%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2012-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%
-module(asn1rtt_uper).
-export([setext/1, fixoptionals/3,
fixextensions/2,
skipextensions/3]).
-export([set_choice/3, encode_integer/2, encode_integer/3]).
-export([encode_small_number/1, encode_constrained_number/2,
encode_boolean/1,
encode_length/1, encode_length/2,
encode_bit_string/3]).
-export([encode_octet_string/1,encode_octet_string/2,
encode_relative_oid/1,
encode_object_identifier/1,
complete/1, complete_NFP/1]).
-export([encode_open_type/1]).
-export([encode_UniversalString/3,
encode_PrintableString/3,
encode_GeneralString/2,
encode_GraphicString/2,
encode_TeletexString/2,
encode_VideotexString/2,
encode_VisibleString/3,
encode_UTF8String/1,
encode_BMPString/3,
encode_IA5String/3,
encode_NumericString/3,
encode_ObjectDescriptor/2
]).
-define('16K',16384).
-define('32K',32768).
-define('64K',65536).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% setext(true|false) -> CompleteList
%%
setext(false) ->
<<0:1>>;
setext(true) ->
<<1:1>>.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This is the new fixoptionals/3 which is used by the new generates
%%
fixoptionals(OptList,OptLength,Val) when is_tuple(Val) ->
Bits = fixoptionals(OptList,Val,0),
{Val,<<Bits:OptLength>>};
fixoptionals([],_Val,Acc) ->
%% Optbits
Acc;
fixoptionals([{Pos,DefVal}|Ot],Val,Acc) ->
case element(Pos,Val) of
asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1);
DefVal -> fixoptionals(Ot,Val,Acc bsl 1);
_ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1)
end;
fixoptionals([Pos|Ot],Val,Acc) ->
case element(Pos,Val) of
asn1_NOVALUE -> fixoptionals(Ot,Val,Acc bsl 1);
asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1);
_ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1)
end.
fixextensions({ext,ExtPos,ExtNum},Val) ->
case fixextensions(ExtPos,ExtNum+ExtPos,Val,0) of
0 -> [];
ExtBits ->
[encode_small_length(ExtNum),<<ExtBits:ExtNum>>]
end.
fixextensions(Pos,MaxPos,_,Acc) when Pos >= MaxPos ->
Acc;
fixextensions(Pos,ExtPos,Val,Acc) ->
Bit = case catch(element(Pos+1,Val)) of
asn1_NOVALUE ->
0;
asn1_NOEXTVALUE ->
0;
{'EXIT',_} ->
0;
_ ->
1
end,
fixextensions(Pos+1,ExtPos,Val,(Acc bsl 1)+Bit).
skipextensions(Bytes0, Nr, ExtensionBitstr) when is_bitstring(ExtensionBitstr) ->
Prev = Nr - 1,
case ExtensionBitstr of
<<_:Prev,1:1,_/bitstring>> ->
{Len,Bytes1} = decode_length(Bytes0),
<<_:Len/binary,Bytes2/bitstring>> = Bytes1,
skipextensions(Bytes2, Nr+1, ExtensionBitstr);
<<_:Prev,0:1,_/bitstring>> ->
skipextensions(Bytes0, Nr+1, ExtensionBitstr);
_ ->
Bytes0
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% set_choice(Alt,Choices,Altnum) -> ListofBitSettings
%% Alt = atom()
%% Altnum = integer() | {integer(),integer()}% number of alternatives
%% Choices = [atom()] | {[atom()],[atom()]}
%% When Choices is a tuple the first list is the Rootset and the
%% second is the Extensions and then Altnum must also be a tuple with the
%% lengths of the 2 lists
%%
set_choice(Alt, {L1,L2}, {Len1,_Len2}) ->
case set_choice_tag(Alt, L1) of
N when is_integer(N), Len1 > 1 ->
[<<0:1>>, % the value is in the root set
encode_integer([{'ValueRange',{0,Len1-1}}],N)];
N when is_integer(N) ->
<<0:1>>; % no encoding if only 0 or 1 alternative
false ->
[<<1:1>>, % extension value
case set_choice_tag(Alt,L2) of
N2 when is_integer(N2) ->
encode_small_number(N2);
false ->
unknown_choice_alt
end]
end;
set_choice(Alt,L,Len) ->
case set_choice_tag(Alt,L) of
N when is_integer(N), Len > 1 ->
encode_integer([{'ValueRange',{0,Len-1}}],N);
N when is_integer(N) ->
[]; % no encoding if only 0 or 1 alternative
false ->
[unknown_choice_alt]
end.
set_choice_tag(Alt,Choices) ->
set_choice_tag(Alt,Choices,0).
set_choice_tag(Alt,[Alt|_Rest],Tag) ->
Tag;
set_choice_tag(Alt,[_H|Rest],Tag) ->
set_choice_tag(Alt,Rest,Tag+1);
set_choice_tag(_Alt,[],_Tag) ->
false.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_open_type(Constraint, Value) -> CompleteList
%% Value = list of bytes of an already encoded value (the list must be flat)
%% | binary
%% Contraint = not used in this version
%%
encode_open_type(Val) ->
[encode_length(byte_size(Val)),Val].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_integer(Constraint,Value,NamedNumberList) -> CompleteList
%% encode_integer(Constraint,Value) -> CompleteList
%% encode_integer(Constraint,{Name,Value}) -> CompleteList
%%
%%
encode_integer(C, V, NamedNumberList) when is_atom(V) ->
case lists:keyfind(V, 1, NamedNumberList) of
{_,NewV} ->
encode_integer(C, NewV);
false ->
exit({error,{asn1,{namednumber,V}}})
end;
encode_integer(C, V, _NamedNumberList) when is_integer(V) ->
encode_integer(C, V).
encode_integer([{Rc,_Ec}],Val) when is_tuple(Rc) ->
try
[<<0:1>>,encode_integer([Rc], Val)]
catch
_:{error,{asn1,_}} ->
[<<1:1>>,encode_unconstrained_number(Val)]
end;
encode_integer(C, Val) when is_list(C) ->
case get_constraint(C, 'SingleValue') of
no ->
encode_integer1(C,Val);
V when is_integer(V), V =:= Val ->
[]; % a type restricted to a single value encodes to nothing
V when is_list(V) ->
case lists:member(Val,V) of
true ->
encode_integer1(C,Val);
_ ->
exit({error,{asn1,{illegal_value,Val}}})
end;
_ ->
exit({error,{asn1,{illegal_value,Val}}})
end.
encode_integer1(C, Val) ->
case VR = get_constraint(C, 'ValueRange') of
no ->
encode_unconstrained_number(Val);
{Lb,'MAX'} when Lb =< Val ->
encode_semi_constrained_number(Lb, Val);
%% positive with range
{Lb,Ub} when Val >= Lb, Ub >= Val ->
encode_constrained_number(VR,Val);
_ ->
exit({error,{asn1,{illegal_value,VR,Val}}})
end.
%% X.691:10.6 Encoding of a normally small non-negative whole number
%% Use this for encoding of CHOICE index if there is an extension marker in
%% the CHOICE
encode_small_number(Val) when Val < 64 ->
<<Val:7>>;
encode_small_number(Val) ->
[<<1:1>>|encode_semi_constrained_number(0, Val)].
%% X.691:10.7 Encoding of a semi-constrained whole number
encode_semi_constrained_number(Lb, Val) ->
%% encoding in minimum number of octets preceeded by a length
Val2 = Val - Lb,
Bin = eint_bin_positive(Val2),
Size = byte_size(Bin),
if
Size < 128 ->
[<<Size>>,Bin];
Size < 16384 ->
[<<2:2,Size:14>>,Bin];
true ->
[encode_length(Size),Bin]
end.
encode_constrained_number({Lb,Ub}, Val) when Val >= Lb, Ub >= Val ->
Range = Ub - Lb + 1,
Val2 = Val - Lb,
NumBits = num_bits(Range),
<<Val2:NumBits>>;
encode_constrained_number(Range,Val) ->
exit({error,{asn1,{integer_range,Range,value,Val}}}).
%% X.691:10.8 Encoding of an unconstrained whole number
encode_unconstrained_number(Val) when Val >= 0 ->
Oct = eint_bin_2Cs(Val),
Len = byte_size(Oct),
if
Len < 128 ->
[<<Len>>,Oct]; % equiv with encode_length(undefined,Len) but faster
Len < 16384 ->
[<<2:2,Len:14>>,Oct];
true ->
[encode_length(Len),<<Len:16>>,Oct]
end;
encode_unconstrained_number(Val) -> % negative
Oct = enint(Val,[]),
Len = byte_size(Oct),
if
Len < 128 ->
[<<Len>>,Oct]; % equiv with encode_length(undefined,Len) but faster
Len < 16384 ->
[<<2:2,Len:14>>,Oct];
true ->
[encode_length(Len),Oct]
end.
eint_bin_2Cs(Int) ->
case eint_bin_positive(Int) of
<<B,_/binary>> = Bin when B > 16#7f ->
<<0,Bin/binary>>;
Bin -> Bin
end.
%% returns the integer as a binary
eint_bin_positive(Val) when Val < 16#100 ->
<<Val>>;
eint_bin_positive(Val) when Val < 16#10000 ->
<<Val:16>>;
eint_bin_positive(Val) when Val < 16#1000000 ->
<<Val:24>>;
eint_bin_positive(Val) when Val < 16#100000000 ->
<<Val:32>>;
eint_bin_positive(Val) ->
list_to_binary([eint_bin_positive2(Val bsr 32),<<Val:32>>]).
eint_bin_positive2(Val) when Val < 16#100 ->
<<Val>>;
eint_bin_positive2(Val) when Val < 16#10000 ->
<<Val:16>>;
eint_bin_positive2(Val) when Val < 16#1000000 ->
<<Val:24>>;
eint_bin_positive2(Val) when Val < 16#100000000 ->
<<Val:32>>;
eint_bin_positive2(Val) ->
[eint_bin_positive2(Val bsr 32),<<Val:32>>].
enint(-1, [B1|T]) when B1 > 127 ->
list_to_binary([B1|T]);
enint(N, Acc) ->
enint(N bsr 8, [N band 16#ff|Acc]).
%% X.691:10.9 Encoding of a length determinant
%%encode_small_length(undefined,Len) -> % null means no UpperBound
%% encode_small_number(Len).
%% X.691:10.9.3.5
%% X.691:10.9.3.7
encode_length(Len) -> % un-constrained
if
Len < 128 ->
<<Len>>;
Len < 16384 ->
<<2:2,Len:14>>;
true -> % should be able to endode length >= 16384
error({error,{asn1,{encode_length,{nyi,above_16k}}}})
end.
encode_length({C,[]}, Len) ->
case C of
{Lb,Ub}=Vr when Lb =< Len, Len =< Ub ->
[<<0:1>>|encode_constrained_number(Vr, Len)];
_ ->
[<<1:1>>|encode_length(Len)]
end;
encode_length(Len, Len) ->
[];
encode_length(Vr, Len) ->
encode_constrained_number(Vr, Len).
%% X.691 10.9.3.4 (only used for length of bitmap that prefixes extension
%% additions in a sequence or set
encode_small_length(Len) when Len =< 64 ->
<<(Len-1):7>>;
encode_small_length(Len) ->
[<<1:1>>,encode_length(Len)].
%% un-constrained
decode_length(<<0:1,Oct:7,Rest/bitstring>>) ->
{Oct,Rest};
decode_length(<<2:2,Val:14,Rest/bitstring>>) ->
{Val,Rest};
decode_length(<<3:2,_:14,_Rest/bitstring>>) ->
exit({error,{asn1,{decode_length,{nyi,above_16k}}}}).
% X.691:11
encode_boolean(true) ->
<<1:1>>;
encode_boolean(false) ->
<<0:1>>;
encode_boolean(Val) ->
exit({error,{asn1,{encode_boolean,Val}}}).
%%============================================================================
%%============================================================================
%% Bitstring value, ITU_T X.690 Chapter 8.5
%%============================================================================
%%============================================================================
%%============================================================================
%% encode bitstring value
%%============================================================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% bitstring NamedBitList
%% Val can be of:
%% - [identifiers] where only named identifers are set to one,
%% the Constraint must then have some information of the
%% bitlength.
%% - [list of ones and zeroes] all bits
%% - integer value representing the bitlist
%% C is constraint Len, only valid when identifiers are present
%% when the value is a list of {Unused,BinBits}, where
%% Unused = integer(),
%% BinBits = binary().
encode_bit_string(C, Bits, NamedBitList) when is_bitstring(Bits) ->
PadLen = (8 - (bit_size(Bits) band 7)) band 7,
Compact = {PadLen,<<Bits/bitstring,0:PadLen>>},
encode_bit_string(C, Compact, NamedBitList);
encode_bit_string(C, {Unused,BinBits}=Bin, NamedBitList)
when is_integer(Unused), is_binary(BinBits) ->
encode_bin_bit_string(C, Bin, NamedBitList);
encode_bit_string(C, BitListVal, NamedBitList) ->
encode_bit_string1(C, BitListVal, NamedBitList).
%% when the value is a list of named bits
encode_bit_string1(C, [FirstVal|_RestVal]=LoNB, NamedBitList)
when is_atom(FirstVal) ->
ToSetPos = get_all_bitposes(LoNB, NamedBitList, []),
BitList = make_and_set_list(ToSetPos, 0),
encode_bit_string1(C, BitList, NamedBitList);
encode_bit_string1(C, [{bit,_No}|_RestVal]=BL, NamedBitList) ->
ToSetPos = get_all_bitposes(BL, NamedBitList, []),
BitList = make_and_set_list(ToSetPos, 0),
encode_bit_string1(C, BitList, NamedBitList);
%% when the value is a list of ones and zeroes
encode_bit_string1(Int, BitListValue, _)
when is_list(BitListValue), is_integer(Int) ->
%% The type is constrained by a single value size constraint
bit_list2bitstr(Int, BitListValue);
encode_bit_string1(no, BitListValue, [])
when is_list(BitListValue) ->
Len = length(BitListValue),
[encode_length(Len),bit_list2bitstr(Len,BitListValue)];
encode_bit_string1(C, BitListValue,[])
when is_list(BitListValue) ->
Len = length(BitListValue),
[encode_length(C, Len),bit_list2bitstr(Len,BitListValue)];
encode_bit_string1(no, BitListValue,_NamedBitList)
when is_list(BitListValue) ->
NewBitLVal = lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end,
lists:reverse(BitListValue))),
Len = length(NewBitLVal),
[encode_length(Len),bit_list2bitstr(Len,NewBitLVal)];
encode_bit_string1(C, BitListValue, _NamedBitList)
when is_list(BitListValue) ->% C = {_,'MAX'}
NewBitStr = bitstr_trailing_zeros(BitListValue, C),
[encode_length(C, bit_size(NewBitStr)),NewBitStr];
%% when the value is an integer
encode_bit_string1(C, IntegerVal, NamedBitList) when is_integer(IntegerVal)->
BitList = int_to_bitlist(IntegerVal),
encode_bit_string1(C, BitList, NamedBitList).
bit_list2bitstr(Len,BitListValue) ->
case length(BitListValue) of
Len ->
<< <<B:1>> || B <- BitListValue>>;
L when L > Len -> % truncate
<<(<< <<B:1>> || B <- BitListValue>>):Len/bitstring>>;
L -> % Len > L -> pad
<<(<< <<B:1>> || B <- BitListValue>>)/bitstring,0:(Len-L)>>
end.
adjust_trailing_zeros(Len, Bin) when Len =:= bit_size(Bin) ->
Bin;
adjust_trailing_zeros(Len, Bin) when Len > bit_size(Bin) ->
<<Bin/bitstring,0:(Len-bit_size(Bin))>>;
adjust_trailing_zeros(Len,Bin) ->
<<Bin:Len/bitstring>>.
bitstr_trailing_zeros(BitList, C) when is_integer(C) ->
bitstr_trailing_zeros1(BitList, C, C);
bitstr_trailing_zeros(BitList, {Lb,Ub}) when is_integer(Lb) ->
bitstr_trailing_zeros1(BitList,Lb,Ub);
bitstr_trailing_zeros(BitList, {{Lb,Ub},_}) when is_integer(Lb) ->
bitstr_trailing_zeros1(BitList, Lb, Ub);
bitstr_trailing_zeros(BitList, _) ->
bit_list2bitstr(length(BitList), BitList).
bitstr_trailing_zeros1(BitList, Lb, Ub) ->
case length(BitList) of
Lb -> bit_list2bitstr(Lb, BitList);
B when B < Lb -> bit_list2bitstr(Lb, BitList);
D -> F = fun(L,LB,LB,_,_)->bit_list2bitstr(LB,lists:reverse(L));
([0|R],L1,LB,UB,Fun)->Fun(R,L1-1,LB,UB,Fun);
(L,L1,_,UB,_)when L1 =< UB ->
bit_list2bitstr(L1,lists:reverse(L));
(_,_L1,_,_,_) ->exit({error,{list_length_BIT_STRING,
BitList}}) end,
F(lists:reverse(BitList),D,Lb,Ub,F)
end.
%% encode_bin_bit_string/3, when value is a tuple of Unused and BinBits.
%% Unused = integer(),i.e. number unused bits in least sign. byte of
%% BinBits = binary().
encode_bin_bit_string(C, {_,BinBits}, _NamedBitList)
when is_integer(C), C =< 16 ->
adjust_trailing_zeros(C, BinBits);
encode_bin_bit_string(C, {_Unused,BinBits}, _NamedBitList)
when is_integer(C) ->
adjust_trailing_zeros(C, BinBits);
encode_bin_bit_string(C, {_,_}=UnusedAndBin, NamedBitList) ->
%% removes all trailing bits if NamedBitList is not empty
BitStr = remove_trailing_bin(NamedBitList, UnusedAndBin),
case C of
{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
[encode_length({Lb,Ub},bit_size(BitStr)),BitStr];
no ->
[encode_length(bit_size(BitStr)),BitStr];
Sc ->
[encode_length(Sc,bit_size(BitStr)),BitStr]
end.
remove_trailing_bin([], {Unused,Bin}) ->
BS = bit_size(Bin)-Unused,
<<BitStr:BS/bitstring,_:Unused>> = Bin,
BitStr;
remove_trailing_bin(_NamedNumberList, {_Unused,<<>>}) ->
<<>>;
remove_trailing_bin(NamedNumberList, {_Unused,Bin}) ->
Size = byte_size(Bin)-1,
<<Bfront:Size/binary, LastByte:8>> = Bin,
%% clear the Unused bits to be sure
Unused1 = trailingZeroesInNibble(LastByte band 15),
Unused2 =
case Unused1 of
4 ->
4 + trailingZeroesInNibble(LastByte bsr 4);
_ -> Unused1
end,
case Unused2 of
8 ->
remove_trailing_bin(NamedNumberList,{0,Bfront});
_ ->
BS = bit_size(Bin) - Unused2,
<<BitStr:BS/bitstring,_:Unused2>> = Bin,
BitStr
end.
trailingZeroesInNibble(0) ->
4;
trailingZeroesInNibble(1) ->
0;
trailingZeroesInNibble(2) ->
1;
trailingZeroesInNibble(3) ->
0;
trailingZeroesInNibble(4) ->
2;
trailingZeroesInNibble(5) ->
0;
trailingZeroesInNibble(6) ->
1;
trailingZeroesInNibble(7) ->
0;
trailingZeroesInNibble(8) ->
3;
trailingZeroesInNibble(9) ->
0;
trailingZeroesInNibble(10) ->
1;
trailingZeroesInNibble(11) ->
0;
trailingZeroesInNibble(12) -> %#1100
2;
trailingZeroesInNibble(13) ->
0;
trailingZeroesInNibble(14) ->
1;
trailingZeroesInNibble(15) ->
0.
%%%%%%%%%%%%%%%
%%
int_to_bitlist(Int) when is_integer(Int), Int > 0 ->
[Int band 1 | int_to_bitlist(Int bsr 1)];
int_to_bitlist(0) ->
[].
%%%%%%%%%%%%%%%%%%
%% get_all_bitposes([list of named bits to set], named_bit_db, []) ->
%% [sorted_list_of_bitpositions_to_set]
get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]);
get_all_bitposes([Val | Rest], NamedBitList, Ack) ->
case lists:keyfind(Val, 1, NamedBitList) of
{_ValName, ValPos} ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]);
false ->
exit({error,{asn1, {bitstring_namedbit, Val}}})
end;
get_all_bitposes([], _NamedBitList, Ack) ->
lists:sort(Ack).
%%%%%%%%%%%%%%%%%%
%% make_and_set_list([list of positions to set to 1])->
%% returns list with all in SetPos set.
%% in positioning in list the first element is 0, the second 1 etc.., but
%%
make_and_set_list([XPos|SetPos], XPos) ->
[1 | make_and_set_list(SetPos, XPos + 1)];
make_and_set_list([Pos|SetPos], XPos) ->
[0 | make_and_set_list([Pos | SetPos], XPos + 1)];
make_and_set_list([], _) ->
[].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% X.691:16
%% encode_octet_string(Val)
%% encode_octet_string(Constraint, Val)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
encode_octet_string(Val) ->
try
[encode_length(length(Val)),list_to_binary(Val)]
catch
error:{error,{asn1,{encode_length,_}}} ->
encode_fragmented_octet_string(Val)
end.
encode_octet_string(C, Val) ->
case C of
{_,_}=VR ->
try
[encode_length(VR, length(Val)),list_to_binary(Val)]
catch
error:{error,{asn1,{encode_length,_}}} ->
encode_fragmented_octet_string(Val)
end;
Sv when is_integer(Sv), Sv =:= length(Val) -> % fixed length
list_to_binary(Val)
end.
encode_fragmented_octet_string(Val) ->
Bin = list_to_binary(Val),
efos_1(Bin).
efos_1(<<B:16#10000/binary,T/binary>>) ->
[<<3:2,4:6>>,B|efos_1(T)];
efos_1(<<B:16#C000/binary,T/binary>>) ->
[<<3:2,3:6>>,B|efos_1(T)];
efos_1(<<B:16#8000/binary,T/binary>>) ->
[<<3:2,2:6>>,B|efos_1(T)];
efos_1(<<B:16#4000/binary,T/binary>>) ->
[<<3:2,1:6>>,B|efos_1(T)];
efos_1(<<B/bitstring>>) ->
Len = byte_size(B),
[encode_length(Len),B].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Restricted char string types
%% (NumericString, PrintableString,VisibleString,IA5String,BMPString,UniversalString)
%% X.691:26 and X.680:34-36
%%encode_restricted_string('BMPString',Constraints,Extension,Val)
encode_restricted_string(Val) when is_list(Val)->
[encode_length(length(Val)),list_to_binary(Val)].
encode_known_multiplier_string(StringType, C, Pa, Val) ->
Result = chars_encode(Pa, StringType, Val),
case C of
Ub when is_integer(Ub) ->
Result;
{_,_}=Range ->
[encode_length(Range, length(Val)),Result];
no ->
[encode_length(length(Val)),Result]
end.
encode_NumericString(C, Pa, Val) ->
encode_known_multiplier_string('NumericString', C, Pa, Val).
encode_PrintableString(C, Pa, Val) ->
encode_known_multiplier_string('PrintableString', C, Pa, Val).
encode_VisibleString(C, Pa, Val) -> % equivalent with ISO646String
encode_known_multiplier_string('VisibleString', C, Pa, Val).
encode_IA5String(C, Pa, Val) ->
encode_known_multiplier_string('IA5String', C, Pa, Val).
encode_BMPString(C, Pa, Val) ->
encode_known_multiplier_string('BMPString', C, Pa, Val).
encode_UniversalString(C, Pa, Val) ->
encode_known_multiplier_string('UniversalString', C, Pa, Val).
%% end of known-multiplier strings for which PER visible constraints are
%% applied
encode_GeneralString(_C,Val) ->
encode_restricted_string(Val).
encode_GraphicString(_C,Val) ->
encode_restricted_string(Val).
encode_ObjectDescriptor(_C,Val) ->
encode_restricted_string(Val).
encode_TeletexString(_C,Val) -> % equivalent with T61String
encode_restricted_string(Val).
encode_VideotexString(_C,Val) ->
encode_restricted_string(Val).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% chars_encode(C,StringType,Value) -> ValueList
%%
%% encodes chars according to the per rules taking the constraint PermittedAlphabet
%% into account.
%% This function does only encode the value part and NOT the length
chars_encode(Pa, StringType, Value) ->
case {StringType,Pa} of
{'UniversalString',{_,_Sv}} ->
exit({error,{asn1,{'not implemented',"UniversalString with PermittedAlphabet constraint"}}});
{'BMPString',{_,_Sv}} ->
exit({error,{asn1,{'not implemented',"BMPString with PermittedAlphabet constraint"}}});
_ ->
{NumBits,CharOutTab} = {get_NumBits(Pa, StringType),
get_CharOutTab(Pa, StringType)},
chars_encode2(Value,NumBits,CharOutTab)
end.
chars_encode2([H|T],NumBits,{Min,Max,notab}) when H =< Max, H >= Min ->
[<<(H-Min):NumBits>>|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([H|T],NumBits,{Min,Max,Tab}) when H =< Max, H >= Min ->
Ch = exit_if_false(H,element(H-Min+1,Tab)),
[<<Ch:NumBits>>|chars_encode2(T,NumBits,{Min,Max,Tab})];
chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,notab}) ->
%% no value range check here (ought to be, but very expensive)
Ch = ((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,
[<<Ch:NumBits>>|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,Tab}) ->
%% no value range check here (ought to be, but very expensive)
Ch = exit_if_false({A,B,C,D},element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab)),
[<<Ch:NumBits>>|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([H|_T],_,{_,_,_}) ->
exit({error,{asn1,{illegal_char_value,H}}});
chars_encode2([],_,_) ->
[].
exit_if_false(V,false)->
exit({error,{asn1,{"illegal value according to Permitted alphabet constraint",V}}});
exit_if_false(_,V) ->V.
get_NumBits(Pa, StringType) ->
case Pa of
{'SingleValue',Sv} ->
charbits(length(Sv));
no ->
case StringType of
'IA5String' ->
charbits(128); % 16#00..16#7F
'VisibleString' ->
charbits(95); % 16#20..16#7E
'PrintableString' ->
charbits(74); % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z
'NumericString' ->
charbits(11); % $ ,"0123456789"
'UniversalString' ->
32;
'BMPString' ->
16
end
end.
get_CharOutTab(Pa, StringType) ->
case Pa of
{'SingleValue',Sv} ->
get_CharTab2(Pa, StringType, hd(Sv), lists:max(Sv), Sv);
no ->
case StringType of
'IA5String' ->
{0,16#7F,notab};
'VisibleString' ->
get_CharTab2(Pa, StringType, 16#20, 16#7F, notab);
'PrintableString' ->
Chars = lists:sort(
" '()+,-./0123456789:=?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"),
get_CharTab2(Pa, StringType, hd(Chars),
lists:max(Chars), Chars);
'NumericString' ->
get_CharTab2(Pa, StringType, 16#20, $9, " 0123456789");
'UniversalString' ->
{0,16#FFFFFFFF,notab};
'BMPString' ->
{0,16#FFFF,notab}
end
end.
get_CharTab2(C,StringType,Min,Max,Chars) ->
BitValMax = (1 bsl get_NumBits(C,StringType))-1,
if
Max =< BitValMax ->
{0,Max,notab};
true ->
{Min,Max,create_char_tab(Min,Chars)}
end.
create_char_tab(Min,L) ->
list_to_tuple(create_char_tab(Min,L,0)).
create_char_tab(Min,[Min|T],V) ->
[V|create_char_tab(Min+1,T,V+1)];
create_char_tab(_Min,[],_V) ->
[];
create_char_tab(Min,L,V) ->
[false|create_char_tab(Min+1,L,V)].
%% See Table 20.3 in Dubuisson
charbits(NumOfChars) when NumOfChars =< 2 -> 1;
charbits(NumOfChars) when NumOfChars =< 4 -> 2;
charbits(NumOfChars) when NumOfChars =< 8 -> 3;
charbits(NumOfChars) when NumOfChars =< 16 -> 4;
charbits(NumOfChars) when NumOfChars =< 32 -> 5;
charbits(NumOfChars) when NumOfChars =< 64 -> 6;
charbits(NumOfChars) when NumOfChars =< 128 -> 7;
charbits(NumOfChars) when NumOfChars =< 256 -> 8;
charbits(NumOfChars) when NumOfChars =< 512 -> 9;
charbits(NumOfChars) when NumOfChars =< 1024 -> 10;
charbits(NumOfChars) when NumOfChars =< 2048 -> 11;
charbits(NumOfChars) when NumOfChars =< 4096 -> 12;
charbits(NumOfChars) when NumOfChars =< 8192 -> 13;
charbits(NumOfChars) when NumOfChars =< 16384 -> 14;
charbits(NumOfChars) when NumOfChars =< 32768 -> 15;
charbits(NumOfChars) when NumOfChars =< 65536 -> 16;
charbits(NumOfChars) when is_integer(NumOfChars) ->
16 + charbits1(NumOfChars bsr 16).
charbits1(0) ->
0;
charbits1(NumOfChars) ->
1 + charbits1(NumOfChars bsr 1).
%% UTF8String
encode_UTF8String(Val) when is_binary(Val) ->
[encode_length(byte_size(Val)),Val];
encode_UTF8String(Val) ->
Bin = list_to_binary(Val),
encode_UTF8String(Bin).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_object_identifier(Val) -> CompleteList
%% encode_object_identifier({Name,Val}) -> CompleteList
%% Val -> {Int1,Int2,...,IntN} % N >= 2
%% Name -> atom()
%% Int1 -> integer(0..2)
%% Int2 -> integer(0..39) when Int1 (0..1) else integer()
%% Int3-N -> integer()
%% CompleteList -> [binary()|bitstring()|list()]
%%
encode_object_identifier(Val) ->
OctetList = e_object_identifier(Val),
Octets = list_to_binary(OctetList), % performs a flatten at the same time
[encode_length(byte_size(Octets)),Octets].
%% This code is copied from asn1_encode.erl (BER) and corrected and modified
e_object_identifier({'OBJECT IDENTIFIER',V}) ->
e_object_identifier(V);
e_object_identifier(V) when is_tuple(V) ->
e_object_identifier(tuple_to_list(V));
%% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1)
e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40 ; E1==2 ->
Head = 40*E1 + E2, % weird
e_object_elements([Head|Tail],[]);
e_object_identifier(Oid=[_,_|_Tail]) ->
exit({error,{asn1,{'illegal_value',Oid}}}).
e_object_elements([],Acc) ->
lists:reverse(Acc);
e_object_elements([H|T],Acc) ->
e_object_elements(T,[e_object_element(H)|Acc]).
e_object_element(Num) when Num < 128 ->
[Num];
e_object_element(Num) ->
[e_o_e(Num bsr 7)|[Num band 2#1111111]].
e_o_e(Num) when Num < 128 ->
Num bor 2#10000000;
e_o_e(Num) ->
[e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_relative_oid(Val) -> CompleteList
%% encode_relative_oid({Name,Val}) -> CompleteList
encode_relative_oid(Val) when is_tuple(Val) ->
encode_relative_oid(tuple_to_list(Val));
encode_relative_oid(Val) when is_list(Val) ->
Octets = list_to_binary([e_object_element(X)||X <- Val]),
[encode_length(byte_size(Octets)),Octets].
get_constraint([{Key,V}],Key) ->
V;
get_constraint([],_Key) ->
no;
get_constraint(C,Key) ->
case lists:keyfind(Key, 1, C) of
false ->
no;
{_,V} ->
V
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% complete(InList) -> ByteList
%% Takes a coded list with bits and bytes and converts it to a list of bytes
%% Should be applied as the last step at encode of a complete ASN.1 type
%%
complete(InList) when is_list(InList) ->
case complete1(InList) of
<<>> ->
<<0>>;
Res ->
case bit_size(Res) band 7 of
0 -> Res;
Bits -> <<Res/bitstring,0:(8-Bits)>>
end
end;
complete(Bin) when is_binary(Bin) ->
case Bin of
<<>> -> <<0>>;
_ -> Bin
end;
complete(InList) when is_bitstring(InList) ->
PadLen = 8 - (bit_size(InList) band 7),
<<InList/bitstring,0:PadLen>>.
complete1(L) when is_list(L) ->
list_to_bitstring(L).
%% Special version of complete that does not align the completed message.
complete_NFP(InList) when is_list(InList) ->
list_to_bitstring(InList);
complete_NFP(InList) when is_bitstring(InList) ->
InList.
%% unaligned helpers
%% 10.5.6 NOTE: If "range" satisfies the inequality 2^m < "range" =<
%% 2^(m+1) then the number of bits = m + 1
num_bits(N) -> num_bits(N, 1, 0).
num_bits(N,T,B) when N =< T -> B;
num_bits(N,T,B) -> num_bits(N, T bsl 1, B+1).