
	 [[{eq,Tmp,true},Zero],['_',One]]}];
per_enc_optional(Val0, Pos, _Aligned) when is_integer(Pos) ->
    {B,Val} = enc_element(Pos, Val0),
    Zero = {put_bits,0,1,[1]},
    One = {put_bits,1,1,[1]},
    B++[{'cond',[[{eq,Val,asn1_NOVALUE},Zero],
		 ['_',One]]}].

per_enc_sof(Val0, Constraint, ElementVar, ElementImm, Aligned) ->
    {B,[Val,Len]} = mk_vars(Val0, [len]),
    SzConstraint = effective_constraint(bitstring, Constraint),
    LenImm = enc_length(Len, SzConstraint, Aligned),
    Lc0 = [{lc,ElementImm,{var,atom_to_list(ElementVar)},Val}],
    Lc = opt_lc(Lc0, LenImm),
    PreBlock = B ++ [{call,erlang,length,[Val],Len}],
    case LenImm of
	[{'cond',[[C|Action]]}] ->
	    PreBlock ++ [{'cond',[[C|Action++Lc]]}];
	[{sub,_,_,_}=Sub,{'cond',[[C|Action]]}] ->
	    PreBlock ++
		[Sub,{'cond',[[C|Action++Lc]]}];
	EncLen ->
	    PreBlock ++ EncLen ++ Lc
    end.

enc_absent(Val0, {call,M,F,A}, Body) ->
    {B,[Var,Tmp]} = mk_vars(Val0, [tmp]),
    B++[{call,M,F,[Var|A],Tmp},
	{'cond',
	 [[{eq,Tmp,true}],['_'|Body]]}];
enc_absent(Val0, AbsVals, Body) when is_list(AbsVals) ->
    {B,[Var]} = mk_vars(Val0, []),
    Cs = [[{eq,Var,Aval}] || Aval <- AbsVals] ++ [['_'|Body]],
    B++build_cond(Cs).

enc_append([[]|T]) ->
    enc_append(T);
enc_append([[{put_bits,_,_,_}|_]=Pb|[Imm|T]=T0]) ->
    case opt_choice(Pb++Imm) of
	[{put_bits,_,_,_}|_] ->
	    [{block,Pb}|enc_append(T0)];
	Opt ->
	    enc_append([Opt|T])
    end;
enc_append([Imm0|[Imm1|T]=T0]) ->
    try combine_imms(Imm0, Imm1) of
	Imm ->
	    enc_append([Imm|T])
    catch
	throw:impossible ->
	    [{block,Imm0}|enc_append(T0)]
    end;
enc_append([H|T]) ->
    [{block,H}|enc_append(T)];
enc_append([]) -> [].

enc_element(N, Val0) ->
    {[],[Val,Dst]} = mk_vars(Val0, [element]),
    {[{call,erlang,element,[N,Val],Dst}],Dst}.

enc_cg(Imm0, false) ->
    Imm1 = enc_cse(Imm0),
    Imm2 = enc_pre_cg(Imm1),
    Imm = enc_opt(Imm2),
    enc_cg(Imm);
enc_cg(Imm0, true) ->
    Imm1 = enc_cse(Imm0),
    Imm2 = enc_hoist_align(Imm1),
    Imm3 = enc_opt_al(Imm2),
    Imm4 = per_fixup(Imm3),
    Imm5 = enc_pre_cg(Imm4),
    Imm = enc_opt(Imm5),
    enc_cg(Imm).

%%%
%%% Local functions.
%%%

%% is_aligned(StringType, LowerBound, UpperBound) -> boolean()
%%     StringType = 'OCTET STRING' | 'BIT STRING' | k_m_string
%%     LowerBound = UpperBound = number of bits
%%  Determine whether a string should be aligned in PER.

is_aligned(T, Lb, Ub) when T =:= 'OCTET STRING'; T =:= 'BIT STRING' ->
    %% OCTET STRINGs and BIT STRINGs are aligned to a byte boundary
    %% unless the size is fixed and less than or equal to 16 bits.
    Lb =/= Ub orelse Lb > 16;
is_aligned(k_m_string, _Lb, Ub) ->
    %% X.691 (07/2002) 27.5.7 says if the upper bound times the number
    %% of bits is greater than or equal to 16, then the bit field should
    %% be aligned.
    Ub >= 16.

%%%
%%% Generating the intermediate format format for decoding.
%%%

dec_string(Sv, U, Aligned0, T) when is_integer(Sv) ->
    Bits = U*Sv,
    Aligned = Aligned0 andalso is_aligned(T, Bits, Bits),
    {get_bits,Sv,[U,binary,{align,Aligned}]};
dec_string({{Sv,Sv},[]}, U, Aligned, T) ->
    bit_case(dec_string(Sv, U, Aligned, T),
	     dec_string(no, U, Aligned, T));
dec_string({{_,_}=C,[]}, U, Aligned, T) ->
    bit_case(dec_string(C, U, Aligned, T),
	     dec_string(no, U, Aligned, T));
dec_string({Lb,Ub}, U, Aligned0, T) ->
    Len = per_dec_constrained(Lb, Ub, Aligned0),
    Aligned = Aligned0 andalso is_aligned(T, Lb*U, Ub*U),
    {get_bits,Len,[U,binary,{align,Aligned}]};
dec_string(_, U, Aligned, _T) ->
    Al = [{align,Aligned}],
    DecRest = fun(V, Buf) ->
		      asn1ct_func:call(per_common,
				       decode_fragmented,
				       [V,Buf,U])
	      end,
    {'case',[{test,{get_bits,1,[1|Al]},0,
	      {value,{get_bits,
		      {get_bits,7,[1]},
		      [U,binary]}}},
	     {test,{get_bits,1,[1|Al]},1,
	      {test,{get_bits,1,[1]},0,
	       {value,{get_bits,
		       {get_bits,14,[1]},
		       [U,binary]}}}},
	     {test,{get_bits,1,[1|Al]},1,
	      {test,{get_bits,1,[1]},1,
	       {value,{call,DecRest,{get_bits,6,[1]}}}}}]}.

per_dec_enumerated_fix_list([{V,_}|T], Tail, N) ->
    [{N,V}|per_dec_enumerated_fix_list(T, Tail, N+1)];
per_dec_enumerated_fix_list([], Tail, _) -> Tail.

per_dec_integer_1([{'SingleValue',Value}], _Aligned) ->
    {value,Value};
per_dec_integer_1([{'ValueRange',{Lb,'MAX'}}], Aligned) when is_integer(Lb) ->
    per_decode_semi_constrained(Lb, Aligned);
per_dec_integer_1([{'ValueRange',{Lb,Ub}}], Aligned) when is_integer(Lb),
						    is_integer(Ub) ->
    per_dec_constrained(Lb, Ub, Aligned);
per_dec_integer_1([{{_,_}=Constr0,_}], Aligned) ->
    Constr = effective_constraint(integer, [Constr0]),
    bit_case(per_dec_integer(Constr, Aligned),
	     per_dec_unconstrained(Aligned));
per_dec_integer_1([], Aligned) ->
    per_dec_unconstrained(Aligned).

per_dec_unconstrained(Aligned) ->
    {get_bits,decode_unconstrained_length(false, Aligned),[8,signed]}.

per_dec_constrained(Lb, Ub, false) ->
    Range = Ub - Lb + 1,
    Get = {get_bits,uper_num_bits(Range),[1]},
    add_lb(Lb, Get);
per_dec_constrained(Lb, Ub, true) ->
    Range = Ub - Lb + 1,
    Get = if
	      Range =< 255 ->
		  {get_bits,per_num_bits(Range),[1,unsigned]};
	      Range == 256 ->
		  {get_bits,1,[8,unsigned,{align,true}]};
	      Range =< 65536 ->
		  {get_bits,2,[8,unsigned,{align,true}]};
	      true ->
		  RangeOctLen = byte_size(binary:encode_unsigned(Range - 1)),
		  {get_bits,per_dec_length({1,RangeOctLen}, false, true),
		   [8,unsigned,{align,true}]}
	  end,
    add_lb(Lb, Get).

add_lb(0, Get) -> Get;
add_lb(Lb, Get) -> {add,Get,Lb}.

per_dec_normally_small_number(Aligned) ->
    Small = {get_bits,6,[1]},
    Unlimited = per_decode_semi_constrained(0, Aligned),
    bit_case(Small, Unlimited).

per_dec_normally_small_length(Aligned) ->
    Small = {add,{get_bits,6,[1]},1},
    Unlimited = decode_unconstrained_length(false, Aligned),
    bit_case(Small, Unlimited).

per_decode_semi_constrained(Lb, Aligned) ->
    add_lb(Lb, {get_bits,decode_unconstrained_length(false, Aligned),[8]}).

bit_case(Base, Ext) ->
    {'case',[{test,{get_bits,1,[1]},0,Base},
	     {test,{get_bits,1,[1]},1,Ext}]}.

decode_unconstrained_length(AllowZero, Aligned) ->
    Al = [{align,Aligned}],
    Zero = case AllowZero of
	       false -> [non_zero];
	       true -> []
	   end,
    {'case',[{test,{get_bits,1,[1|Al]},0,
	      {value,{get_bits,7,[1|Zero]}}},
	     {test,{get_bits,1,[1|Al]},1,
	      {test,{get_bits,1,[1]},0,
	       {value,{get_bits,14,[1|Zero]}}}}]}.

uper_num_bits(N) ->
    uper_num_bits(N, 1, 0).

uper_num_bits(N, T, B) when N =< T -> B;
uper_num_bits(N, T, B) -> uper_num_bits(N, T bsl 1, B+1).

per_num_bits(2) -> 1;
per_num_bits(N) when N =< 4 -> 2;
per_num_bits(N) when N =< 8 -> 3;
per_num_bits(N) when N =< 16 -> 4;
per_num_bits(N) when N =< 32 -> 5;
per_num_bits(N) when N =< 64 -> 6;
per_num_bits(N) when N =< 128 -> 7;
per_num_bits(N) when N =< 255 -> 8.

matched_range({get_bits,Bits0,[U|Flags]}) when is_integer(U) ->
    case lists:member(signed, Flags) of
	false ->
	    Bits = U*Bits0,
	    {0,(1 bsl Bits) - 1};
	true ->
	    unknown
    end;
matched_range(_Op) -> unknown.

string_num_bits(StringType, Constraint, Aligned) ->
    case get_constraint(Constraint, 'PermittedAlphabet') of
	{'SingleValue',Sv} ->
	    charbits(length(Sv), Aligned);
	no ->
	    case StringType of
		'IA5String' ->
		    charbits(128, Aligned);
		'VisibleString' ->
		    charbits(95, Aligned);
		'PrintableString' ->
		    charbits(74, Aligned);
		'NumericString' ->
		    charbits(11, Aligned);
		'UniversalString' ->
		    32;
		'BMPString' ->
		    16
	    end
    end.

charbits(NumChars, false) ->
    uper_num_bits(NumChars);
charbits(NumChars, true) ->
    1 bsl uper_num_bits(uper_num_bits(NumChars)).

convert_string(8, notab, Imm) ->
    {convert,binary_to_list,Imm};
convert_string(NumBits, notab, Imm) when NumBits < 8 ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,per_common,decode_chars,
			     [V,NumBits]},com,Buf,"}"])
	  end,
    {call,Dec,Imm};
convert_string(NumBits, notab, Imm) when NumBits =:= 16 ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,per_common,decode_chars_16bit,
			     [V]},com,Buf,"}"])
	  end,
    {call,Dec,Imm};
convert_string(NumBits, notab, Imm) ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,per_common,decode_big_chars,
			     [V,NumBits]},com,Buf,"}"])
	  end,
    {call,Dec,Imm};
convert_string(NumBits, Chars, Imm) ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,per_common,decode_chars,
			     [V,NumBits,{asis,Chars}]},com,Buf,"}"])
	  end,
    {call,Dec,Imm}.

char_tab(C, StringType, NumBits) ->
    case get_constraint(C, 'PermittedAlphabet') of
	{'SingleValue',Sv} ->
	    char_tab_1(Sv, NumBits);
	no ->
	    case StringType of
		'IA5String' ->
		    notab;
		'VisibleString' ->
		    notab;
		'PrintableString' ->
		    Chars = " '()+,-./0123456789:=?"
			"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
			"abcdefghijklmnopqrstuvwxyz",
		    char_tab_1(Chars, NumBits);
		'NumericString' ->
		    char_tab_1(" 0123456789", NumBits);
		'UniversalString' ->
		    notab;
		'BMPString' ->
		    notab
	    end
    end.

char_tab_1(Chars, NumBits) ->
    Max = lists:max(Chars),
    BitValMax = (1 bsl NumBits) - 1,
    if
	Max =< BitValMax ->
	    notab;
	true ->
	    list_to_tuple(lists:sort(Chars))
    end.

%%%
%%% Remove unnecessary aligning to octet boundaries.
%%%

opt_al({get_bits,E0,Opts0}, A0) ->
    {E,A1} = opt_al(E0, A0),
    Opts = opt_al_1(A1, Opts0),
    A = update_al(A1, E, Opts),
    {{get_bits,E,Opts},A};
opt_al({call,Fun,E0}, A0) ->
    {E,A} = opt_al(E0, A0),
    {{call,Fun,E},A};
opt_al({convert,Op,E0}, A0) ->
    {E,A} = opt_al(E0, A0),
    {{convert,Op,E},A};
opt_al({value,V}=Term, A) when is_integer(V); is_atom(V) ->
    {Term,A};
opt_al({value,E0}, A0) ->
    {E,A} = opt_al(E0, A0),
    {{value,E},A};
opt_al({add,E0,I}, A0) when is_integer(I) ->
    {E,A} = opt_al(E0, A0),
    {{add,E,I},A};
opt_al({test,E0,V,B0}, A0) ->
    {E,A1} = opt_al(E0, A0),
    {B,A2} = opt_al(B0, A1),
    {{test,E,V,B},A2};
opt_al({'case',Cs0}, A0) ->
    {Cs,A} = opt_al_cs(Cs0, A0),
    {{'case',Cs},A};
opt_al({map,E0,Cs}, A0) ->
    {E,A} = opt_al(E0, A0),
    {{map,E,Cs},A};
opt_al(I, A) when is_integer(I) ->
    {I,A}.

opt_al_cs([C0|Cs0], A0) ->
    {C,A1} = opt_al(C0, A0),
    {Cs,A2} = opt_al_cs(Cs0, A0),
    {[C|Cs],merge_al(A1, A2)};
opt_al_cs([], _) -> {[],none}.

merge_al(unknown, _) -> unknown;
merge_al(Other, none) -> Other;
merge_al(_, unknown) -> unknown;
merge_al(I0, I1) ->
    case {I0 rem 8,I1 rem 8} of
	{I,I} -> I;
	{_,_} -> unknown
    end.

opt_al_1(unknown, Opts) ->
    Opts;
opt_al_1(A, Opts0) ->
    case alignment(Opts0) of
	none ->
	    Opts0;
	full ->
	    case A rem 8 of
		0 ->
		    %% Already in alignment.
		    proplists:delete(align, Opts0);
		Bits ->
		    %% Cheaper alignment with a constant padding.
		    Opts1 = proplists:delete(align, Opts0),
		    [{align,8-Bits }|Opts1]
	    end;
	A ->					%Assertion.
	    Opts0
    end.

update_al(A0, E, Opts) ->
    A = case alignment(Opts) of
	    none -> A0;
	    full -> 0;
	    Bits when is_integer(A0) ->
		0  = (A0 + Bits) rem 8;		%Assertion.
	    _ ->
		0
	end,
    [U] = [U || U <- Opts, is_integer(U)],
    if
	U rem 8 =:= 0 -> A;
	is_integer(A), is_integer(E) -> A + U*E;
	true -> unknown
    end.

%%%
%%% Flatten the intermediate format and assign temporaries.
%%%

flatten({get_bits,I,U}, Buf0, St0) when is_integer(I) ->
    {Dst,St} = new_var_pair(St0),
    Gb = {get_bits,{I,Buf0},U,Dst},
    flatten_align(Gb, [], St);
flatten({get_bits,E0,U}, Buf0, St0) ->
    {E,Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St2} = new_var_pair(St1),
    Gb = {get_bits,E,U,Dst},
    flatten_align(Gb, Pre, St2);
flatten({test,{get_bits,I,U},V,E0}, Buf0, St0) when is_integer(I) ->
    {DstBuf0,St1} = new_var("Buf", St0),
    Gb = {get_bits,{I,Buf0},U,{V,DstBuf0}},
    {{_Dst,DstBuf},Pre0,St2} = flatten_align(Gb, [], St1),
    {E,Pre1,St3} = flatten(E0, DstBuf, St2),
    {E,Pre0++Pre1,St3};
flatten({add,E0,I}, Buf0, St0) ->
    {{Src,Buf},Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St} = new_var("Add", St1),
    {{Dst,Buf},Pre++[{add,Src,I,Dst}],St};
flatten({'case',Cs0}, Buf0, St0) ->
    {Dst,St1} = new_var_pair(St0),
    {Cs1,St} = flatten_cs(Cs0, Buf0, St1),
    {Al,Cs2} = flatten_hoist_align(Cs1),
    {Dst,Al++[{'case',Buf0,Cs2,Dst}],St};
flatten({map,E0,Cs0}, Buf0, St0) ->
    {{E,DstBuf},Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St2} = new_var("Int", St1),
    Cs = flatten_map_cs(Cs0, E),
    {{Dst,DstBuf},Pre++[{'map',E,Cs,{Dst,DstBuf}}],St2};
flatten({value,V}, Buf0, St0) when is_atom(V) ->
    {{"'"++atom_to_list(V)++"'",Buf0},[],St0};
flatten({value,V0}, Buf0, St0) when is_integer(V0) ->
    {{V0,Buf0},[],St0};
flatten({value,V0}, Buf0, St0) ->
    flatten(V0, Buf0, St0);
flatten({convert,Op,E0}, Buf0, St0) ->
    {{E,Buf},Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St2} = new_var("Conv", St1),
    {{Dst,Buf},Pre++[{convert,Op,E,Dst}],St2};
flatten({call,Fun,E0}, Buf0, St0) ->
    {Src,Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St2} = new_var_pair(St1),
    {Dst,Pre++[{call,Fun,Src,Dst}],St2}.

flatten_cs([C0|Cs0], Buf, St0) ->
    {C,Pre,St1} = flatten(C0, Buf, St0),
    {Cs,St2} = flatten_cs(Cs0, Buf, St0),
    St3 = St2#st{var=max(St1#st.var, St2#st.var)},
    {[Pre++[{return,C}]|Cs],St3};
flatten_cs([], _, St) -> {[],St}.

flatten_map_cs(Cs, Var) ->
    flatten_map_cs_1(Cs, {Var,Cs}).

flatten_map_cs_1([{K,V}|Cs], DefData) ->
    [{{asis,K},{asis,V}}|flatten_map_cs_1(Cs, DefData)];
flatten_map_cs_1([integer_default], {Int,_}) ->
    [{'_',Int}];
flatten_map_cs_1([enum_default], {Int,_}) ->
    [{'_',["{asn1_enum,",Int,"}"]}];
flatten_map_cs_1([enum_error], {Var,Cs}) ->
    Vs = [V || {_,V} <- Cs],
    [{'_',["exit({error,{asn1,{decode_enumerated,{",Var,",",
	   {asis,Vs},"}}}})"]}];
flatten_map_cs_1([], _) -> [].

flatten_hoist_align([[{align_bits,_,_}=Ab|T]|Cs]) ->
    flatten_hoist_align_1(Cs, Ab, [T]);
flatten_hoist_align(Cs) -> {[],Cs}.

flatten_hoist_align_1([[Ab|T]|Cs], Ab, Acc) ->
    flatten_hoist_align_1(Cs, Ab, [T|Acc]);
flatten_hoist_align_1([], Ab, Acc) ->
    {[Ab],lists:reverse(Acc)}.

flatten_align({get_bits,{SrcBits,SrcBuf},U,Dst}=Gb0, Pre, St0) ->
    case alignment(U) of
	none ->
	    flatten_align_1(U, Dst, Pre++[Gb0], St0);
	full ->
	    {PadBits,St1} = new_var("Pad", St0),
	    {DstBuf,St2} = new_var("Buf", St1),
	    Ab = {align_bits,SrcBuf,PadBits},
	    Agb = {get_bits,{PadBits,SrcBuf},[1],{'_',DstBuf}},
	    Gb = {get_bits,{SrcBits,DstBuf},U,Dst},
	    flatten_align_1(U, Dst, Pre++[Ab,Agb,Gb], St2);
	PadBits when is_integer(PadBits), PadBits > 0 ->
	    {DstBuf,St1} = new_var("Buf", St0),
	    Agb = {get_bits,{PadBits,SrcBuf},[1],{'_',DstBuf}},
	    Gb = {get_bits,{SrcBits,DstBuf},U,Dst},
	    flatten_align_1(U, Dst, Pre++[Agb,Gb], St1)
    end.

flatten_align_1(U, {D,_}=Dst, Pre, St) ->
    case is_non_zero(U) of
	false ->
	    {Dst,Pre,St};
	true ->
	    {Dst,Pre++[{non_zero,D}],St}
    end.

new_var_pair(St0) ->
    {Var,St1} = new_var("V", St0),
    {Buf,St2} = new_var("Buf", St1),
    {{Var,Buf},St2}.

new_var(Tag, #st{base=VarBase,var=N}=St) ->
    {VarBase++Tag++integer_to_list(N),St#st{var=N+1}}.

alignment([{align,false}|_]) -> none;
alignment([{align,true}|_]) -> full;
alignment([{align,Bits}|_]) -> Bits;
alignment([_|T]) -> alignment(T);
alignment([]) -> none.

is_non_zero(Fl) ->
    lists:member(non_zero, Fl).

%%%
%%% Generate Erlang code from the flattened intermediate format.
%%%

dcg_list_outside([{align_bits,Buf,SzVar}|T]) ->
    emit([SzVar," = bit_size(",Buf,") band 7"]),
    iter_dcg_list_outside(T);
dcg_list_outside([{'case',Buf,Cs,Dst}|T]) ->
    dcg_case(Buf, Cs, Dst),
    iter_dcg_list_outside(T);
dcg_list_outside([{'map',Val,Cs,Dst}|T]) ->
    dcg_map(Val, Cs, Dst),
    iter_dcg_list_outside(T);
dcg_list_outside([{add,S1,S2,Dst}|T]) ->
    emit([Dst," = ",S1," + ",S2]),
    iter_dcg_list_outside(T);
dcg_list_outside([{return,{V,Buf}}|T]) ->
    emit(["{",V,",",Buf,"}"]),
    iter_dcg_list_outside(T);
dcg_list_outside([{call,Fun,{V,Buf},{Dst,DstBuf}}|T]) ->
    emit(["{",Dst,",",DstBuf,"}  = "]),
    Fun(V, Buf),
    iter_dcg_list_outside(T);
dcg_list_outside([{convert,{M,F},V,Dst}|T]) ->
    emit([Dst," = ",{asis,M},":",{asis,F},"(",V,")"]),
    iter_dcg_list_outside(T);
dcg_list_outside([{convert,Op,V,Dst}|T]) ->
    emit([Dst," = ",Op,"(",V,")"]),
    iter_dcg_list_outside(T);
dcg_list_outside([{get_bits,{_,Buf0},_,_}|_]=L0) ->
    emit("<<"),
    {L,Buf} = dcg_list_inside(L0, buf),
    emit([Buf,"/bitstring>> = ",Buf0]),
    iter_dcg_list_outside(L);
dcg_list_outside([]) ->
    emit("ignore"),
    ok.

iter_dcg_list_outside([_|_]=T) ->
    emit([",",nl]),
    dcg_list_outside(T);
iter_dcg_list_outside([]) -> ok.

dcg_case(Buf, Cs, {Dst,DstBuf}) ->
    emit(["{",Dst,",",DstBuf,"} = case ",Buf," of",nl]),
    dcg_case_cs(Cs),
    emit("end").

dcg_case_cs([C|Cs]) ->
    emit("<<"),
    {T0,DstBuf} = dcg_list_inside(C, buf),
    emit([DstBuf,"/bitstring>>"]),
    T1 = dcg_guard(T0),
    dcg_list_outside(T1),
    case Cs of
	[] -> emit([nl]);
	[_|_] -> emit([";",nl])
    end,
    dcg_case_cs(Cs);
dcg_case_cs([]) -> ok.

dcg_guard([{non_zero,Src}|T]) ->
    emit([" when ",Src," =/= 0 ->",nl]),
    T;
dcg_guard(T) ->
    emit([" ->",nl]),
    T.

dcg_map(Val, Cs, {Dst,_}) ->
    emit([Dst," = case ",Val," of",nl]),
    dcg_map_cs(Cs),
    emit("end").

dcg_map_cs([{K,V}]) ->
    emit([K," -> ",V,nl]);
dcg_map_cs([{K,V}|Cs]) ->
    emit([K," -> ",V,";",nl]),
    dcg_map_cs(Cs).

dcg_list_inside([{get_bits,{Sz,_},Fl0,{Dst,DstBuf}}|T], _) ->
    Fl = bit_flags(Fl0, []),
    emit([mk_dest(Dst),":",Sz,Fl,","]),
    dcg_list_inside(T, DstBuf);
dcg_list_inside(L, Dst) -> {L,Dst}.

bit_flags([{align,_}|T], Acc) ->
    bit_flags(T, Acc);
bit_flags([non_zero|T], Acc) ->
    bit_flags(T, Acc);
bit_flags([U|T], Acc) when is_integer(U) ->
    bit_flags(T, ["unit:"++integer_to_list(U)|Acc]);
bit_flags([H|T], Acc) ->
    bit_flags(T, [atom_to_list(H)|Acc]);
bit_flags([], []) ->
    "";
bit_flags([], Acc) ->
    case "/" ++ bit_flags_1(Acc, "") of
	"/unit:1" -> [];
	Opts -> Opts
    end.


bit_flags_1([H|T], Sep) ->
    Sep ++ H ++ bit_flags_1(T, "-");
bit_flags_1([], _) -> [].

mk_dest(I) when is_integer(I) ->
    integer_to_list(I);
mk_dest(S) -> S.

%%%
%%% Constructing the intermediate format for encoding.
%%%

split_off_nonbuilding(Imm) ->
    lists:splitwith(fun is_nonbuilding/1, Imm).

is_nonbuilding({assign,_,_}) -> true;
is_nonbuilding({call,_,_,_,_}) -> true;
is_nonbuilding({lc,_,_,_,_}) -> true;
is_nonbuilding({set,_,_}) -> true;
is_nonbuilding({list,_,_}) -> true;
is_nonbuilding({sub,_,_,_}) -> true;
is_nonbuilding({'try',_,_,_,_}) -> true;
is_nonbuilding(_) -> false.

mk_vars(Input0, Temps) ->
    asn1ct_name:new(enc),
    Curr = asn1ct_name:curr(enc),
    [H|T] = atom_to_list(Curr),
    Base = [H - ($a - $A)|T ++ "@"],
    case Input0 of
	{var,Name} when is_list(Name) ->
	    {[],[Input0|mk_vars_1(Base, Temps)]};
	[] ->
	    {[],[Input0|mk_vars_1(Base, Temps)]};
	_ when is_integer(Input0) ->
	    {[],[Input0|mk_vars_1(Base, Temps)]}
    end.

mk_vars_1(Base, Vars) ->
    [mk_var(Base, V) || V <- Vars].

mk_var(Base, V) ->
    {var,Base ++ atom_to_list(V)}.

per_enc_integer_1(Val, [], Aligned) ->
    [{'cond',[['_'|per_enc_unconstrained(Val, Aligned)]]}];
per_enc_integer_1(Val, [{{'SingleValue',[_|_]=Svs}=Constr,[]}], Aligned) ->
    %% An extensible constraint such as (1|17, ...).
    %%
    %% A subtle detail is that the extension root as described in the
    %% ASN.1 spec should be used to determine whether a particular value
    %% belongs to the extension root (as opposed to the effective
    %% constraint, which will be used for the actual encoding).
    %%
    %% So for the example above, only the integers 1 and 17 should be
    %% encoded as root values (extension bit = 0).

    [{'ValueRange',{Lb,Ub}}] = effective_constraint(integer, [Constr]),
    Root = [begin
		{[],_,Put} = per_enc_constrained(Sv, Lb, Ub, Aligned),
		[{eq,Val,Sv},{put_bits,0,1,[1]}|Put]
	    end || Sv <- Svs],
    Cs = Root ++ [['_',{put_bits,1,1,[1]}|
		   per_enc_unconstrained(Val, Aligned)]],
    build_cond(Cs);
per_enc_integer_1(Val0, [{{_,_}=Constr,[]}], Aligned) ->
    {Prefix,Check,Action} = per_enc_integer_2(Val0, Constr, Aligned),
    Prefix++build_cond([[Check,{put_bits,0,1,[1]}|Action],
			['_',{put_bits,1,1,[1]}|
			 per_enc_unconstrained(Val0, Aligned)]]);
per_enc_integer_1(Val0, [Constr], Aligned) ->
    {Prefix,Check,Action} = per_enc_integer_2(Val0, Constr, Aligned),
    Prefix++build_cond([[Check|Action],
			['_',{error,Val0}]]).

per_enc_integer_2(Val, {'SingleValue',Sv}, Aligned) when is_integer(Sv) ->
    per_enc_constrained(Val, Sv, Sv, Aligned);
per_enc_integer_2(Val0, {'ValueRange',{Lb,'MAX'}}, Aligned)
  when is_integer(Lb) ->
    {Prefix,Val} = sub_lb(Val0, Lb),
    {Prefix,{ge,Val,0},per_enc_unsigned(Val, Aligned)};
per_enc_integer_2(Val, {'ValueRange',{Lb,Ub}}, Aligned)
  when is_integer(Lb), is_integer(Ub) ->
    per_enc_constrained(Val, Lb, Ub, Aligned).

per_enc_constrained(Val, Sv, Sv, _Aligned) ->
    {[],{eq,Val,Sv},[]};
per_enc_constrained(Val0, Lb, Ub, false) ->
    {Prefix,Val} = sub_lb(Val0, Lb),
    Range = Ub - Lb + 1,
    NumBits = uper_num_bits(Range),
    Check = {ult,Val,Range},
    Put = [{put_bits,Val,NumBits,[1]}],
    {Prefix,Check,Put};
per_enc_constrained(Val0, Lb, Ub, true) ->
    {Prefix,Val} = sub_lb(Val0, Lb),
    Range = Ub - Lb + 1,
    if
	Range < 256 ->
	    NumBits = per_num_bits(Range),
	    Check = {ult,Val,Range},
	    Put = [{put_bits,Val,NumBits,[1]}],
	    {Prefix,Check,Put};
	Range =:= 256 ->
	    NumBits = 8,
	    Check = {ult,Val,Range},
	    Put = [{put_bits,Val,NumBits,[1,align]}],
	    {Prefix,Check,Put};
	Range =< 65536 ->
	    Check = {ult,Val,Range},
	    Put = [{put_bits,Val,16,[1,align]}],
	    {Prefix,Check,Put};
	true ->
	    {var,VarBase} = Val,
	    Bin = {var,VarBase++"@bin"},
	    BinSize0 = {var,VarBase++"@bin_size0"},
	    BinSize = {var,VarBase++"@bin_size"},
	    Check = {ult,Val,Range},
	    RangeOctsLen = byte_size(binary:encode_unsigned(Range - 1)),
	    BitsNeeded = per_num_bits(RangeOctsLen),
	    Enc = [{call,binary,encode_unsigned,[Val],Bin},
		   {call,erlang,byte_size,[Bin],BinSize0},
		   {sub,BinSize0,1,BinSize},
		   {'cond',[['_',
			     {put_bits,BinSize,BitsNeeded,[1]},
			     {put_bits,Bin,binary,[8,align]}]]}],
	    {Prefix,Check,Enc}
    end.

per_enc_unconstrained(Val, Aligned) ->
    case Aligned of
	false -> [];
	true -> [{put_bits,0,0,[1,align]}]
    end ++ [{call,per_common,encode_unconstrained_number,[Val]}].

per_enc_unsigned(Val, Aligned) ->
    case is_integer(Val) of
	false ->
	    {var,VarBase} = Val,
	    Bin = {var,VarBase++"@bin"},
	    BinSize = {var,VarBase++"@bin_size"},
	    [{call,binary,encode_unsigned,[Val],Bin},
	     {call,erlang,byte_size,[Bin],BinSize}|
	     per_enc_length(Bin, 8, BinSize, Aligned)];
	true ->
	    Bin = binary:encode_unsigned(Val),
	    Len = byte_size(Bin),
	    per_enc_length(Bin, 8, Len, Aligned)
    end.

%% Encode a length field without any constraint.
per_enc_length(Bin, Unit, Len, Aligned) ->
    U = unit(1, Aligned),
    PutBits = put_bits_binary(Bin, Unit, Aligned),
    EncFragmented = {call,per_common,encode_fragmented,[Bin,Unit]},
    Al = case Aligned of
	     false -> [];
	     true -> [{put_bits,0,0,[1,align]}]
	 end,
    build_cond([[{lt,Len,128},
		 {put_bits,Len,8,U},PutBits],
		[{lt,Len,16384},
		 {put_bits,2,2,U},{put_bits,Len,14,[1]},PutBits],
		['_'|Al++[EncFragmented]]]).

per_enc_length(Bin, Unit, Len, no, Aligned, _Type) ->
    per_enc_length(Bin, Unit, Len, Aligned);
per_enc_length(Bin, Unit, Len, {{Lb,Ub},[]}, Aligned, Type) ->
    {Prefix,Check,PutLen} = per_enc_constrained(Len, Lb, Ub, Aligned),
    NoExt = {put_bits,0,1,[1]},
    U = unit(Unit, Aligned, Type, Lb*Unit, Ub*Unit),
    PutBits = [{put_bits,Bin,binary,U}],
    [{'cond',ExtConds0}] = per_enc_length(Bin, Unit, Len, Aligned),
    Ext = {put_bits,1,1,[1]},
    ExtConds = prepend_to_cond(ExtConds0, Ext),
    build_length_cond(Prefix, [[Check,NoExt|PutLen++PutBits]|ExtConds]);
per_enc_length(Bin, Unit, Len, {Lb,Ub}, Aligned, Type)
  when is_integer(Lb) ->
    {Prefix,Check,PutLen} = per_enc_constrained(Len, Lb, Ub, Aligned),
    U = unit(Unit, Aligned, Type, Lb*Unit, Ub*Unit),
    PutBits = [{put_bits,Bin,binary,U}],
    build_length_cond(Prefix, [[Check|PutLen++PutBits]]);
per_enc_length(Bin, Unit0, Len, Sv, Aligned, Type) when is_integer(Sv) ->
    NumBits = Sv*Unit0,
    Unit = case NumBits rem 8 of
	       0 ->
		   %% Help out the alignment optimizer.
		   8;
	       _ ->
		   Unit0
	   end,
    U = unit(Unit, Aligned, Type, NumBits, NumBits),
    Pb = {put_bits,Bin,binary,U},
    [{'cond',[[{eq,Len,Sv},Pb]]}].

enc_length(Len, no, Aligned) ->
    U = unit(1, Aligned),
    build_cond([[{lt,Len,128},
		 {put_bits,Len,8,U}],
		[{lt,Len,16384},
		 {put_bits,2,2,U},{put_bits,Len,14,[1]}]]);
enc_length(Len, {{Lb,Ub},[]}, Aligned) ->
    {Prefix,Check,PutLen} = per_enc_constrained(Len, Lb, Ub, Aligned),
    NoExt = {put_bits,0,1,[1]},
    [{'cond',ExtConds0}] = enc_length(Len, no, Aligned),
    Ext = {put_bits,1,1,[1]},
    ExtConds = prepend_to_cond(ExtConds0, Ext),
    build_length_cond(Prefix, [[Check,NoExt|PutLen]|ExtConds]);
enc_length(Len, {Lb,Ub}, Aligned) when is_integer(Lb) ->
    {Prefix,Check,PutLen} = per_enc_constrained(Len, Lb, Ub, Aligned),
    build_length_cond(Prefix, [[Check|PutLen]]);
enc_length(Len, Sv, _Aligned) when is_integer(Sv) ->
    [{'cond',[[{eq,Len,Sv}]]}].

put_bits_binary(Bin, _Unit, Aligned) when is_binary(Bin) ->
    Sz = byte_size(Bin),
    <<Int:Sz/unit:8>> = Bin,
    {put_bits,Int,8*Sz,unit(1, Aligned)};
put_bits_binary(Bin, Unit, Aligned) ->
    {put_bits,Bin,binary,unit(Unit, Aligned)}.

sub_lb(Val, 0) ->
    {[],Val};
sub_lb({var,Var}=Val0, Lb) ->
    Val = {var,Var++"@sub"},
    {[{sub,Val0,Lb,Val}],Val};
sub_lb(Val, Lb) when is_integer(Val) ->
    {[],Val-Lb}.

build_length_cond([{sub,Var0,Base,Var}]=Prefix, Cs) ->
    %% Non-zero lower bound, such as: SIZE (50..200, ...)
    Prefix++[{'cond',opt_length_nzlb(Cs, {Var0,Var,Base}, 0)}];
build_length_cond([], Cs) ->
    %% Zero lower bound, such as: SIZE (0..200, ...)
    [{'cond',opt_length_zlb(Cs, 0)}].

opt_length_zlb([[{ult,Var,Val}|Actions]|T], Ub) ->
    %% Since the SIZE constraint is zero-based, Var
    %% must be greater than zero, and we can use
    %% the slightly cheaper signed less than operator.
    opt_length_zlb([[{lt,Var,Val}|Actions]|T], Ub);
opt_length_zlb([[{lt,_,Val}|_]=H|T], Ub) ->
    if
	Val =< Ub ->
	    %% A previous test has already matched.
	    opt_length_zlb(T, Ub);
	true ->
	    [H|opt_length_zlb(T, max(Ub, Val))]
    end;
opt_length_zlb([H|T], Ub) ->
    [H|opt_length_zlb(T, Ub)];
opt_length_zlb([], _) -> [].

opt_length_nzlb([[{ult,Var,Val}|_]=H|T], {_,Var,Base}=St, _Ub) ->
    [H|opt_length_nzlb(T, St, Base+Val)];
opt_length_nzlb([[{lt,Var0,Val}|_]=H|T], {Var0,_,_}=St, Ub) ->
    if
	Val =< Ub ->
	    %% A previous test has already matched.
	    opt_length_nzlb(T, St, Ub);
	true ->
	    [H|opt_length_nzlb(T, St, Val)]
    end;
opt_length_nzlb([H|T], St, Ub) ->
    [H|opt_length_nzlb(T, St, Ub)];
opt_length_nzlb([], _, _) -> [].

build_cond(Conds0) ->
    case eval_cond(Conds0, gb_sets:empty()) of
	[['_'|Actions]] ->
	    Actions;
	Conds ->
	    [{'cond',Conds}]
    end.

eval_cond([['_',{'cond',Cs}]], Seen) ->
    eval_cond(Cs, Seen);
eval_cond([[Cond|Actions]=H|T], Seen0) ->
    case gb_sets:is_element(Cond, Seen0) of
	false ->
	    Seen = gb_sets:insert(Cond, Seen0),
	    case eval_cond_1(Cond) of
		false ->
		    eval_cond(T, Seen);
		true ->
		    [['_'|Actions]];
		maybe ->
		    [H|eval_cond(T, Seen)]
	    end;
	true ->
	    eval_cond(T, Seen0)
    end;
eval_cond([], _) -> [].

eval_cond_1({ult,I,N}) when is_integer(I), is_integer(N) ->
    0 =< I andalso I < N;
eval_cond_1({eq,[],[]}) ->
    true;
eval_cond_1({eq,I,N}) when is_integer(I), is_integer(N) ->
    I =:= N;
eval_cond_1({lt,I,N}) when is_integer(I), is_integer(N) ->
    I < N;
eval_cond_1(_) -> maybe.

prepend_to_cond([H|T], Code) ->
    [prepend_to_cond_1(H, Code)|prepend_to_cond(T, Code)];
prepend_to_cond([], _) -> [].

prepend_to_cond_1([Check|T], Code) ->
    [Check,Code|T].

enc_char_tab(notab) ->
    notab;
enc_char_tab(Tab0) ->
    Tab1 = tuple_to_list(Tab0),
    First = hd(Tab1),
    Tab = enc_char_tab_1(Tab1, First, 0),
    case lists:member(ill, Tab) of
	false ->
	    {compact_map,{First,tuple_size(Tab0)}};
	true ->
	    {tab,{First-1,list_to_tuple(Tab)}}
    end.

enc_char_tab_1([H|T], H, I) ->
    [I|enc_char_tab_1(T, H+1, I+1)];
enc_char_tab_1([_|_]=T, H, I) ->
    [ill|enc_char_tab_1(T, H+1, I)];
enc_char_tab_1([], _, _) -> [].

enumerated_constraint([_]) ->
    [{'SingleValue',0}];
enumerated_constraint(Root) ->
    [{'ValueRange',{0,length(Root)-1}}].

per_enc_enumerated_root(NNL, Prefix, Val, Constr, Aligned) ->
    per_enc_enumerated_root_1(NNL, Prefix, Val, Constr, Aligned, 0).

per_enc_enumerated_root_1([{H,_}|T], Prefix, Val, Constr, Aligned, N) ->
    [[{eq,Val,H}|Prefix++per_enc_integer_1(N, Constr, Aligned)]|
     per_enc_enumerated_root_1(T, Prefix, Val, Constr, Aligned, N+1)];
per_enc_enumerated_root_1([], _, _, _, _, _) -> [].

per_enc_enumerated_ext(NNL, Val, Aligned) ->
    per_enc_enumerated_ext_1(NNL, Val, Aligned, 0).

per_enc_enumerated_ext_1([{H,_}|T], Val, Aligned, N) ->
    [[{eq,Val,H},{put_bits,1,1,[1]}|per_enc_small_number(N, Aligned)]|
     per_enc_enumerated_ext_1(T, Val, Aligned, N+1)];
per_enc_enumerated_ext_1([], _, _, _) -> [].

per_enc_small_length(Val0, Aligned) ->
    {Sub,Val} = sub_lb(Val0, 1),
    U = unit(1, Aligned),
    Sub ++ build_cond([[{lt,Val,64},{put_bits,Val,7,[1]}],
		       [{lt,Val0,128},{put_bits,1,1,[1]},
			{put_bits,Val0,8,U}],
		       ['_',{put_bits,1,1,[1]},
			{put_bits,2,2,U},{put_bits,Val0,14,[1]}]]).

constr_min_size(no) -> no;
constr_min_size({{Lb,_},[]}) when is_integer(Lb) -> Lb;
constr_min_size({Lb,_}) when is_integer(Lb) -> Lb;
constr_min_size(Sv) when is_integer(Sv) -> Sv.

enc_mod(false) -> uper;
enc_mod(true) -> per.

unit(U, false) -> [U];
unit(U, true) -> [U,align].

unit(U, Aligned, Type, Lb, Ub) ->
    case Aligned andalso is_aligned(Type, Lb, Ub) of
	true -> [U,align];
	false -> [U]
    end.

opt_choice(Imm) ->
    {Pb,T0} = lists:splitwith(fun({put_bits,V,_,_}) when is_integer(V) ->
				      true;
				 (_) ->
				      false
			      end, Imm),
    try
	{Prefix,T} = split_off_nonbuilding(T0),
	Prefix ++ opt_choice_1(T, Pb)
    catch
	throw:impossible ->
	    Imm
    end.

opt_choice_1([{'cond',Cs0}], Pb) ->
    case Cs0 of
	[[C|Act]] ->
	    [{'cond',[[C|Pb++Act]]}];
	[[C|Act],['_',{error,_}]=Error] ->
	    [{'cond',[[C|Pb++Act],Error]}];
	_ ->
	    [{'cond',opt_choice_2(Cs0, Pb)}]
    end;
opt_choice_1(_, _) -> throw(impossible).

opt_choice_2([[C|[{put_bits,_,_,_}|_]=Act]|T], Pb) ->
    [[C|Pb++Act]|opt_choice_2(T, Pb)];
opt_choice_2([[_,{error,_}]=H|T], Pb) ->
    [H|opt_choice_2(T, Pb)];
opt_choice_2([_|_], _) ->
    throw(impossible);
opt_choice_2([], _) -> [].

%%%
%%% Optimize list comprehensions (SEQUENCE OF/SET OF).
%%%

opt_lc([{lc,[{call,erlang,iolist_to_binary,[Var],Bin},
	       {call,erlang,byte_size,[Bin],LenVar},
	       {'cond',[[{eq,LenVar,Len},{put_bits,Bin,_,[_|Align]}]]}],
	   Var,Val}]=Lc, LenImm) ->
    %% Given a sequence of a fixed length string, such as
    %% SEQUENCE OF OCTET STRING (SIZE (4)), attempt to rewrite to
    %% a list comprehension that just checks the size, followed by
    %% a conversion to binary:
    %%
    %%   _ = [if length(Comp) =:= 4; byte_size(Comp) =:= 4 -> [] end ||
    %%           Comp <- Sof],
    %%   [align|iolist_to_binary(Sof)]

    CheckImm = [{'cond',[[{eq,{expr,"length("++mk_val(Var)++")"},Len}],
			 [{eq,{expr,"byte_size("++mk_val(Var)++")"},Len}]]}],
    Al = case Align of
	     [] ->
		 [];
	     [align] ->
		 [{put_bits,0,0,[1|Align]}]
	 end,
    case Al =:= [] orelse
	is_end_aligned(LenImm) orelse
	lb_is_nonzero(LenImm) of
	false ->
	    %% Not possible because an empty SEQUENCE OF would be
	    %% improperly aligned. Example:
	    %%
	    %%    SEQUENCE (SIZE (0..3)) OF ...

	    Lc;
	true ->
	    %% Examples:
	    %%
	    %% SEQUENCE (SIZE (1..4)) OF ...
	    %%   (OK because there must be at least one element)
	    %%
	    %% SEQUENCE OF ...
	    %%   (OK because the length field will force alignment)
	    %%
	    Al ++ [{lc,CheckImm,Var,Val,{var,"_"}},
		   {call,erlang,iolist_to_binary,[Val]}]
    end;
opt_lc([{lc,ElementImm0,V,L}]=Lc, LenImm) ->
    %% Attempt to hoist the alignment, putting after the length
    %% and before the list comprehension:
    %%
    %%   [Length,
    %%    align,
    %%    [Encode(Comp) || Comp <- Sof]]
    %%

    case enc_opt_al_1(ElementImm0, 0) of
	{ElementImm,0} ->
	    case is_end_aligned(LenImm) orelse
		(is_beginning_aligned(ElementImm0) andalso
		 lb_is_nonzero(LenImm)) of
		false ->
		    %% Examples:
		    %%
		    %% SEQUENCE (SIZE (0..3)) OF OCTET STRING
		    %%   (An empty SEQUENCE OF would be improperly aligned)
		    %%
		    %% SEQUENCE (SIZE (1..3)) OF OCTET STRING (SIZE (0..4))
		    %%   (There would be an improper alignment before the
		    %%   first element)

		    Lc;
		true ->
		    %% Examples:
		    %%
		    %% SEQUENCE OF INTEGER
		    %% SEQUENCE (SIZE (1..4)) OF INTEGER
		    %% SEQUENCE (SIZE (1..4)) OF INTEGER (0..256)

		    [{put_bits,0,0,[1,align]},{lc,ElementImm,V,L}]
	    end;
	_ ->
	    %% Unknown alignment, no alignment, or not aligned at the end.
	    %% Examples:
	    %%
	    %% SEQUENCE OF SomeConstructedType
	    %% SEQUENCE OF INTEGER (0..15)

	    Lc
    end.

is_beginning_aligned([{'cond',Cs}]) ->
    lists:all(fun([_|Act]) -> is_beginning_aligned(Act) end, Cs);
is_beginning_aligned([{error,_}|_]) -> true;
is_beginning_aligned([{put_bits,_,_,U}|_]) ->
    case U of
	[_,align] -> true;
	[_] -> false
    end;
is_beginning_aligned(Imm0) ->
    case split_off_nonbuilding(Imm0) of
	{[],_} -> false;
	{[_|_],Imm} -> is_beginning_aligned(Imm)
    end.

is_end_aligned(Imm) ->
    case enc_opt_al_1(Imm, unknown) of
	{_,0} -> true;
	{_,_} -> false
    end.

lb_is_nonzero([{sub,_,_,_}|_]) -> true;
lb_is_nonzero(_) -> false.

%%%
%%% Attempt to combine two chunks of intermediate code.
%%%

combine_imms(ImmA0, ImmB0) ->
    {Prefix0,ImmA} = split_off_nonbuilding(ImmA0),
    {Prefix1,ImmB} = split_off_nonbuilding(ImmB0),
    Prefix = Prefix0 ++ Prefix1,
    Combined = do_combine(ImmA ++ ImmB, 3.0),
    Prefix ++ Combined.

do_combine([{error,_}=Imm|_], _Budget) ->
    [Imm];
do_combine([{'cond',Cs0}|T], Budget0) ->
    Budget = debit(Budget0, num_clauses(Cs0, 0)),
    Cs = [[C|do_combine(Act++T, Budget)] || [C|Act] <- Cs0],
    [{'cond',Cs}];
do_combine([{put_bits,V,_,_}|_]=L, Budget) when is_integer(V) ->
    {Pb,T} = collect_put_bits(L),
    do_combine_put_bits(Pb, T,Budget);
do_combine(_, _) ->
    throw(impossible).

do_combine_put_bits(Pb, [], _Budget) ->
    Pb;
do_combine_put_bits(Pb, [{'cond',Cs0}|T], Budget) ->
    Cs = [case Act of
	      [{error,_}] ->
		  [C|Act];
	      _ ->
		  [C|do_combine(Pb++Act, Budget)]
	  end || [C|Act] <- Cs0],
    do_combine([{'cond',Cs}|T], Budget);
do_combine_put_bits(_, _, _) ->
    throw(impossible).

debit(Budget0, Alternatives) ->
    case Budget0 - log2(Alternatives) of
	Budget when Budget > 0.0 ->
	    Budget;
	_ ->
	    throw(impossible)
    end.

num_clauses([[_,{error,_}]|T], N) ->
    num_clauses(T, N);
num_clauses([_|T], N) ->
    num_clauses(T, N+1);
num_clauses([], N) -> N.

log2(N) ->
    math:log(N) / math:log(2.0).

collect_put_bits(Imm) ->
    lists:splitwith(fun({put_bits,V,_,_}) when is_integer(V) -> true;
		       (_) -> false
		    end, Imm).

%%%
%%% Simple common subexpression elimination to avoid fetching
%%% the same element twice.
%%%

enc_cse([{call,erlang,element,Args,V}=H|T]) ->
    [H|enc_cse_1(T, Args, V)];
enc_cse(Imm) -> Imm.

enc_cse_1([{call,erlang,element,Args,Dst}|T], Args, V) ->
    [{set,V,Dst}|enc_cse_1(T, Args, V)];
enc_cse_1([{block,Bl}|T], Args, V) ->
    [{block,enc_cse_1(Bl, Args, V)}|enc_cse_1(T, Args, V)];
enc_cse_1([H|T], Args, V) ->
    [H|enc_cse_1(T, Args, V)];
enc_cse_1([], _, _) -> [].


%%%
%%% Pre-process the intermediate code to simplify code generation.
%%%

enc_pre_cg(Imm) ->
    enc_pre_cg_1(Imm, outside_list, in_seq).

enc_pre_cg_1([], _StL, _StB) ->
    nil;
enc_pre_cg_1([H], StL, StB) ->
    enc_pre_cg_2(H, StL, StB);
enc_pre_cg_1([H0|T0], StL, StB) ->
    case is_nonbuilding(H0) of
	true ->
	    H = enc_pre_cg_nonbuilding(H0, StL),
	    Seq = {seq,H,enc_pre_cg_1(T0, StL, in_seq)},
	    case StB of
		outside_seq -> {block,Seq};
		in_seq -> Seq
	    end;
	false ->
	    H = enc_pre_cg_2(H0, in_head, outside_seq),
	    T = enc_pre_cg_1(T0, in_tail, outside_seq),
	    enc_make_cons(H, T)
    end.

enc_pre_cg_2(align, StL, _StB) ->
    case StL of
	in_head -> align;
	in_tail -> {cons,align,nil}
    end;
enc_pre_cg_2({apply,_,_}=Imm, _, _) ->
    Imm;
enc_pre_cg_2({block,Bl0}, StL, StB) ->
    enc_pre_cg_1(Bl0, StL, StB);
enc_pre_cg_2({call,_,_,_}=Imm, _, _) ->
    Imm;
enc_pre_cg_2({call_gen,_,_,_,_,_}=Imm, _, _) ->
    Imm;
enc_pre_cg_2({'cond',Cs0}, StL, _StB) ->
    Cs = [{C,enc_pre_cg_1(Act, StL, outside_seq)} || [C|Act] <- Cs0],
    {'cond',Cs};
enc_pre_cg_2({error,_}=E, _, _) ->
    E;
enc_pre_cg_2({lc,B0,V,L}, StL, _StB) ->
    B = enc_pre_cg_1(B0, StL, outside_seq),
    {lc,B,V,L};
enc_pre_cg_2({put_bits,V,8,[1]}, StL, _StB) ->
    case StL of
	in_head -> {integer,V};
	in_tail -> {cons,{integer,V},nil};
	outside_list -> {cons,{integer,V},nil}
    end;
enc_pre_cg_2({put_bits,V,binary,_}, _StL, _StB) ->
    V;
enc_pre_cg_2({put_bits,_,_,[_]}=PutBits, _StL, _StB) ->
    {binary,[PutBits]};
enc_pre_cg_2({var,_}=Imm, _, _) -> Imm.

enc_make_cons({binary,H}, {binary,T}) ->
    {binary,H++T};
enc_make_cons({binary,H0}, {cons,{binary,H1},T}) ->
    enc_make_cons({binary,H0++H1}, T);
enc_make_cons({binary,H}, {cons,{integer,Int},T}) ->
    enc_make_cons({binary,H++[{put_bits,Int,8,[1]}]}, T);
enc_make_cons({integer,Int}, {binary,T}) ->
    {binary,[{put_bits,Int,8,[1]}|T]};
enc_make_cons({integer,Int}, {cons,{binary,H},T}) ->
    enc_make_cons({binary,[{put_bits,Int,8,[1]}|H]}, T);
enc_make_cons(H, T) ->
    {cons,H,T}.

enc_pre_cg_nonbuilding({lc,B0,Var,List,Dst}, StL) ->
    B = enc_pre_cg_1(B0, StL, outside_seq),
    {lc,B,Var,List,Dst};
enc_pre_cg_nonbuilding({list,List0,Dst}, _StL) ->
    List = enc_pre_cg_1(List0, outside_list, outside_seq),
    {list,List,Dst};
enc_pre_cg_nonbuilding({'try',Try0,{P,Succ0},Else0,Dst}, StL) ->
    Try = enc_pre_cg_1(Try0, StL, outside_seq),
    Succ = enc_pre_cg_1(Succ0, StL, outside_seq),
    Else = enc_pre_cg_1(Else0, StL, outside_seq),
    {'try',Try,{P,Succ},Else,Dst};
enc_pre_cg_nonbuilding(Imm, _) -> Imm.

%%%
%%% Optimize calls to complete/1 and surrounding code. There are
%%% several opportunities for optimizations.
%%%
%%% It may be possible to replace the call to complete/1 with
%%% something cheaper (most important for the PER back-end which has
%%% an expensive complete/1 implementation). If we can be sure that
%%% complete/1 will be called with an iolist (no 'align' atoms or
%%% bitstrings in the list), we can call iolist_to_binary/1
%%% instead. If the list may include bitstrings, we can can call
%%% list_to_bitstring/1 (note that list_to_bitstring/1 does not accept
%%% a binary or bitstring, so we MUST be sure that we only pass it a
%%% list).  If complete/1 is called with a binary, we can omit the
%%% call altogether.
%%%
%%% A call to byte_size/1 that follows complete/1 can be eliminated
%%% if the size of the binary produced by complete/1 can be determined
%%% and is constant.
%%%
%%% The code that encodes the length descriptor (a 'cond' instruction)
%%% for a binary produced by complete/1 can be simplified if the lower
%%% and upper bounds for the size of the binary are known.
%%%

-record(ost,
	{sym,
	 t
	}).

enc_opt(Imm0) ->
    {Imm,_} = enc_opt(Imm0, #ost{sym=gb_trees:empty()}),
    Imm.

enc_opt(align, St) ->
    {align,St#ost{t=t_align({0,7})}};
enc_opt({apply,What,As}, St) ->
    {{apply,What,subst_list(As, St)},St#ost{t=t_any()}};
enc_opt({assign,_,_}=Imm, St) ->
    {Imm,St};
enc_opt({binary,PutBits0}, St) ->
    PutBits = [{put_bits,subst(V, St),Sz,F} ||
		  {put_bits,V,Sz,F} <- PutBits0],
    NumBits = lists:foldl(fun({put_bits,_,Bits,_}, Sum) ->
				  Sum+Bits
			  end, 0, PutBits),
    {{binary,PutBits},St#ost{t=t_bitstring(NumBits)}};
enc_opt({block,Bl0}, St0) ->
    {Bl,St} = enc_opt(Bl0, St0),
    {{block,Bl},St};
enc_opt({call,binary,encode_unsigned,[Int],Bin}=Imm, St0) ->
    Type = get_type(Int, St0),
    St = case t_range(Type) of
	     any ->
		 set_type(Bin, t_binary(), St0);
	     {Lb0,Ub0} ->
		 Lb = bit_size(binary:encode_unsigned(Lb0)),
		 Ub = bit_size(binary:encode_unsigned(Ub0)),
		 set_type(Bin, t_binary({Lb,Ub}), St0)
	 end,
    {Imm,St};
enc_opt({call,erlang,bit_size,[Bin],Dst}=Imm0, St0) ->
    Type = get_type(Bin, St0),
    case t_range(Type) of
	any ->
	    St1 = set_type(Bin, t_bitstring(), St0),
	    St = propagate(Dst,
			   fun(T, S) ->
				   bit_size_propagate(Bin, T, S)
			   end, St1),
	    {Imm0,St};
	{Lb,Ub}=Range ->
	    St = set_type(Dst, t_integer(Range), St0),
	    Imm = case Lb of
		      Ub -> none;
		      _ -> Imm0
		  end,
	    {Imm,St}
    end;
enc_opt({call,erlang,byte_size,[Bin],Dst}=Imm0, St0) ->
    Type = get_type(Bin, St0),
    case t_range(Type) of
	any ->
	    St1 = set_type(Bin, t_binary(), St0),
	    St = propagate(Dst,
			   fun(T, S) ->
				   byte_size_propagate(Bin, T, S)
			   end, St1),
	    {Imm0,St};
	{Lb0,Ub0} ->
	    Lb = (Lb0+7) div 8,
	    Ub = (Ub0+7) div 8,
	    St = set_type(Dst, t_integer({Lb,Ub}), St0),
	    Imm = case Lb of
		      Ub -> none;
		      _ -> Imm0
		  end,
	    {Imm,St}
    end;
enc_opt({call,erlang,iolist_to_binary,_}=Imm, St) ->
    {Imm,St#ost{t=t_binary()}};
enc_opt({call,erlang,length,[List],Dst}=Imm0, St0) ->
    St1 = propagate(Dst,
		    fun(T, S) ->
			    length_propagate(List, T, S)
		    end, St0),
    {Imm0,St1};
enc_opt({call,per,complete,[Data],Dst}, St0) ->
    Type = get_type(Data, St0),
    St = set_type(Dst, t_binary(t_range(Type)), St0),
    case t_type(Type) of
	binary ->
	    {{set,Data,Dst},St};
	bitlist ->
	    %% We KNOW that list_to_bitstring/1 will construct
	    %% a binary (the number of bits is divisible by 8)
	    %% because per_enc_open_type/2 added an 'align' atom
	    %% at the end. If that 'align' atom had not been
	    %% optimized away, the type would have been 'align'
	    %% instead of 'bitlist'.
	    {{call,erlang,list_to_bitstring,[Data],Dst},St};
	iolist ->
	    {{call,erlang,iolist_to_binary,[Data],Dst},St};
	nil ->
	    Imm = {list,{binary,[{put_bits,0,8,[1]}]},Dst},
	    enc_opt(Imm, St0);
	_ ->
	    {{call,per,complete,[Data],Dst},St}
    end;
enc_opt({call,uper,complete,[Data],Dst}, St0) ->
    Type = get_type(Data, St0),
    St = set_type(Dst, t_binary(t_range(Type)), St0),
    case t_type(Type) of
	binary ->
	    {{set,Data,Dst},St0};
	iolist ->
	    {{call,erlang,iolist_to_binary,[Data],Dst},St};
	nil ->
	    Imm = {list,{binary,[{put_bits,0,8,[1]}]},Dst},
	    enc_opt(Imm, St0);
	_ ->
	    %% 'bitlist' or 'any'.
	    {{call,uper,complete,[Data],Dst},St}
    end;
enc_opt({call,per_common,encode_chars,[List,NumBits|_],Dst}=Imm, St0) ->
    %% Note: Never used when NumBits =:= 8 (list_to_binary/1 will
    %% be used instead).
    St1 = set_type(Dst, t_bitstring(), St0),
    St = propagate(List,
		   fun(T, S) ->
			   char_propagate(Dst, T, NumBits, S)
		   end, St1),
    {Imm,St};
enc_opt({call,per_common,encode_chars_16bit,[List],Dst}=Imm, St0) ->
    St1 = set_type(Dst, t_binary(), St0),
    St = propagate(List,
		   fun(T, S) ->
			   char_propagate(Dst, T, 16, S)
		   end, St1),
    {Imm,St};
enc_opt({call,per_common,encode_big_chars,[List],Dst}=Imm, St0) ->
    St1 = set_type(Dst, t_binary(), St0),
    St = propagate(List,
		   fun(T, S) ->
			   char_propagate(Dst, T, 32, S)
		   end, St1),
    {Imm,St};
enc_opt({call,per_common,encode_fragmented,[_,Unit]}=Imm, St) ->
    T = case Unit rem 8 of
	    0 -> t_iolist();
	    _ -> t_bitlist()
	end,
    {Imm,St#ost{t=T}};
enc_opt({call,per_common,encode_unconstrained_number,_}=Imm, St) ->
    {Imm,St#ost{t=t_iolist()}};
enc_opt({call,per_common,bitstring_from_positions,_}=Imm, St) ->
    {Imm,St#ost{t=t_bitstring()}};
enc_opt({call,per_common,to_named_bitstring,_}=Imm, St) ->
    {Imm,St#ost{t=t_bitstring()}};
enc_opt({call,_,_,_}=Imm, St) ->
    {Imm,St#ost{t=t_any()}};
enc_opt({call,_,_,_,_}=Imm, St) ->
    {Imm,St#ost{t=undefined}};
enc_opt({call_gen,N,K,F,L,As}, St) ->
    {{call_gen,N,K,F,L,subst(As, St)},St#ost{t=t_any()}};
enc_opt({'cond',Cs0}, St0) ->
    case enc_opt_cs(Cs0, St0) of
	[{'_',Imm,Type}] ->
	    {Imm,St0#ost{t=Type}};
	[{Cond,Imm,Type0}|Cs1] ->
	    {Cs,Type} = enc_opt_cond_1(Cs1, Type0, [{Cond,Imm}]),
	    {{'cond',Cs},St0#ost{t=Type}}
    end;
enc_opt({cons,H0,T0}, St0) ->
    {H,#ost{t=TypeH}=St1} = enc_opt(H0, St0),
    {T,#ost{t=TypeT}=St} = enc_opt(T0, St1),
    {{cons,H,T},St#ost{t=t_cons(TypeH, TypeT)}};
enc_opt({error,_}=Imm, St) ->
    {Imm,St#ost{t=t_any()}};
enc_opt({integer,V}, St) ->
    {{integer,subst(V, St)},St#ost{t=t_integer()}};
enc_opt({lc,E0,B,C}, St) ->
    {E,_} = enc_opt(E0, St),
    {{lc,E,B,C},St#ost{t=t_any()}};
enc_opt({lc,E0,B,C,Dst}, St) ->
    {E,_} = enc_opt(E0, St),
    {{lc,E,B,C,Dst},St#ost{t=undefined}};
enc_opt({list,Imm0,Dst}, St0) ->
    {Imm,#ost{t=Type}=St1} = enc_opt(Imm0, St0),
    St = set_type(Dst, Type, St1),
    {{list,Imm,Dst},St#ost{t=undefined}};
enc_opt(nil, St) ->
    {nil,St#ost{t=t_nil()}};
enc_opt({seq,H0,T0}, St0) ->
    {H,St1} = enc_opt(H0, St0),
    {T,St} = enc_opt(T0, St1),
    case {H,T} of
	{none,_} ->
	    {T,St};
	{{list,Imm,Data},
	 {seq,{call,per,complete,[Data],_},_}} ->
	    %% Get rid of any explicit 'align' added by per_enc_open_type/2.
	    {{seq,{list,remove_trailing_align(Imm),Data},T},St};
	{_,_} ->
	    {{seq,H,T},St}
    end;
enc_opt({set,_,_}=Imm, St) ->
    {Imm,St#ost{t=undefined}};
enc_opt({sub,Src0,Int,Dst}, St0) ->
    Src = subst(Src0, St0),
    Type = get_type(Src, St0),
    St = case t_range(Type) of
	     any ->
		 propagate(Dst,
			   fun(T, S) ->
				   set_type(Src, t_add(T, Int), S)
			   end,
			   St0);
	     {Lb,Ub} ->
		 set_type(Dst, t_integer({Lb-Int,Ub-Int}), St0)
	 end,
    {{sub,Src,Int,Dst},St#ost{t=undefined}};
enc_opt({'try',Try0,{P,Succ0},Else0,Dst}, St0) ->
    {Try,_} = enc_opt(Try0, St0),
    {Succ,_} = enc_opt(Succ0, St0),
    {Else,_} = enc_opt(Else0, St0),
    {{'try',Try,{P,Succ},Else,Dst},St0#ost{t=undefined}};
enc_opt({var,_}=Imm, St) ->
    Type = get_type(Imm, St),
    {subst(Imm, St),St#ost{t=Type}}.

remove_trailing_align({block,Bl}) ->
    {block,remove_trailing_align(Bl)};
remove_trailing_align({cons,H,{cons,align,nil}}) ->
    H;
remove_trailing_align({seq,H,T}) ->
    {seq,H,remove_trailing_align(T)};
remove_trailing_align(Imm) -> Imm.

bit_size_propagate(Bin, Type, St) ->
    case t_range(Type) of
	any ->
	    St;
	{Lb,Ub} ->
	    set_type(Bin, t_bitstring({Lb,Ub}), St)
    end.

byte_size_propagate(Bin, Type, St) ->
    case t_range(Type) of
	any ->
	    St;
	{Lb,Ub} ->
	    set_type(Bin, t_binary({Lb*8,Ub*8}), St)
    end.

char_propagate(Dst, T, NumBits, St) ->
    case t_range(T) of
	any ->
	    St;
	{Sz,Sz} when Sz*NumBits rem 8 =:= 0 ->
	    Bits = Sz*NumBits,
	    set_type(Dst, t_binary({Bits,Bits}), St);
	{Lb,Ub} ->
	    Range = {Lb*NumBits,Ub*NumBits},
	    case NumBits rem 8 of
		0 ->
		    set_type(Dst, t_binary(Range), St);
		_ ->
		    set_type(Dst, t_bitstring(Range), St)
	    end
    end.

length_propagate(List, Type, St) ->
    set_type(List, t_list(t_range(Type)), St).

enc_opt_cond_1([{Cond,{error,_}=Imm,_}|T], St, Acc) ->
    enc_opt_cond_1(T, St, [{Cond,Imm}|Acc]);
enc_opt_cond_1([{Cond,Imm,Curr0}|T], Curr1, Acc) ->
    Curr = t_join(Curr0, Curr1),
    enc_opt_cond_1(T, Curr, [{Cond,Imm}|Acc]);
enc_opt_cond_1([], St, Acc) ->
    {lists:reverse(Acc),St}.

enc_opt_cs([{Cond,Imm0}|T], St0) ->
    case eo_eval_cond(Cond, St0) of
	false ->
	    enc_opt_cs(T, St0);
	true ->
	    {Imm,#ost{t=Type}} = enc_opt(Imm0, St0),
	    [{'_',Imm,Type}];
	maybe ->
	    St = update_type_info(Cond, St0),
	    {Imm,#ost{t=Type}} = enc_opt(Imm0, St),
	    [{Cond,Imm,Type}|enc_opt_cs(T, St0)]
    end;
enc_opt_cs([], _) -> [].

eo_eval_cond('_', _) ->
    true;
eo_eval_cond({Op,{var,_}=Var,Val}, St) ->
    Type = get_type(Var, St),
    case t_range(Type) of
	any -> maybe;
	{_,_}=Range -> eval_cond_range(Op, Range, Val)
    end;
eo_eval_cond({_Op,{expr,_},_Val}, _St) -> maybe.

eval_cond_range(lt, {Lb,Ub}, Val) ->
    if
	Ub < Val -> true;
	Val =< Lb -> false;
	true -> maybe
    end;
eval_cond_range(_Op, _Range, _Val) -> maybe.

update_type_info({ult,{var,_}=Var,Val}, St) ->
    Int = t_integer({0,Val-1}),
    Type = t_meet(get_type(Var, St), Int),
    set_type(Var, Type, St);
update_type_info({lt,{var,_}=Var,Val}, St) ->
    Int = t_integer({0,Val-1}),
    Type = t_meet(get_type(Var, St), Int),
    set_type(Var, Type, St);
update_type_info({eq,{var,_}=Var,Val}, St) when is_integer(Val) ->
    Int = t_integer(Val),
    Type = t_meet(get_type(Var, St), Int),
    set_type(Var, Type, St);
update_type_info({eq,_,_}, St) ->
    St;
update_type_info({ge,_,_}, St) -> St.

subst_list(As, St) ->
    [subst(A, St) || A <- As].

subst({var,_}=Var, St) ->
    Type = get_type(Var, St),
    case t_type(Type) of
	integer ->
	    case t_range(Type) of
		any -> Var;
		{Val,Val} -> Val;
		{_,_} -> Var
	    end;
	_ ->
	    Var
    end;
subst(V, _St) -> V.

set_type({var,Var}, {_,_}=Type, #ost{sym=Sym0}=St0) ->
    Sym1 = gb_trees:enter(Var, Type, Sym0),
    case gb_trees:lookup({propagate,Var}, Sym1) of
	none ->
	    St0#ost{sym=Sym1};
	{value,Propagate} ->
	    Sym = gb_trees:delete({propagate,Var}, Sym1),
	    St = St0#ost{sym=Sym},
	    Propagate(Type, St)
    end.

get_type({var,V}, #ost{sym=Sym}) ->
    case gb_trees:lookup(V, Sym) of
	none -> t_any();
	{value,T} -> T
    end.

propagate({var,Var}, Propagate, #ost{sym=Sym0}=St) when is_function(Propagate, 2) ->
    Sym = gb_trees:enter({propagate,Var}, Propagate, Sym0),
    St#ost{sym=Sym}.

%%%
%%% A simple type system.
%%%
%%% Each type descriptions is a tuple {Type,Range}.
%%% Type is one of the following atoms:
%%%
%%% Type name   Description
%%% ---------   -----------
%%% any         Anything.
%%%
%%% align       Basically iodata, but the list may contain bitstrings
%%%             and the the atom 'align'. Can be passed to complete/1
%%%             to construct a binary. Only used for aligned PER (per).
%%%
%%% bitstring   An Erlang bitstring.
%%%
%%% bitlist     A list that may be passed to list_to_bitstring/1 to
%%%             construct a bitstring.
%%%             NOTE: When analysing aligned PER (per), the number
%%%             of bits in the bitlist is always divisible by 8 (if
%%%             not, the type will be 'align' instead).
%%%
%%% binary      An Erlang binary (the number of bits is divisible by 8).
%%%
%%% iolist      An Erlang iolist.
%%%
%%% nil         []
%%%
%%% integer     An integer.
%%%
%%%
%%% Range is one of:
%%%
%%%     any
%%%     {LowerBound,UpperBound}
%%%
%%%

t_align(Range) ->
    {align,t__range(Range)}.

t_any() ->
    {any,any}.

t_binary() ->
    {binary,any}.

t_binary(Range) ->
    {binary,t__range(Range)}.

t_bitlist() ->
    {bitlist,any}.

t_bitstring() ->
    {bitstring,any}.

t_bitstring(Range0) ->
    case t__range(Range0) of
	{Bits,Bits}=Range when Bits rem 8 =:= 0 ->
	    {binary,Range};
	Range ->
	    {bitstring,Range}
    end.

t_add({integer,{Lb,Ub}}, N) ->
    {integer,{Lb+N,Ub+N}}.

t_cons({_,_}=T1, {_,_}=T2) ->
    T = case {t__cons_type(T1),t__cons_type(T2)} of
	    {_,any} -> any;
	    {any,_} -> any;
	    {align,_} -> align;
	    {_,align} -> align;
	    {binary,binary} -> iolist;
	    {binary,bitstring} -> bitlist;
	    {bitstring,binary} -> bitlist;
	    {bitstring,bitstring} -> bitlist
	end,
    {T,t__cons_ranges(t__cons_range(T1), t__cons_range(T2))}.

t_integer() ->
    {integer,any}.

t_integer(Range) ->
    {integer,t__range(Range)}.

t_iolist() ->
    {iolist,any}.

t_list(Range) ->
    {list,t__range(Range)}.

t_nil() ->
    {nil,{0,0}}.

t_meet({T1,Range1}, {T2,Range2}) ->
    {t_meet_types(T1, T2),t_meet_ranges(Range1, Range2)}.

t_meet_types(integer, integer) -> integer;
t_meet_types(any, integer) -> integer.

t_meet_ranges(any, Range) ->
    Range;
t_meet_ranges({Lb1,Ub1}, {Lb2,Ub2}) ->
    if
	Lb1 =< Ub2, Lb2 =< Ub1 ->
	    {max(Lb1, Lb2),Ub1};
	Lb2 =< Ub1, Lb1 =< Ub2 ->
	    {max(Lb1, Lb2),Ub2}
    end.

t_join({T1,Range1}, {T2,Range2}) ->
    T = t_join_types(lists:sort([T1,T2])),
    Range = t_join_ranges(Range1, Range2),
    {T,Range}.

t_join_ranges({Lb1,Ub1}, {Lb2,Ub2}) ->
    {min(Lb1, Lb2),max(Ub1, Ub2)};
t_join_ranges(any, _) -> any;
t_join_ranges(_, any) -> any.

t_join_types([T,T]) -> T;
t_join_types([align,any]) -> any;
t_join_types([align,_]) -> align;
t_join_types([any,_]) -> any;
t_join_types([bitlist,bitstring]) -> any;
t_join_types([bitlist,integer]) -> any;
t_join_types([bitlist,iolist]) -> bitlist;
t_join_types([bitlist,nil]) -> bitlist;
t_join_types([binary,bitlist]) -> bitlist;
t_join_types([binary,bitstring]) -> bitstring;
t_join_types([binary,integer]) -> binary;
t_join_types([binary,iolist]) -> iolist;
t_join_types([binary,nil]) -> iolist;
t_join_types([bitstring,integer]) -> any;
t_join_types([bitstring,iolist]) -> any;
t_join_types([bitstring,nil]) -> any;
t_join_types([integer,_]) -> any;
t_join_types([iolist,nil]) -> iolist.

t_type({T,_}) -> T.

t_range({_,Range}) -> Range.

t__cons_type({align,_}) -> align;
t__cons_type({any,_}) -> any;
t__cons_type({binary,_}) -> binary;
t__cons_type({bitstring,_}) -> bitstring;
t__cons_type({bitlist,_}) -> bitstring;
t__cons_type({integer,_}) -> binary;
t__cons_type({iolist,_}) -> binary;
t__cons_type({nil,_}) -> binary.

t__cons_range({integer,_}) -> {8,8};
t__cons_range({_,Range}) -> Range.

t__cons_ranges({Lb1,Ub1}, {Lb2,Ub2}) ->
    {Lb1+Lb2,Ub1+Ub2};
t__cons_ranges(any, _) -> any;
t__cons_ranges(_, any) -> any.

t__range({Lb,Ub}=Range) when is_integer(Lb), is_integer(Ub) ->
    Range;
t__range(any) ->
    any;
t__range(Val) when is_integer(Val) ->
    {Val,Val}.


%%%
%%% Code generation for encoding.
%%%

enc_cg({cons,_,_}=Cons) ->
    enc_cg_cons(Cons);
enc_cg({block,Imm}) ->
    emit(["begin",nl]),
    enc_cg(Imm),
    emit([nl,
	  "end"]);
enc_cg({seq,First,Then}) ->
    enc_cg(First),
    emit([com,nl]),
    enc_cg(Then);
enc_cg(align) ->
    emit(align);
enc_cg({apply,F0,As0}) ->
    As = enc_call_args(As0, ""),
    case F0 of
	{local,F,_} when is_atom(F) ->
	    emit([{asis,F},"(",As,")"]);
	{M,F,_} ->
	    emit([{asis,M},":",{asis,F},"(",As,")"])
    end;
enc_cg({assign,Dst0,Expr}) ->
    Dst = mk_val(Dst0),
    emit([Dst," = ",Expr]);
enc_cg({binary,PutBits}) ->
    emit(["<<",enc_cg_put_bits(PutBits, ""),">>"]);
enc_cg({call,M,F,As0}) ->
    As = [mk_val(A) || A <- As0],
    asn1ct_func:call(M, F, As);
enc_cg({call,M,F,As0,Dst}) ->
    As = [mk_val(A) || A <- As0],
    emit([mk_val(Dst)," = "]),
    asn1ct_func:call(M, F, As);
enc_cg({call_gen,Prefix,Key,Gen,_,As0}) ->
    As = [mk_val(A) || A <- As0],
    asn1ct_func:call_gen(Prefix, Key, Gen, As);
enc_cg({'cond',Cs}) ->
    enc_cg_cond(Cs);
enc_cg({error,Error}) when is_function(Error, 0) ->
    Error();
enc_cg({error,Var0}) ->
    Var = mk_val(Var0),
    emit(["exit({error,{asn1,{illegal_value,",Var,"}}})"]);
enc_cg({integer,Int}) ->
    emit(mk_val(Int));
enc_cg({lc,Body,Var,List}) ->
    emit("["),
    enc_cg(Body),
    emit([" || ",mk_val(Var)," <- ",mk_val(List),"]"]);
enc_cg({lc,Body,Var,List,Dst}) ->
    emit([mk_val(Dst)," = ["]),
    enc_cg(Body),
    emit([" || ",mk_val(Var)," <- ",mk_val(List),"]"]);
enc_cg({list,List,Dst}) ->
    emit([mk_val(Dst)," = "]),
    enc_cg(List);
enc_cg(nil) ->
    emit("[]");
enc_cg({sub,Src0,Int,Dst0}) ->
    Src = mk_val(Src0),
    Dst = mk_val(Dst0),
    emit([Dst," = ",Src," - ",Int]);
enc_cg({set,{var,Src},{var,Dst}}) ->
    emit([Dst," = ",Src]);
enc_cg({'try',Try,{P,Succ},Else,Dst}) ->
    emit([mk_val(Dst)," = try "]),
    enc_cg(Try),
    emit([" of",nl,
	  mk_val(P)," ->",nl]),
    enc_cg(Succ),
    emit([nl,
	  "catch throw:invalid ->",nl]),
    enc_cg(Else),
    emit([nl,
	  "end"]);
enc_cg({var,V}) ->
    emit(V).

enc_cg_cons(Cons) ->
    emit("["),
    enc_cg_cons_1(Cons),
    emit("]").

enc_cg_cons_1({cons,H,{cons,_,_}=T}) ->
    enc_cg(H),
    emit([com,nl]),
    enc_cg_cons_1(T);
enc_cg_cons_1({cons,H,nil}) ->
    enc_cg(H);
enc_cg_cons_1({cons,H,T}) ->
    enc_cg(H),
    emit("|"),
    enc_cg(T).

enc_call_args([A|As], Sep) ->
    [Sep,mk_val(A)|enc_call_args(As, ", ")];
enc_call_args([], _) -> [].

enc_cg_cond(Cs) ->
    emit("if "),
    enc_cg_cond(Cs, ""),
    emit([nl,
	  "end"]).

enc_cg_cond([C|Cs], Sep) ->
    emit(Sep),
    enc_cg_cond_1(C),
    enc_cg_cond(Cs, [";",nl]);
enc_cg_cond([], _) -> ok.

enc_cg_cond_1({Cond,Action}) ->
    enc_cond_term(Cond),
    emit([" ->",nl]),
    enc_cg(Action).

enc_cond_term('_') ->
    emit("true");
enc_cond_term({ult,Var0,Int}) ->
    Var = mk_val(Var0),
    N = uper_num_bits(Int),
    case 1 bsl N of
	Int ->
	    emit([Var," bsr ",N," =:= 0"]);
	_ ->
	    emit(["0 =< ",Var,", ",Var," < ",Int])
    end;
enc_cond_term({eq,Var0,Term}) ->
    Var = mk_val(Var0),
    emit([Var," =:= ",{asis,Term}]);
enc_cond_term({ge,Var0,Int}) ->
    Var = mk_val(Var0),
    emit([Var," >= ",Int]);
enc_cond_term({lt,Var0,Int}) ->
    Var = mk_val(Var0),
    emit([Var," < ",Int]).

enc_cg_put_bits([{put_bits,Val0,N,[1]}|T], Sep) ->
    Val = mk_val(Val0),
    [[Sep,Val,":",integer_to_list(N)]|enc_cg_put_bits(T, ",")];
enc_cg_put_bits([], _) -> [].

mk_val({var,Str}) -> Str;
mk_val({expr,Str}) -> Str;
mk_val(Int) when is_integer(Int) -> integer_to_list(Int);
mk_val(Other) -> {asis,Other}.

%%%
%%% Generate a function that maps a name of a bit position
%%%  to the bit position.
%%%

bit_string_name2pos_fun(NNL, Src) ->
    {call_gen,"bit_string_name2pos_",NNL,
     fun(Fd, Name) -> gen_name2pos(Fd, Name, NNL) end,[],[Src]}.

gen_name2pos(Fd, Name, Names) ->
    Cs0 = gen_name2pos_cs(Names, Name),
    Cs = Cs0 ++ [bit_clause(Name),nil_clause(),invalid_clause()],
    F = {function,1,Name,1,Cs},
    file:write(Fd, [erl_pp:function(F)]).

gen_name2pos_cs([{K,V}|T], Name) ->
    P = [{cons,0,{atom,0,K},{var,0,'T'}}],
    B = [{cons,0,{integer,0,V},{call,0,{atom,0,Name},[{var,0,'T'}]}}],
    [{clause,0,P,[],B}|gen_name2pos_cs(T, Name)];
gen_name2pos_cs([], _) -> [].

bit_clause(Name) ->
    VarT = {var,0,'T'},
    VarPos = {var,0,'Pos'},
    P = [{cons,0,{tuple,0,[{atom,0,bit},VarPos]},VarT}],
    G = [[{call,0,{atom,0,is_integer},[VarPos]}]],
    B = [{cons,0,VarPos,{call,0,{atom,0,Name},[VarT]}}],
    {clause,0,P,G,B}.

nil_clause() ->
    P = B = [{nil,0}],
    {clause,0,P,[],B}.

invalid_clause() ->
    P = [{var,0,'_'}],
    B = [{call,0,{atom,0,throw},[{atom,0,invalid}]}],
    {clause,0,P,[],B}.

%%%
%%% Hoist alignment to reduce the number of list elements in
%%% encode. Fewer lists elements means faster traversal in
%%% complete/{2,3}.
%%%
%%% For example, the following data sequence:
%%%
%%%   [align,<<1:1,0:1>>,[align,<<Len:16>>|Data]]
%%%
%%% can be rewritten to:
%%%
%%%   [align,<<1:1,0:1,0:6>>,[<<Len:16>>|Data]]
%%%
%%% The change from the literal <<1:1,0:1>> to <<1:1,0:1,0:6>>
%%% comes for free, and we have eliminated one element of the
%%% sub list.
%%%
%%% We must be careful not to rewrite:
%%%
%%%   [<<1:1,0:1>>,[align,<<Len:16>>|Data]]
%%%
%%% to:
%%%
%%%   [[<<1:1,0:1>>,align],[<<Len:16>>|Data]]
%%%
%%% because even though [<<1:0,0:1>>,align] is a literal and does
%%% not add any additional construction cost, there is one more
%%% sub list that needs to be traversed.
%%%

enc_hoist_align(Imm0) ->
    Imm = enc_hoist_align_reverse(Imm0, []),
    enc_hoist_align(Imm, false, []).

enc_hoist_align_reverse([H|T], Acc) ->
    case enc_opt_al_1([H], 0) of
	{[H],_} ->
	    enc_hoist_align_reverse(T, [H|Acc]);
	{_,_} ->
	    lists:reverse(T, [H,stop|Acc])
    end;
enc_hoist_align_reverse([], Acc) -> Acc.

enc_hoist_align([stop|T], _Aligned, Acc) ->
    lists:reverse(T, Acc);
enc_hoist_align([{block,Bl0}|T], Aligned, Acc) ->
    Bl = case Aligned of
	     false -> Bl0;
	     true -> enc_hoist_block(Bl0)
	 end,
    case is_beginning_aligned(Bl) of
	false ->
	    enc_hoist_align(T, false, [{block,Bl}|Acc]);
	true ->
	    enc_hoist_align(T, true, [{put_bits,0,0,[1,align]},
				      {block,Bl}|Acc])
    end;
enc_hoist_align([H|T], _, Acc) ->
    enc_hoist_align(T, false, [H|Acc]);
enc_hoist_align([], _, Acc) -> Acc.

enc_hoist_block(Bl) ->
    try
	enc_hoist_block_1(lists:reverse(Bl))
    catch
	throw:impossible ->
	    Bl
    end.

enc_hoist_block_1([{'cond',Cs0}|T]) ->
    Cs = [[C|enc_hoist_block_2(Act)] || [C|Act] <- Cs0],
    H = {'cond',Cs},
    lists:reverse(T, [H]);
enc_hoist_block_1(_) ->
    throw(impossible).

enc_hoist_block_2([{'cond',_}|_]=L) ->
    enc_hoist_block(L);
enc_hoist_block_2([{error,_}]=L) ->
    L;
enc_hoist_block_2([]) ->
    [{put_bits,0,0,[1,align]}];
enc_hoist_block_2(L) ->
    case lists:last(L) of
	{put_bits,_,_,_} ->
	    L ++ [{put_bits,0,0,[1,align]}];
	_ ->
	    throw(impossible)
    end.

%%%
%%% Optimize alignment for encoding.
%%%

enc_opt_al(Imm0) ->
    {Imm,_} = enc_opt_al_1(Imm0, unknown),
    Imm.

enc_opt_al_1([H0|T0], Al0) ->
    {H,Al1} = enc_opt_al(H0, Al0),
    {T,Al} = enc_opt_al_1(T0, Al1),
    {H++T,Al};
enc_opt_al_1([], Al) -> {[],Al}.

enc_opt_al({assign,_,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({block,Bl0}, Al0) ->
    {Bl,Al} = enc_opt_al_1(Bl0, Al0),
    {[{block,Bl}],Al};
enc_opt_al({call,erlang,iolist_to_binary,[_]}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({call,per_common,encode_fragmented,[_,U]}=Call, Al) ->
    case U rem 8 of
	0 -> {[Call],Al};
	_ -> {[Call],unknown}
    end;
enc_opt_al({call,per_common,encode_unconstrained_number,[_]}=Call, _) ->
    {[Call],0};
enc_opt_al({call,_,_,_,_}=Call, Al) ->
    {[Call],Al};
enc_opt_al({'cond',Cs0}, Al0) ->
    {Cs,Al} = enc_opt_al_cond(Cs0, Al0),
    {[{'cond',Cs}],Al};
enc_opt_al({error,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({list,Imm0,Dst}, Al) ->
    Imm1 = enc_opt_hoist_align(Imm0),
    {Imm,_} = enc_opt_al_1(Imm1, 0),
    {[{list,Imm,Dst}],Al};
enc_opt_al({put_bits,V,N,[U,align]}, Al0) when Al0 rem 8 =:= 0 ->
    Al = if
	     is_integer(N) -> N*U;
	     N =:= binary, U rem 8 =:= 0 -> 0;
	     true -> unknown
	 end,
    {[{put_bits,V,N,[U]}],Al};
enc_opt_al({put_bits,V,binary,[U,align]}, Al0) when is_integer(Al0) ->
    N = 8 - (Al0 rem 8),
    Al = case U rem 8 of
	     0 -> 0;
	     _ -> unknown
	 end,
    {[{put_bits,0,N,[1]},{put_bits,V,binary,[U]}],Al};
enc_opt_al({put_bits,V,N0,[U,align]}, Al0) when is_integer(N0), is_integer(Al0) ->
    N = N0 + (8 - Al0 rem 8),
    Al = N0*U,
    {[{put_bits,V,N,[1]}],Al};
enc_opt_al({put_bits,_,N,[U,align]}=PutBits, _) when is_integer(N) ->
    {[PutBits],N*U};
enc_opt_al({put_bits,_,binary,[U,align]}=PutBits, _) when U rem 8 =:= 0 ->
    {[PutBits],0};
enc_opt_al({put_bits,_,N,[U]}=PutBits, Al) when is_integer(N), is_integer(Al) ->
    {[PutBits],Al+N*U};
enc_opt_al({put_bits,_,binary,[U]}=PutBits, Al) when U rem 8 =:= 0 ->
    {[PutBits],Al};
enc_opt_al({set,_,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({sub,_,_,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({'try',_,_,_,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al(Imm, _) ->
    {[Imm],unknown}.

enc_opt_al_cond(Cs0, Al0) ->
    enc_opt_al_cond_1(Cs0, Al0, [], []).

enc_opt_al_cond_1([['_',{error,_}]=C|Cs], Al, CAcc, AAcc) ->
    enc_opt_al_cond_1(Cs, Al, [C|CAcc], AAcc);
enc_opt_al_cond_1([[C|Act0]|Cs0], Al0, CAcc, AAcc) ->
    {Act,Al1} = enc_opt_al_1(Act0, Al0),
    Al = if
	     Al1 =:= unknown -> Al1;
	     true -> Al1 rem 8
	 end,
    enc_opt_al_cond_1(Cs0, Al0, [[C|Act]|CAcc], [Al|AAcc]);
enc_opt_al_cond_1([], _, CAcc, AAcc) ->
    Al = case lists:usort(AAcc) of
	     [] -> unknown;
	     [Al0] -> Al0;
	     [_|_] -> unknown
	 end,
    {lists:reverse(CAcc),Al}.

enc_opt_hoist_align([{'cond',Cs0},{put_bits,0,0,[1,align]}]=Imm) ->
    try
	Cs = [insert_align_last(C) || C <- Cs0],
	[{'cond',Cs}]
    catch
	throw:impossible ->
	    Imm
    end;
enc_opt_hoist_align(Imm) -> Imm.

insert_align_last([_,{error,_}]=C) ->
    C;
insert_align_last([H|T]) ->
    case lists:last(T) of
	{put_bits,_,_,_} ->
	    [H|T ++ [{put_bits,0,0,[1,align]}]];
	_ ->
	    throw(impossible)
    end.

%%%
%%% For the aligned PER format, fix up the intermediate format
%%% before code generation. Code generation will be somewhat
%%% easier if 'align' appear as a separate instruction.
%%%

per_fixup([{apply,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{block,Block}|T]) ->
    [{block,per_fixup(Block)}|per_fixup(T)];
per_fixup([{'assign',_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{'cond',Cs0}|T]) ->
    Cs = [[C|per_fixup(Act)] || [C|Act] <- Cs0],
    [{'cond',Cs}|per_fixup(T)];
per_fixup([{call,_,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{call,_,_,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{call_gen,_,_,_,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{error,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{lc,B,V,L}|T]) ->
    [{lc,per_fixup(B),V,L}|per_fixup(T)];
per_fixup([{lc,B,V,L,Dst}|T]) ->
    [{lc,per_fixup(B),V,L,Dst}|per_fixup(T)];
per_fixup([{list,Imm,Dst}|T]) ->
    [{list,per_fixup(Imm),Dst}|per_fixup(T)];
per_fixup([{set,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{sub,_,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{'try',Try0,{P,Succ0},Else0,Dst}|T]) ->
    Try = per_fixup(Try0),
    Succ = per_fixup(Succ0),
    Else = per_fixup(Else0),
    [{'try',Try,{P,Succ},Else,Dst}|per_fixup(T)];
per_fixup([{put_bits,_,_,_}|_]=L) ->
    fixup_put_bits(L);
per_fixup([{var,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([]) -> [].

fixup_put_bits([{put_bits,0,0,[_,align]}|T]) ->
    [align|fixup_put_bits(T)];
fixup_put_bits([{put_bits,0,0,_}|T]) ->
    fixup_put_bits(T);
fixup_put_bits([{put_bits,V,N,[U,align]}|T]) ->
    [align,{put_bits,V,N,[U]}|fixup_put_bits(T)];
fixup_put_bits([{put_bits,_,_,_}=H|T]) ->
    [H|fixup_put_bits(T)];
fixup_put_bits(Other) -> per_fixup(Other).

%% effective_constraint(Type,C)
%% Type = atom()
%% C = [C1,...]
%% C1 = {'SingleValue',SV} | {'ValueRange',VR} | {atom(),term()}
%% SV = integer() | [integer(),...]
%% VR = {Lb,Ub}
%% Lb = 'MIN' | integer()
%% Ub = 'MAX' | integer()
%% Returns a single value if C only has a single value constraint, and no
%% value range constraints, that constrains to a single value, otherwise
%% returns a value range that has the lower bound set to the lowest value
%% of all single values and lower bound values in C and the upper bound to
%% the greatest value.
effective_constraint(integer, [{{_,_}=Root,_}|_Rest]) ->
    %% Normalize extension. Note that any range given for the
    %% extension should be ignored anyway.
    [{Root,[]}];
effective_constraint(integer, C) ->
    SVs = get_constraints(C, 'SingleValue'),
    SV = effective_constr('SingleValue', SVs),
    VRs = get_constraints(C, 'ValueRange'),
    VR = effective_constr('ValueRange', VRs),
    greatest_common_range(SV, VR);
effective_constraint(bitstring, C) ->
    case get_constraint(C, 'SizeConstraint') of
	{{Lb,Ub},[]}=Range when is_integer(Lb) ->
	    if
		is_integer(Ub), Ub < 16#10000 ->
		    Range;
		true ->
		    no
	    end;
	{Lb,Ub}=Range when is_integer(Lb) ->
	    if
		is_integer(Ub), Ub < 16#10000 ->
		    if
			Lb =:= Ub -> Lb;
			true -> Range
		    end;
		true ->
		    no
	    end;
	no ->
	    no
    end.

effective_constr(_, []) -> [];
effective_constr('SingleValue', List) ->
    SVList = lists:flatten(lists:map(fun(X) -> element(2, X) end, List)),
    %% Sort and remove duplicates before generating SingleValue or ValueRange
    %% In case of ValueRange, also check for 'MIN and 'MAX'
    case lists:usort(SVList) of
	[N] ->
	    [{'SingleValue',N}];
	[_|_]=L ->
	    [{'ValueRange',{least_Lb(L),greatest_Ub(L)}}]
    end;
effective_constr('ValueRange', List) ->
    LBs = lists:map(fun({_,{Lb,_}}) -> Lb end, List),
    UBs = lists:map(fun({_,{_,Ub}}) -> Ub end, List),
    Lb = least_Lb(LBs),
    [{'ValueRange',{Lb,lists:max(UBs)}}].

greatest_common_range([], VR) ->
    VR;
greatest_common_range(SV, []) ->
    SV;
greatest_common_range([{_,Int}], [{_,{'MIN',Ub}}])
  when is_integer(Int), Int > Ub ->
    [{'ValueRange',{'MIN',Int}}];
greatest_common_range([{_,Int}],[{_,{Lb,Ub}}])
  when is_integer(Int), Int < Lb ->
    [{'ValueRange',{Int,Ub}}];
greatest_common_range([{_,Int}],VR=[{_,{_Lb,_Ub}}]) when is_integer(Int) ->
    VR;
greatest_common_range([{_,L}],[{_,{Lb,Ub}}]) when is_list(L) ->
    Min = least_Lb([Lb|L]),
    Max = greatest_Ub([Ub|L]),
    [{'ValueRange',{Min,Max}}];
greatest_common_range([{_,{Lb1,Ub1}}], [{_,{Lb2,Ub2}}]) ->
    Min = least_Lb([Lb1,Lb2]),
    Max = greatest_Ub([Ub1,Ub2]),
    [{'ValueRange',{Min,Max}}].


least_Lb(L) ->
    case lists:member('MIN', L) of
	true -> 'MIN';
	false -> lists:min(L)
    end.

greatest_Ub(L) ->
    case lists:member('MAX', L) of
	true -> 'MAX';
	false -> lists:max(L)
    end.

get_constraint(C, Key) ->
    case lists:keyfind(Key, 1, C) of
	false -> no;
	{_,V} -> V
    end.

get_constraints([{Key,_}=Pair|T], Key) ->
    [Pair|get_constraints(T, Key)];
get_constraints([_|T], Key) ->
    get_constraints(T, Key);
get_constraints([], _) -> [].