%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Partitions assembly instructions into basic blocks and
%% optimizes them.
-module(beam_bs).
-export([module/2]).
-import(lists, [mapfoldl/3,reverse/1]).
-spec module(beam_utils:module_code(), [compile:option()]) ->
{'ok',beam_utils:module_code()}.
module({Mod,Exp,Attr,Fs0,Lc0}, _Opt) ->
{Fs,Lc} = mapfoldl(fun function/2, Lc0, Fs0),
{ok,{Mod,Exp,Attr,Fs,Lc}}.
function({function,Name,Arity,CLabel,Is0}, Lc0) ->
try
Is1 = bs_put_opt(Is0),
{Is,Lc} = bsm_opt(Is1, Lc0),
{{function,Name,Arity,CLabel,Is},Lc}
catch
Class:Error ->
Stack = erlang:get_stacktrace(),
io:fwrite("Function: ~w/~w\n", [Name,Arity]),
erlang:raise(Class, Error, Stack)
end.
%%%
%%% Evaluation of constant bit fields.
%%%
bs_put_opt([{bs_put,_,_,_}=I|Is0]) ->
{BsPuts0,Is} = collect_bs_puts(Is0, [I]),
BsPuts = opt_bs_puts(BsPuts0),
BsPuts ++ bs_put_opt(Is);
bs_put_opt([I|Is]) ->
[I|bs_put_opt(Is)];
bs_put_opt([]) -> [].
collect_bs_puts([{bs_put,_,_,_}=I|Is], Acc) ->
collect_bs_puts(Is, [I|Acc]);
collect_bs_puts([_|_]=Is, Acc) ->
{reverse(Acc),Is}.
opt_bs_puts(Is) ->
opt_bs_1(Is, []).
opt_bs_1([{bs_put,Fail,
{bs_put_float,1,Flags0},[{integer,Sz},Src]}=I0|Is], Acc) ->
try eval_put_float(Src, Sz, Flags0) of
<<Int:Sz>> ->
Flags = force_big(Flags0),
I = {bs_put,Fail,{bs_put_integer,1,Flags},
[{integer,Sz},{integer,Int}]},
opt_bs_1([I|Is], Acc)
catch
error:_ ->
opt_bs_1(Is, [I0|Acc])
end;
opt_bs_1([{bs_put,_,{bs_put_integer,1,_},[{integer,8},{integer,_}]}|_]=IsAll,
Acc0) ->
{Is,Acc} = bs_collect_string(IsAll, Acc0),
opt_bs_1(Is, Acc);
opt_bs_1([{bs_put,Fail,{bs_put_integer,1,F},[{integer,Sz},{integer,N}]}=I|Is0],
Acc) when Sz > 8 ->
case field_endian(F) of
big ->
%% We can do this optimization for any field size without
%% risk for code explosion.
case bs_split_int(N, Sz, Fail, Is0) of
no_split -> opt_bs_1(Is0, [I|Acc]);
Is -> opt_bs_1(Is, Acc)
end;
little when Sz < 128 ->
%% We only try to optimize relatively small fields, to
%% avoid an explosion in code size.
<<Int:Sz>> = <<N:Sz/little>>,
Flags = force_big(F),
Is = [{bs_put,Fail,{bs_put_integer,1,Flags},
[{integer,Sz},{integer,Int}]}|Is0],
opt_bs_1(Is, Acc);
_ -> %native or too wide little field
opt_bs_1(Is0, [I|Acc])
end;
opt_bs_1([{bs_put,Fail,{Op,U,F},[{integer,Sz},Src]}|Is], Acc) when U > 1 ->
opt_bs_1([{bs_put,Fail,{Op,1,F},[{integer,U*Sz},Src]}|Is], Acc);
opt_bs_1([I|Is], Acc) ->
opt_bs_1(Is, [I|Acc]);
opt_bs_1([], Acc) -> reverse(Acc).
eval_put_float(Src, Sz, Flags) when Sz =< 256 ->
%%Only evaluate if Sz is reasonable.
Val = value(Src),
case field_endian(Flags) of
little -> <<Val:Sz/little-float-unit:1>>;
big -> <<Val:Sz/big-float-unit:1>>
%% native intentionally not handled here - we can't optimize
%% it.
end.
value({integer,I}) -> I;
value({float,F}) -> F.
bs_collect_string(Is, [{bs_put,_,{bs_put_string,Len,{string,Str}},[]}|Acc]) ->
bs_coll_str_1(Is, Len, reverse(Str), Acc);
bs_collect_string(Is, Acc) ->
bs_coll_str_1(Is, 0, [], Acc).
bs_coll_str_1([{bs_put,_,{bs_put_integer,U,_},[{integer,Sz},{integer,V}]}|Is],
Len, StrAcc, IsAcc) when U*Sz =:= 8 ->
Byte = V band 16#FF,
bs_coll_str_1(Is, Len+1, [Byte|StrAcc], IsAcc);
bs_coll_str_1(Is, Len, StrAcc, IsAcc) ->
{Is,[{bs_put,{f,0},{bs_put_string,Len,{string,reverse(StrAcc)}},[]}|IsAcc]}.
field_endian({field_flags,F}) -> field_endian_1(F).
field_endian_1([big=E|_]) -> E;
field_endian_1([little=E|_]) -> E;
field_endian_1([native=E|_]) -> E;
field_endian_1([_|Fs]) -> field_endian_1(Fs).
force_big({field_flags,F}) ->
{field_flags,force_big_1(F)}.
force_big_1([big|_]=Fs) -> Fs;
force_big_1([little|Fs]) -> [big|Fs];
force_big_1([F|Fs]) -> [F|force_big_1(Fs)].
bs_split_int(0, Sz, _, _) when Sz > 64 ->
%% We don't want to split in this case because the
%% string will consist of only zeroes.
no_split;
bs_split_int(-1, Sz, _, _) when Sz > 64 ->
%% We don't want to split in this case because the
%% string will consist of only 255 bytes.
no_split;
bs_split_int(N, Sz, Fail, Acc) ->
FirstByteSz = case Sz rem 8 of
0 -> 8;
Rem -> Rem
end,
bs_split_int_1(N, FirstByteSz, Sz, Fail, Acc).
bs_split_int_1(-1, _, Sz, Fail, Acc) when Sz > 64 ->
I = {bs_put,Fail,{bs_put_integer,1,{field_flags,[big]}},
[{integer,Sz},{integer,-1}]},
[I|Acc];
bs_split_int_1(0, _, Sz, Fail, Acc) when Sz > 64 ->
I = {bs_put,Fail,{bs_put_integer,1,{field_flags,[big]}},
[{integer,Sz},{integer,0}]},
[I|Acc];
bs_split_int_1(N, ByteSz, Sz, Fail, Acc) when Sz > 0 ->
Mask = (1 bsl ByteSz) - 1,
I = {bs_put,Fail,{bs_put_integer,1,{field_flags,[big]}},
[{integer,ByteSz},{integer,N band Mask}]},
bs_split_int_1(N bsr ByteSz, 8, Sz-ByteSz, Fail, [I|Acc]);
bs_split_int_1(_, _, _, _, Acc) -> Acc.
%%%
%%% Optimization of bit syntax matching: get rid
%%% of redundant bs_restore2/2 instructions across select_val
%%% instructions, as well as a few other simple peep-hole
%%% optimizations.
%%%
bsm_opt(Is0, Lc0) ->
{Is1,D0,Lc} = bsm_scan(Is0, [], Lc0, []),
Is2 = case D0 of
[] ->
%% No bit syntax matching in this function.
Is1;
[_|_] ->
%% Optimize the bit syntax matching.
D = gb_trees:from_orddict(orddict:from_list(D0)),
bsm_reroute(Is1, D, none, [])
end,
Is = beam_clean:bs_clean_saves(Is2),
{bsm_opt_2(Is, []),Lc}.
bsm_scan([{label,L}=Lbl,{bs_restore2,_,Save}=R|Is], D0, Lc, Acc0) ->
D = [{{L,Save},Lc}|D0],
Acc = [{label,Lc},R,Lbl|Acc0],
bsm_scan(Is, D, Lc+1, Acc);
bsm_scan([I|Is], D, Lc, Acc) ->
bsm_scan(Is, D, Lc, [I|Acc]);
bsm_scan([], D, Lc, Acc) ->
{reverse(Acc),D,Lc}.
bsm_reroute([{bs_save2,Reg,Save}=I|Is], D, _, Acc) ->
bsm_reroute(Is, D, {Reg,Save}, [I|Acc]);
bsm_reroute([{bs_restore2,Reg,Save}=I|Is], D, _, Acc) ->
bsm_reroute(Is, D, {Reg,Save}, [I|Acc]);
bsm_reroute([{label,_}=I|Is], D, S, Acc) ->
bsm_reroute(Is, D, S, [I|Acc]);
bsm_reroute([{select,select_val,Reg,F0,Lbls0}|Is], D, {_,Save}=S, Acc0) ->
[F|Lbls] = bsm_subst_labels([F0|Lbls0], Save, D),
Acc = [{select,select_val,Reg,F,Lbls}|Acc0],
bsm_reroute(Is, D, S, Acc);
bsm_reroute([{test,TestOp,F0,TestArgs}=I|Is], D, {_,Save}=S, Acc0) ->
F = bsm_subst_label(F0, Save, D),
Acc = [{test,TestOp,F,TestArgs}|Acc0],
case bsm_not_bs_test(I) of
true ->
%% The test instruction will not update the bit offset for
%% the binary being matched. Therefore the save position
%% can be kept.
bsm_reroute(Is, D, S, Acc);
false ->
%% The test instruction might update the bit offset. Kill
%% our remembered Save position.
bsm_reroute(Is, D, none, Acc)
end;
bsm_reroute([{test,TestOp,F0,Live,TestArgs,Dst}|Is], D, {_,Save}, Acc0) ->
F = bsm_subst_label(F0, Save, D),
Acc = [{test,TestOp,F,Live,TestArgs,Dst}|Acc0],
%% The test instruction will update the bit offset. Kill our
%% remembered Save position.
bsm_reroute(Is, D, none, Acc);
bsm_reroute([{block,[{set,[],[],{alloc,_,_}}]}=Bl,
{bs_context_to_binary,_}=I|Is], D, S, Acc) ->
%% To help further bit syntax optimizations.
bsm_reroute([I,Bl|Is], D, S, Acc);
bsm_reroute([I|Is], D, _, Acc) ->
bsm_reroute(Is, D, none, [I|Acc]);
bsm_reroute([], _, _, Acc) -> reverse(Acc).
bsm_opt_2([{test,bs_test_tail2,F,[Ctx,Bits]}|Is],
[{test,bs_skip_bits2,F,[Ctx,{integer,I},Unit,_Flags]}|Acc]) ->
bsm_opt_2(Is, [{test,bs_test_tail2,F,[Ctx,Bits+I*Unit]}|Acc]);
bsm_opt_2([{test,bs_skip_bits2,F,[Ctx,{integer,I1},Unit1,_]}|Is],
[{test,bs_skip_bits2,F,[Ctx,{integer,I2},Unit2,Flags]}|Acc]) ->
bsm_opt_2(Is, [{test,bs_skip_bits2,F,
[Ctx,{integer,I1*Unit1+I2*Unit2},1,Flags]}|Acc]);
bsm_opt_2([I|Is], Acc) ->
bsm_opt_2(Is, [I|Acc]);
bsm_opt_2([], Acc) -> reverse(Acc).
%% bsm_not_bs_test({test,Name,_,Operands}) -> true|false.
%% Test whether is the test is a "safe", i.e. does not move the
%% bit offset for a binary.
%%
%% 'true' means that the test is safe, 'false' that we don't know or
%% that the test moves the offset (e.g. bs_get_integer2).
bsm_not_bs_test({test,bs_test_tail2,_,[_,_]}) -> true;
bsm_not_bs_test(Test) -> beam_utils:is_pure_test(Test).
bsm_subst_labels(Fs, Save, D) ->
bsm_subst_labels_1(Fs, Save, D, []).
bsm_subst_labels_1([F|Fs], Save, D, Acc) ->
bsm_subst_labels_1(Fs, Save, D, [bsm_subst_label(F, Save, D)|Acc]);
bsm_subst_labels_1([], _, _, Acc) ->
reverse(Acc).
bsm_subst_label({f,Lbl0}=F, Save, D) ->
case gb_trees:lookup({Lbl0,Save}, D) of
{value,Lbl} -> {f,Lbl};
none -> F
end;
bsm_subst_label(Other, _, _) -> Other.