aboutsummaryrefslogblamecommitdiffstats
path: root/lib/compiler/src/beam_kernel_to_ssa.erl
blob: df95749fb31ea7b431b2a9c8b92b43bb24f19efb (plain) (tree)
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312





















































































































































































































































































                                                                               
                                           


                                                              
                                             













































                                                                                              
                                      

































                                                                                               
















































































































































































































































































































































                                                                                   


































































































































































































































































































































































































































































































































































































































                                                                                  
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose: Convert the Kernel Erlang format to the SSA format.

-module(beam_kernel_to_ssa).

%% The main interface.
-export([module/2]).

-import(lists, [append/1,duplicate/2,flatmap/2,foldl/3,
                keysort/2,mapfoldl/3,map/2,member/2,
                reverse/1,reverse/2,sort/1]).

-include("v3_kernel.hrl").
-include("beam_ssa.hrl").

-type label() :: beam_ssa:label().

%% Main codegen structure.
-record(cg, {lcount=1 :: label(),               %Label counter
             bfail=1 :: label(),
             catch_label=none :: 'none' | label(),
             vars=#{} :: map(),     %Defined variables.
             break=0 :: label(),    %Break label
             recv=0 :: label(),     %Receive label
             ultimate_failure=0 :: label() %Label for ultimate match failure.
            }).

%% Internal records.
-record(cg_break, {args :: [beam_ssa:value()],
                   phi :: label()
                  }).
-record(cg_phi, {vars :: [beam_ssa:b_var()]
                }).
-record(cg_unreachable, {}).

-spec module(#k_mdef{}, [compile:option()]) -> {'ok',#b_module{}}.

module(#k_mdef{name=Mod,exports=Es,attributes=Attr,body=Forms}, _Opts) ->
    Body = functions(Forms, Mod),
    Module = #b_module{name=Mod,exports=Es,attributes=Attr,body=Body},
    {ok,Module}.

functions(Forms, Mod) ->
    [function(F, Mod) || F <- Forms].

function(#k_fdef{anno=Anno0,func=Name,arity=Arity,
                 vars=As0,body=Kb}, Mod) ->
    try
        #k_match{} = Kb,                   %Assertion.

        %% Generate the SSA form immediate format.
        St0 = #cg{},
        {As,St1} = new_ssa_vars(As0, St0),
        {Asm,St} = cg_fun(Kb, St1),
        Anno1 = line_anno(Anno0),
        Anno = Anno1#{func_info=>{Mod,Name,Arity}},
        #b_function{anno=Anno,args=As,bs=Asm,cnt=St#cg.lcount}
    catch
        Class:Error:Stack ->
            io:fwrite("Function: ~w/~w\n", [Name,Arity]),
            erlang:raise(Class, Error, Stack)
    end.

%% cg_fun([Lkexpr], [HeadVar], State) -> {[Ainstr],State}

cg_fun(Ke, St0) ->
    {UltimateFail,FailIs,St1} = make_failure(badarg, St0),
    St2 = St1#cg{bfail=UltimateFail,ultimate_failure=UltimateFail},
    {B,St} = cg(Ke, St2),
    Asm = [{label,0}|B++FailIs],
    finalize(Asm, St).

make_failure(Reason, St0) ->
    {Lbl,St1} = new_label(St0),
    {Dst,St} = new_ssa_var('@ssa_ret', St1),
    Is = [{label,Lbl},
          #b_set{op=call,dst=Dst,
                 args=[#b_remote{mod=#b_literal{val=erlang},
                                 name=#b_literal{val=error},
                                 arity=1},
                       #b_literal{val=Reason}]},
          #b_ret{arg=Dst}],
    {Lbl,Is,St}.

%% cg(Lkexpr, State) -> {[Ainstr],State}.
%%  Generate code for a kexpr.

cg(#k_match{body=M,ret=Rs}, St) ->
    do_match_cg(M, Rs, St);
cg(#k_guard_match{body=M,ret=Rs}, St) ->
    do_match_cg(M, Rs, St);
cg(#k_seq{arg=Arg,body=Body}, St0) ->
    {ArgIs,St1} = cg(Arg, St0),
    {BodyIs,St} = cg(Body, St1),
    {ArgIs++BodyIs,St};
cg(#k_call{anno=Le,op=Func,args=As,ret=Rs}, St) ->
    call_cg(Func, As, Rs, Le, St);
cg(#k_enter{anno=Le,op=Func,args=As}, St) ->
    enter_cg(Func, As, Le, St);
cg(#k_bif{anno=Le}=Bif, St) ->
    bif_cg(Bif, Le, St);
cg(#k_try{arg=Ta,vars=Vs,body=Tb,evars=Evs,handler=Th,ret=Rs}, St) ->
    try_cg(Ta, Vs, Tb, Evs, Th, Rs, St);
cg(#k_try_enter{arg=Ta,vars=Vs,body=Tb,evars=Evs,handler=Th}, St) ->
    try_enter_cg(Ta, Vs, Tb, Evs, Th, St);
cg(#k_catch{body=Cb,ret=[R]}, St) ->
    do_catch_cg(Cb, R, St);
cg(#k_receive{anno=Le,timeout=Te,var=Rvar,body=Rm,action=Tes,ret=Rs}, St) ->
    recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, St);
cg(#k_receive_next{}, #cg{recv=Recv}=St) ->
    Is = [#b_set{op=recv_next},make_uncond_branch(Recv)],
    {Is,St};
cg(#k_receive_accept{}, St) ->
    Remove = #b_set{op=remove_message},
    {[Remove],St};
cg(#k_put{anno=Le,arg=Con,ret=Var}, St) ->
    put_cg(Var, Con, Le, St);
cg(#k_return{args=[Ret0]}, St) ->
    Ret = ssa_arg(Ret0, St),
    {[#b_ret{arg=Ret}],St};
cg(#k_break{args=Bs}, #cg{break=Br}=St) ->
    Args = ssa_args(Bs, St),
    {[#cg_break{args=Args,phi=Br}],St};
cg(#k_guard_break{args=Bs}, St) ->
    cg(#k_break{args=Bs}, St).

%% match_cg(Matc, [Ret], State) -> {[Ainstr],State}.
%%  Generate code for a match.

do_match_cg(M, Rs, St0) ->
    {B,St1} = new_label(St0),
    {Mis,St2} = match_cg(M, St1#cg.bfail, St1#cg{break=B}),
    {BreakVars,St} = new_ssa_vars(Rs, St2),
    {Mis ++ [{label,B},#cg_phi{vars=BreakVars}],
     St#cg{bfail=St0#cg.bfail,break=St1#cg.break}}.

%% match_cg(Match, Fail, State) -> {[Ainstr],State}.
%%  Generate code for a match tree.

match_cg(#k_alt{first=F,then=S}, Fail, St0) ->
    {Tf,St1} = new_label(St0),
    {Fis,St2} = match_cg(F, Tf, St1),
    {Sis,St3} = match_cg(S, Fail, St2),
    {Fis ++ [{label,Tf}] ++ Sis,St3};
match_cg(#k_select{var=#k_var{}=V,types=Scs}, Fail, St) ->
    match_fmf(fun (S, F, Sta) ->
                      select_cg(S, V, F, Fail, Sta)
              end, Fail, St, Scs);
match_cg(#k_guard{clauses=Gcs}, Fail, St) ->
    match_fmf(fun (G, F, Sta) ->
                      guard_clause_cg(G, F, Sta)
              end, Fail, St, Gcs);
match_cg(Ke, _Fail, St0) ->
    cg(Ke, St0).

%% select_cg(Sclause, V, TypeFail, ValueFail, State) -> {Is,State}.
%%  Selecting type and value needs two failure labels, TypeFail is the
%%  label to jump to of the next type test when this type fails, and
%%  ValueFail is the label when this type is correct but the value is
%%  wrong.  These are different as in the second case there is no need
%%  to try the next type, it will always fail.

select_cg(#k_type_clause{type=k_binary,values=[S]}, Var, Tf, Vf, St) ->
    select_binary(S, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=k_bin_seg,values=Vs}, Var, Tf, _Vf, St) ->
    select_bin_segs(Vs, Var, Tf, St);
select_cg(#k_type_clause{type=k_bin_int,values=Vs}, Var, Tf, _Vf, St) ->
    select_bin_segs(Vs, Var, Tf, St);
select_cg(#k_type_clause{type=k_bin_end,values=[S]}, Var, Tf, _Vf, St) ->
    select_bin_end(S, Var, Tf, St);
select_cg(#k_type_clause{type=k_map,values=Vs}, Var, Tf, Vf, St) ->
    select_map(Vs, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=k_cons,values=[S]}, Var, Tf, Vf, St) ->
    select_cons(S, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=k_nil,values=[S]}, Var, Tf, Vf, St) ->
    select_nil(S, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=k_literal,values=Vs}, Var, Tf, Vf, St) ->
    select_literal(Vs, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=Type,values=Scs}, Var, Tf, Vf, St0) ->
    {Vis,St1} =
        mapfoldl(fun (S, Sta) ->
                         {Val,Is,Stb} = select_val(S, Var, Vf, Sta),
                         {{Is,[Val]},Stb}
                 end, St0, Scs),
    OptVls = combine(lists:sort(combine(Vis))),
    {Vls,Sis,St2} = select_labels(OptVls, St1, [], []),
    Arg = ssa_arg(Var, St2),
    {Is,St} = select_val_cg(Type, Arg, Vls, Tf, Vf, Sis, St2),
    {Is,St}.

select_val_cg(k_tuple, Tuple, Vls, Tf, Vf, Sis, St0) ->
    {Is0,St1} = make_cond_branch({bif,is_tuple}, [Tuple], Tf, St0),
    {Arity,St2} = new_ssa_var('@ssa_arity', St1),
    GetArity = #b_set{op={bif,tuple_size},dst=Arity,args=[Tuple]},
    {Is,St} = select_val_cg(k_int, Arity, Vls, Vf, Vf, Sis, St2),
    {Is0++[GetArity]++Is,St};
select_val_cg(Type, R, Vls, Tf, Vf, Sis, St0) ->
    {TypeIs,St1} = if
                       Tf =:= Vf ->
                           %% The type and value failure labels are the same;
                           %% we don't need a type test.
                           {[],St0};
                       true ->
                           %% Different labels for type failure and
                           %% label failure; we need a type test.
                           Test = select_type_test(Type),
                           make_cond_branch(Test, [R], Tf, St0)
                   end,
    case Vls of
        [{Val,Succ}] ->
            {Is,St} = make_cond({bif,'=:='}, [R,Val], Vf, Succ, St1),
            {TypeIs++Is++Sis,St};
        [_|_] ->
            {TypeIs++[#b_switch{arg=R,fail=Vf,list=Vls}|Sis],St1}
    end.

select_type_test(k_int) -> {bif,is_integer};
select_type_test(k_atom) -> {bif,is_atom};
select_type_test(k_float) -> {bif,is_float}.

combine([{Is,Vs1},{Is,Vs2}|Vis]) -> combine([{Is,Vs1 ++ Vs2}|Vis]);
combine([V|Vis]) -> [V|combine(Vis)];
combine([]) -> [].

select_labels([{Is,Vs}|Vis], St0, Vls, Sis) ->
    {Lbl,St1} = new_label(St0),
    select_labels(Vis, St1, add_vls(Vs, Lbl, Vls), [[{label,Lbl}|Is]|Sis]);
select_labels([], St, Vls, Sis) ->
    {Vls,append(Sis),St}.

add_vls([V|Vs], Lbl, Acc) ->
    add_vls(Vs, Lbl, [{#b_literal{val=V},Lbl}|Acc]);
add_vls([], _, Acc) -> Acc.

select_literal(S, V, Tf, Vf, St) ->
    Src = ssa_arg(V, St),
    F = fun(ValClause, Fail, St0) ->
                {Val,ValIs,St1} = select_val(ValClause, V, Vf, St0),
                Args = [Src,#b_literal{val=Val}],
                {Is,St2} = make_cond_branch({bif,'=:='}, Args, Fail, St1),
                {Is++ValIs,St2}
        end,
    match_fmf(F, Tf, St, S).

select_cons(#k_val_clause{val=#k_cons{hd=Hd,tl=Tl},body=B},
            V, Tf, Vf, St0) ->
    Es = [Hd,Tl],
    {Eis,St1} = select_extract_cons(V, Es, St0),
    {Bis,St2} = match_cg(B, Vf, St1),
    Src = ssa_arg(V, St2),
    {Is,St} = make_cond_branch(is_nonempty_list, [Src], Tf, St2),
    {Is ++ Eis ++ Bis,St}.

select_nil(#k_val_clause{val=#k_nil{},body=B}, V, Tf, Vf, St0) ->
    {Bis,St1} = match_cg(B, Vf, St0),
    Src = ssa_arg(V, St1),
    {Is,St} = make_cond_branch({bif,'=:='}, [Src,#b_literal{val=[]}], Tf, St1),
    {Is ++ Bis,St}.

select_binary(#k_val_clause{val=#k_binary{segs=#k_var{name=Ctx0}},body=B},
              #k_var{}=Src, Tf, Vf, St0) ->
    {Ctx,St1} = new_ssa_var(Ctx0, St0),
    {Bis0,St2} = match_cg(B, Vf, St1),
    {TestIs,St} = make_cond_branch(succeeded, [Ctx], Tf, St2),
    Bis1 = [#b_set{op=bs_start_match,dst=Ctx,
                   args=[ssa_arg(Src, St)]}] ++ TestIs ++ Bis0,
    Bis = finish_bs_matching(Bis1),
    {Bis,St}.

finish_bs_matching([#b_set{op=bs_match,
                           args=[#b_literal{val=string},Ctx,#b_literal{val=BinList}]}=Set|Is])
  when is_list(BinList) ->
    I = Set#b_set{args=[#b_literal{val=string},Ctx,
                        #b_literal{val=list_to_bitstring(BinList)}]},
    finish_bs_matching([I|Is]);
finish_bs_matching([I|Is]) ->
    [I|finish_bs_matching(Is)];
finish_bs_matching([]) -> [].

make_cond(Cond, Args, Fail, Succ, St0) ->
    {Bool,St} = new_ssa_var('@ssa_bool', St0),
    Bif = #b_set{op=Cond,dst=Bool,args=Args},
    Br = #b_br{bool=Bool,succ=Succ,fail=Fail},
    {[Bif,Br],St}.

make_cond_branch(Cond, Args, Fail, St0) ->
    {Bool,St1} = new_ssa_var('@ssa_bool', St0),
    {Succ,St} = new_label(St1),
    Bif = #b_set{op=Cond,dst=Bool,args=Args},
    Br = #b_br{bool=Bool,succ=Succ,fail=Fail},
    {[Bif,Br,{label,Succ}],St}.

make_uncond_branch(Fail) ->
    #b_br{bool=#b_literal{val=true},succ=Fail,fail=Fail}.

%% Instructions for selection of binary segments.

select_bin_segs(Scs, Ivar, Tf, St) ->
    match_fmf(fun(S, Fail, Sta) ->
                      select_bin_seg(S, Ivar, Fail, Sta)
              end, Tf, St, Scs).

select_bin_seg(#k_val_clause{val=#k_bin_seg{size=Size,unit=U,type=T,
                                            seg=Seg,flags=Fs,next=Next},
                             body=B,anno=Anno},
               #k_var{}=Src, Fail, St0) ->
    LineAnno = line_anno(Anno),
    Ctx = get_context(Src, St0),
    {Mis,St1} = select_extract_bin(Next, Size, U, T, Fs, Fail,
                                   Ctx, LineAnno, St0),
    {Extracted,St2} = new_ssa_var(Seg#k_var.name, St1),
    {Bis,St} = match_cg(B, Fail, St2),
    BsGet = #b_set{op=bs_extract,dst=Extracted,args=[ssa_arg(Next, St)]},
    Is = Mis ++ [BsGet] ++ Bis,
    {Is,St};
select_bin_seg(#k_val_clause{val=#k_bin_int{size=Sz,unit=U,flags=Fs,
                                            val=Val,next=Next},
                             body=B},
               #k_var{}=Src, Fail, St0) ->
    Ctx = get_context(Src, St0),
    {Mis,St1} = select_extract_int(Next, Val, Sz, U, Fs, Fail,
                                     Ctx, St0),
    {Bis,St} = match_cg(B, Fail, St1),
    Is = case Mis ++ Bis of
             [#b_set{op=bs_match,args=[#b_literal{val=string},OtherCtx1,Bin1]},
              #b_set{op=succeeded,dst=Bool1},
              #b_br{bool=Bool1,succ=Succ,fail=Fail},
              {label,Succ},
              #b_set{op=bs_match,dst=Dst,args=[#b_literal{val=string},_OtherCtx2,Bin2]}|
              [#b_set{op=succeeded,dst=Bool2},
               #b_br{bool=Bool2,fail=Fail}|_]=Is0] ->
                 %% We used to do this optimization later, but it
                 %% turns out that in huge functions with many
                 %% string matching instructions, it's a huge win
                 %% to do the combination now. To avoid copying the
                 %% binary data again and again, we'll combine bitstrings
                 %% in a list and convert all of it to a bitstring later.
                 {#b_literal{val=B1},#b_literal{val=B2}} = {Bin1,Bin2},
                 Bin = #b_literal{val=[B1,B2]},
                 Set = #b_set{op=bs_match,dst=Dst,args=[#b_literal{val=string},OtherCtx1,Bin]},
                 [Set|Is0];
             Is0 ->
                 Is0
         end,
    {Is,St}.

get_context(#k_var{}=Var, St) ->
    ssa_arg(Var, St).

select_bin_end(#k_val_clause{val=#k_bin_end{},body=B}, Src, Tf, St0) ->
    Ctx = get_context(Src, St0),
    {Bis,St1} = match_cg(B, Tf, St0),
    {TestIs,St} = make_cond_branch(bs_test_tail, [Ctx,#b_literal{val=0}], Tf, St1),
    Is = TestIs++Bis,
    {Is,St}.

select_extract_bin(#k_var{name=Hd}, Size0, Unit, Type, Flags, Vf,
                   Ctx, Anno, St0) ->
    {Dst,St1} = new_ssa_var(Hd, St0),
    Size = ssa_arg(Size0, St0),
    build_bs_instr(Anno, Type, Vf, Ctx, Size, Unit, Flags, Dst, St1).

select_extract_int(#k_var{name=Tl}, 0, #k_int{val=0}, _U, _Fs, _Vf,
                   Ctx, St0) ->
    St = set_ssa_var(Tl, Ctx, St0),
    {[],St};
select_extract_int(#k_var{name=Tl}, Val, #k_int{val=Sz}, U, Fs, Vf,
                   Ctx, St0) ->
    {Dst,St1} = new_ssa_var(Tl, St0),
    Bits = U*Sz,
    Bin = case member(big, Fs) of
              true ->
                  <<Val:Bits>>;
              false ->
                  true = member(little, Fs),	%Assertion.
                  <<Val:Bits/little>>
          end,
    Bits = bit_size(Bin),			%Assertion.
    {TestIs,St} = make_cond_branch(succeeded, [Dst], Vf, St1),
    Set = #b_set{op=bs_match,dst=Dst,
                 args=[#b_literal{val=string},Ctx,#b_literal{val=Bin}]},
    {[Set|TestIs],St}.

build_bs_instr(Anno, Type, Fail, Ctx, Size, Unit0, Flags0, Dst, St0) ->
    Unit = #b_literal{val=Unit0},
    Flags = #b_literal{val=Flags0},
    NeedSize = bs_need_size(Type),
    TypeArg = #b_literal{val=Type},
    Get = case NeedSize of
              true ->
                  #b_set{anno=Anno,op=bs_match,dst=Dst,
                         args=[TypeArg,Ctx,Flags,Size,Unit]};
              false ->
                  #b_set{anno=Anno,op=bs_match,dst=Dst,
                         args=[TypeArg,Ctx,Flags]}
          end,
    {Is,St} = make_cond_branch(succeeded, [Dst], Fail, St0),
    {[Get|Is],St}.

select_val(#k_val_clause{val=#k_tuple{es=Es},body=B}, V, Vf, St0) ->
    #k{us=Used} = k_get_anno(B),
    {Eis,St1} = select_extract_tuple(V, Es, Used, St0),
    {Bis,St2} = match_cg(B, Vf, St1),
    {length(Es),Eis ++ Bis,St2};
select_val(#k_val_clause{val=Val0,body=B}, _V, Vf, St0) ->
    Val = case Val0 of
              #k_atom{val=Lit} -> Lit;
              #k_float{val=Lit} -> Lit;
              #k_int{val=Lit} -> Lit;
              #k_literal{val=Lit} -> Lit
          end,
    {Bis,St1} = match_cg(B, Vf, St0),
    {Val,Bis,St1}.

%% select_extract_tuple(Src, [V], State) -> {[E],State}.
%%  Extract tuple elements, but only if they are actually used.
%%
%%  Not extracting tuple elements that are not used is an
%%  optimization for compile time and memory use during compilation.
%%  It is probably worthwhile because it is common to extract only a
%%  few elements from a huge record.

select_extract_tuple(Src, Vs, Used, St0) ->
    Tuple = ssa_arg(Src, St0),
    F = fun (#k_var{name=V}, {Elem,S0}) ->
                case member(V, Used) of
                    true ->
                        Args = [Tuple,#b_literal{val=Elem}],
                        {Dst,S} = new_ssa_var(V, S0),
                        Get = #b_set{op=get_tuple_element,dst=Dst,args=Args},
                        {[Get],{Elem+1,S}};
                    false ->
                        {[],{Elem+1,S0}}
                end
        end,
    {Es,{_,St}} = flatmapfoldl(F, {0,St0}, Vs),
    {Es,St}.

select_map(Scs, V, Tf, Vf, St0) ->
    MapSrc = ssa_arg(V, St0),
    {Is,St1} =
        match_fmf(fun(#k_val_clause{val=#k_map{op=exact,es=Es},
                                    body=B}, Fail, St1) ->
                          select_map_val(V, Es, B, Fail, St1)
                  end, Vf, St0, Scs),
    {TestIs,St} = make_cond_branch({bif,is_map}, [MapSrc], Tf, St1),
    {TestIs++Is,St}.

select_map_val(V, Es, B, Fail, St0) ->
    {Eis,St1} = select_extract_map(Es, V, Fail, St0),
    {Bis,St2} = match_cg(B, Fail, St1),
    {Eis++Bis,St2}.

select_extract_map([P|Ps], Src, Fail, St0) ->
    MapSrc = ssa_arg(Src, St0),
    #k_map_pair{key=Key0,val=#k_var{name=Dst0}} = P,
    Key = ssa_arg(Key0, St0),
    {Dst,St1} = new_ssa_var(Dst0, St0),
    Set = #b_set{op=get_map_element,dst=Dst,args=[MapSrc,Key]},
    {TestIs,St2} = make_cond_branch(succeeded, [Dst], Fail, St1),
    {Is,St} = select_extract_map(Ps, Src, Fail, St2),
    {[Set|TestIs]++Is,St};
select_extract_map([], _, _, St) ->
    {[],St}.

select_extract_cons(Src0, [#k_var{name=Hd},#k_var{name=Tl}], St0) ->
    Src = ssa_arg(Src0, St0),
    {HdDst,St1} = new_ssa_var(Hd, St0),
    {TlDst,St2} = new_ssa_var(Tl, St1),
    GetHd = #b_set{op=get_hd,dst=HdDst,args=[Src]},
    GetTl = #b_set{op=get_tl,dst=TlDst,args=[Src]},
    {[GetHd,GetTl],St2}.

guard_clause_cg(#k_guard_clause{guard=G,body=B}, Fail, St0) ->
    {Gis,St1} = guard_cg(G, Fail, St0),
    {Bis,St} = match_cg(B, Fail, St1),
    {Gis ++ Bis,St}.

%% guard_cg(Guard, Fail, State) -> {[Ainstr],State}.
%%  A guard is a boolean expression of tests.  Tests return true or
%%  false.  A fault in a test causes the test to return false.  Tests
%%  never return the boolean, instead we generate jump code to go to
%%  the correct exit point.  Primops and tests all go to the next
%%  instruction on success or jump to a failure label.

guard_cg(#k_protected{arg=Ts,ret=Rs,inner=Inner}, Fail, St) ->
    protected_cg(Ts, Rs, Inner, Fail, St);
guard_cg(#k_test{op=Test0,args=As,inverted=Inverted}, Fail, St0) ->
    #k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=Test}} = Test0,
    test_cg(Test, Inverted, As, Fail, St0);
guard_cg(#k_seq{arg=Arg,body=Body}, Fail, St0) ->
    {ArgIs,St1} = guard_cg(Arg, Fail, St0),
    {BodyIs,St} = guard_cg(Body, Fail, St1),
    {ArgIs++BodyIs,St};
guard_cg(G, _Fail, St) ->
    cg(G, St).

test_cg('=/=', Inverted, As, Fail, St) ->
    test_cg('=:=', not Inverted, As, Fail, St);
test_cg('/=', Inverted, As, Fail, St) ->
    test_cg('==', not Inverted, As, Fail, St);
test_cg(Test, Inverted, As0, Fail, St0) ->
    As = ssa_args(As0, St0),
    case {Test,ssa_args(As0, St0)} of
        {is_record,[Tuple,#b_literal{val=Atom}=Tag,#b_literal{val=Int}=Arity]}
          when is_atom(Atom), is_integer(Int) ->
            test_is_record_cg(Inverted, Fail, Tuple, Tag, Arity, St0);
        {_,As} ->
            {Bool,St1} = new_ssa_var('@ssa_bool', St0),
            {Succ,St} = new_label(St1),
            Bif = #b_set{op={bif,Test},dst=Bool,args=As},
            Br = case Inverted of
                     false -> #b_br{bool=Bool,succ=Succ,fail=Fail};
                     true -> #b_br{bool=Bool,succ=Fail,fail=Succ}
                 end,
            {[Bif,Br,{label,Succ}],St}
    end.

test_is_record_cg(false, Fail, Tuple, TagVal, ArityVal, St0) ->
    {Arity,St1} = new_ssa_var('@ssa_arity', St0),
    {Tag,St2} = new_ssa_var('@ssa_tag', St1),
    {Is0,St3} = make_cond_branch({bif,is_tuple}, [Tuple], Fail, St2),
    GetArity = #b_set{op={bif,tuple_size},dst=Arity,args=[Tuple]},
    {Is1,St4} = make_cond_branch({bif,'=:='}, [Arity,ArityVal], Fail, St3),
    GetTag = #b_set{op=get_tuple_element,dst=Tag,
                    args=[Tuple,#b_literal{val=0}]},
    {Is2,St} = make_cond_branch({bif,'=:='}, [Tag,TagVal], Fail, St4),
    Is = Is0 ++ [GetArity] ++ Is1 ++ [GetTag] ++ Is2,
    {Is,St};
test_is_record_cg(true, Fail, Tuple, TagVal, ArityVal, St0) ->
    {Succ,St1} = new_label(St0),
    {Arity,St2} = new_ssa_var('@ssa_arity', St1),
    {Tag,St3} = new_ssa_var('@ssa_tag', St2),
    {Is0,St4} = make_cond_branch({bif,is_tuple}, [Tuple], Succ, St3),
    GetArity = #b_set{op={bif,tuple_size},dst=Arity,args=[Tuple]},
    {Is1,St5} = make_cond_branch({bif,'=:='}, [Arity,ArityVal], Succ, St4),
    GetTag = #b_set{op=get_tuple_element,dst=Tag,
                    args=[Tuple,#b_literal{val=0}]},
    {Is2,St} = make_cond_branch({bif,'=:='}, [Tag,TagVal], Succ, St5),
    Is3 = [make_uncond_branch(Fail),{label,Succ}],
    Is = Is0 ++ [GetArity] ++ Is1 ++ [GetTag] ++ Is2 ++ Is3,
    {Is,St}.

%% protected_cg([Kexpr], [Ret], Fail, St) -> {[Ainstr],St}.
%%  Do a protected.  Protecteds without return values are just done
%%  for effect, the return value is not checked, success passes on to
%%  the next instruction and failure jumps to Fail.  If there are
%%  return values then these must be set to 'false' on failure,
%%  control always passes to the next instruction.

protected_cg(Ts, [], _, Fail, St0) ->
    %% Protect these calls, revert when done.
    {Tis,St1} = guard_cg(Ts, Fail, St0#cg{bfail=Fail}),
    {Tis,St1#cg{bfail=St0#cg.bfail}};
protected_cg(Ts, Rs, Inner0, _Fail, St0) ->
    {Pfail,St1} = new_label(St0),
    {Br,St2} = new_label(St1),
    Prot = duplicate(length(Rs), #b_literal{val=false}),
    {Tis,St3} = guard_cg(Ts, Pfail, St2#cg{break=Pfail,bfail=Pfail}),
    Inner = ssa_args(Inner0, St3),
    {BreakVars,St} = new_ssa_vars(Rs, St3),
    Is = Tis ++ [#cg_break{args=Inner,phi=Br},
                 {label,Pfail},#cg_break{args=Prot,phi=Br},
                 {label,Br},#cg_phi{vars=BreakVars}],
    {Is,St#cg{break=St0#cg.break,bfail=St0#cg.bfail}}.

%% match_fmf(Fun, LastFail, State, [Clause]) -> {Is,State}.
%%  This is a special flatmapfoldl for match code gen where we
%%  generate a "failure" label for each clause. The last clause uses
%%  an externally generated failure label, LastFail.  N.B. We do not
%%  know or care how the failure labels are used.

match_fmf(F, LastFail, St, [H]) ->
    F(H, LastFail, St);
match_fmf(F, LastFail, St0, [H|T]) ->
    {Fail,St1} = new_label(St0),
    {R,St2} = F(H, Fail, St1),
    {Rs,St3} = match_fmf(F, LastFail, St2, T),
    {R ++ [{label,Fail}] ++ Rs,St3}.

%% fail_label(State) -> {Where,FailureLabel}.
%%       Where = guard | no_catch | in_catch
%%  Return an indication of which part of a function code is
%%  being generated for and the appropriate failure label to
%%  use.
%%
%%  Where has the following meaning:
%%
%%     guard     - Inside a guard.
%%     no_catch  - In a function body, not in the scope of
%%                 a try/catch or catch.
%%     in_catch  - In the scope of a try/catch or catch.

fail_label(#cg{catch_label=Catch,bfail=Fail,ultimate_failure=Ult}) ->
    if
        Fail =/= Ult ->
            {guard,Fail};
        Catch =:= none ->
            {no_catch,Fail};
        is_integer(Catch) ->
            {in_catch,Catch}
    end.

%% bif_fail_label(State) -> FailureLabel.
%%  Return the appropriate failure label for a guard BIF call or
%%  primop that fails.

bif_fail_label(St) ->
    {_,Fail} = fail_label(St),
    Fail.

%% call_cg(Func, [Arg], [Ret], Le, State) ->
%%      {[Ainstr],State}.
%% enter_cg(Func, [Arg], Le, St) -> {[Ainstr],St}.
%%  Generate code for call and enter.

call_cg(Func, As, [], Le, St) ->
    call_cg(Func, As, [#k_var{name='@ssa_ignored'}], Le, St);
call_cg(Func0, As, [#k_var{name=R}|MoreRs]=Rs, Le, St0) ->
    case fail_label(St0) of
        {guard,Fail} ->
            %% Inside a guard. The only allowed function call is to
            %% erlang:error/1,2. We will generate a branch to the
            %% failure branch.
            #k_remote{mod=#k_atom{val=erlang},
                      name=#k_atom{val=error}} = Func0, %Assertion.
            [#k_var{name=DestVar}] = Rs,
            St = set_ssa_var(DestVar, #b_literal{val=unused}, St0),
            {[make_uncond_branch(Fail),#cg_unreachable{}],St};
        {Catch,Fail} ->
            %% Ordinary function call in a function body.
            Args = ssa_args(As, St0),
            {Ret,St1} = new_ssa_var(R, St0),
            Func = call_target(Func0, Args, St0),
            Call = #b_set{anno=line_anno(Le),op=call,dst=Ret,args=[Func|Args]},

            %% If this is a call to erlang:error(), MoreRs could be a
            %% nonempty list of variables that each need a value.
            St2 = foldl(fun(#k_var{name=Dummy}, S) ->
                                set_ssa_var(Dummy, #b_literal{val=unused}, S)
                        end, St1, MoreRs),
            case Catch of
                no_catch ->
                    {[Call],St2};
                in_catch ->
                    {TestIs,St} = make_cond_branch(succeeded, [Ret], Fail, St2),
                    {[Call|TestIs],St}
            end
    end.

enter_cg(Func0, As0, Le, St0) ->
    Anno = line_anno(Le),
    Func = call_target(Func0, As0, St0),
    As = ssa_args(As0, St0),
    {Ret,St} = new_ssa_var('@ssa_ret', St0),
    Call = #b_set{anno=Anno,op=call,dst=Ret,args=[Func|As]},
    {[Call,#b_ret{arg=Ret}],St}.

call_target(Func, As, St) ->
    Arity = length(As),
    case Func of
        #k_remote{mod=Mod0,name=Name0} ->
            Mod = ssa_arg(Mod0, St),
            Name = ssa_arg(Name0, St),
            #b_remote{mod=Mod,name=Name,arity=Arity};
        #k_local{name=Name} when is_atom(Name) ->
            #b_local{name=#b_literal{val=Name},arity=Arity};
        #k_var{}=Var ->
            ssa_arg(Var, St)
    end.

%% bif_cg(#k_bif{}, Le,State) -> {[Ainstr],State}.
%%  Generate code for a guard BIF or primop.

bif_cg(#k_bif{op=#k_internal{name=Name},args=As,ret=Rs}, Le, St) ->
    internal_cg(Name, As, Rs, Le, St);
bif_cg(#k_bif{op=#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=Name}},
              args=As,ret=Rs}, Le, St) ->
    bif_cg(Name, As, Rs, Le, St).

%% internal_cg(Bif, [Arg], [Ret], Le, State) ->
%%      {[Ainstr],State}.

internal_cg(make_fun, [Name0,Arity0|As], Rs, _Le, St0) ->
    #k_atom{val=Name} = Name0,
    #k_int{val=Arity} = Arity0,
    [#k_var{name=Dst0}] = Rs,
    {Dst,St} = new_ssa_var(Dst0, St0),
    Args = ssa_args(As, St),
    Local = #b_local{name=#b_literal{val=Name},arity=Arity},
    MakeFun = #b_set{op=make_fun,dst=Dst,args=[Local|Args]},
    {[MakeFun],St};
internal_cg(bs_init_writable=I, As, [#k_var{name=Dst0}], _Le, St0) ->
    %% This behaves like a function call.
    {Dst,St} = new_ssa_var(Dst0, St0),
    Args = ssa_args(As, St),
    Set = #b_set{op=I,dst=Dst,args=Args},
    {[Set],St};
internal_cg(build_stacktrace=I, As, [#k_var{name=Dst0}], _Le, St0) ->
    {Dst,St} = new_ssa_var(Dst0, St0),
    Args = ssa_args(As, St),
    Set = #b_set{op=I,dst=Dst,args=Args},
    {[Set],St};
internal_cg(raise, As, [#k_var{name=Dst0}], _Le, St0) ->
    Args = ssa_args(As, St0),
    {Dst,St} = new_ssa_var(Dst0, St0),
    Resume = #b_set{op=resume,dst=Dst,args=Args},
    case St of
        #cg{catch_label=none} ->
            {[Resume],St};
        #cg{catch_label=Catch} when is_integer(Catch) ->
            Is = [Resume,make_uncond_branch(Catch),#cg_unreachable{}],
            {Is,St}
    end;
internal_cg(raw_raise=I, As, [#k_var{name=Dst0}], _Le, St0) ->
    %% This behaves like a function call.
    {Dst,St} = new_ssa_var(Dst0, St0),
    Args = ssa_args(As, St),
    Set = #b_set{op=I,dst=Dst,args=Args},
    {[Set],St}.

bif_cg(Bif, As0, [#k_var{name=Dst0}], Le, St0) ->
    {Dst,St1} = new_ssa_var(Dst0, St0),
    case {Bif,ssa_args(As0, St0)} of
        {is_record,[Tuple,#b_literal{val=Atom}=Tag,
                    #b_literal{val=Int}=Arity]}
          when is_atom(Atom), is_integer(Int) ->
            bif_is_record_cg(Dst, Tuple, Tag, Arity, St1);
        {_,As} ->
            I = #b_set{anno=line_anno(Le),op={bif,Bif},dst=Dst,args=As},
            case erl_bifs:is_safe(erlang, Bif, length(As)) of
                false ->
                    Fail = bif_fail_label(St1),
                    {Is,St} = make_cond_branch(succeeded, [Dst], Fail, St1),
                    {[I|Is],St};
                true->
                    {[I],St1}
            end
        end.

bif_is_record_cg(Dst, Tuple, TagVal, ArityVal, St0) ->
    {Arity,St1} = new_ssa_var('@ssa_arity', St0),
    {Tag,St2} = new_ssa_var('@ssa_tag', St1),
    {Phi,St3} = new_label(St2),
    {False,St4} = new_label(St3),
    {Is0,St5} = make_cond_branch({bif,is_tuple}, [Tuple], False, St4),
    GetArity = #b_set{op={bif,tuple_size},dst=Arity,args=[Tuple]},
    {Is1,St6} = make_cond_branch({bif,'=:='}, [Arity,ArityVal], False, St5),
    GetTag = #b_set{op=get_tuple_element,dst=Tag,
                    args=[Tuple,#b_literal{val=0}]},
    {Is2,St} = make_cond_branch({bif,'=:='}, [Tag,TagVal], False, St6),
    Is3 = [#cg_break{args=[#b_literal{val=true}],phi=Phi},
           {label,False},
           #cg_break{args=[#b_literal{val=false}],phi=Phi},
           {label,Phi},
           #cg_phi{vars=[Dst]}],
    Is = Is0 ++ [GetArity] ++ Is1 ++ [GetTag] ++ Is2 ++ Is3,
    {Is,St}.

%% recv_loop_cg(TimeOut, ReceiveVar, ReceiveMatch, TimeOutExprs,
%%              [Ret], Le, St) -> {[Ainstr],St}.

recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, St0) ->
    %% Get labels.
    {Rl,St1} = new_label(St0),
    {Tl,St2} = new_label(St1),
    {Bl,St3} = new_label(St2),
    St4 = St3#cg{break=Bl,recv=Rl},
    {Ris,St5} = cg_recv_mesg(Rvar, Rm, Tl, Le, St4),
    {Wis,St6} = cg_recv_wait(Te, Tes, St5),
    {BreakVars,St} = new_ssa_vars(Rs, St6),
    {Ris ++ [{label,Tl}] ++ Wis ++
         [{label,Bl},#cg_phi{vars=BreakVars}],
     St#cg{break=St0#cg.break,recv=St0#cg.recv}}.

%% cg_recv_mesg( ) -> {[Ainstr],St}.

cg_recv_mesg(#k_var{name=R}, Rm, Tl, Le, St0) ->
    {Dst,St1} = new_ssa_var(R, St0),
    {Mis,St2} = match_cg(Rm, none, St1),
    RecvLbl = St1#cg.recv,
    {TestIs,St} = make_cond_branch(succeeded, [Dst], Tl, St2),
    Is = [#b_br{anno=line_anno(Le),bool=#b_literal{val=true},
                succ=RecvLbl,fail=RecvLbl},
          {label,RecvLbl},
          #b_set{op=peek_message,dst=Dst}|TestIs],
    {Is++Mis,St}.

%% cg_recv_wait(Te, Tes, St) -> {[Ainstr],St}.

cg_recv_wait(#k_int{val=0}, Es, St0) ->
    {Tis,St} = cg(Es, St0),
    {[#b_set{op=timeout}|Tis],St};
cg_recv_wait(Te, Es, St0) ->
    {Tis,St1} = cg(Es, St0),
    Args = [ssa_arg(Te, St1)],
    {WaitDst,St2} = new_ssa_var('@ssa_wait', St1),
    {WaitIs,St} = make_cond_branch(succeeded, [WaitDst], St1#cg.recv, St2),
    %% Infinite timeout will be optimized later.
    Is = [#b_set{op=wait_timeout,dst=WaitDst,args=Args}] ++ WaitIs ++
        [#b_set{op=timeout}] ++ Tis,
    {Is,St}.

%% try_cg(TryBlock, [BodyVar], TryBody, [ExcpVar], TryHandler, [Ret], St) ->
%%         {[Ainstr],St}.

try_cg(Ta, Vs, Tb, Evs, Th, Rs, St0) ->
    {B,St1} = new_label(St0),			%Body label
    {H,St2} = new_label(St1),			%Handler label
    {E,St3} = new_label(St2),			%End label
    {Next,St4} = new_label(St3),
    {TryTag,St5} = new_ssa_var('@ssa_catch_tag', St4),
    {SsaVs,St6} = new_ssa_vars(Vs, St5),
    {SsaEvs,St7} = new_ssa_vars(Evs, St6),
    {Ais,St8} = cg(Ta, St7#cg{break=B,catch_label=H}),
    St9 = St8#cg{break=E,catch_label=St7#cg.catch_label},
    {Bis,St10} = cg(Tb, St9),
    {His,St11} = cg(Th, St10),
    {BreakVars,St12} = new_ssa_vars(Rs, St11),
    {CatchedAgg,St} = new_ssa_var('@ssa_agg', St12),
    ExtractVs = extract_vars(SsaEvs, CatchedAgg, 0),
    KillTryTag = #b_set{op=kill_try_tag,args=[TryTag]},
    Args = [#b_literal{val='try'},TryTag],
    Handler = [{label,H},
               #b_set{op=landingpad,dst=CatchedAgg,args=Args}] ++
        ExtractVs ++ [KillTryTag],
    {[#b_set{op=new_try_tag,dst=TryTag,args=[#b_literal{val='try'}]},
      #b_br{bool=TryTag,succ=Next,fail=H},
      {label,Next}] ++ Ais ++
         [{label,B},#cg_phi{vars=SsaVs},KillTryTag] ++ Bis ++
         Handler ++ His ++
         [{label,E},#cg_phi{vars=BreakVars}],
     St#cg{break=St0#cg.break}}.

try_enter_cg(Ta, Vs, Tb, Evs, Th, St0) ->
    {B,St1} = new_label(St0),			%Body label
    {H,St2} = new_label(St1),			%Handler label
    {Next,St3} = new_label(St2),
    {TryTag,St4} = new_ssa_var('@ssa_catch_tag', St3),
    {SsaVs,St5} = new_ssa_vars(Vs, St4),
    {SsaEvs,St6} = new_ssa_vars(Evs, St5),
    {Ais,St7} = cg(Ta, St6#cg{break=B,catch_label=H}),
    St8 = St7#cg{catch_label=St6#cg.catch_label},
    {Bis,St9} = cg(Tb, St8),
    {His,St10} = cg(Th, St9),
    {CatchedAgg,St} = new_ssa_var('@ssa_agg', St10),
    ExtractVs = extract_vars(SsaEvs, CatchedAgg, 0),
    KillTryTag = #b_set{op=kill_try_tag,args=[TryTag]},
    Args = [#b_literal{val='try'},TryTag],
    Handler = [{label,H},
               #b_set{op=landingpad,dst=CatchedAgg,args=Args}] ++
        ExtractVs ++ [KillTryTag],
    {[#b_set{op=new_try_tag,dst=TryTag,args=[#b_literal{val='try'}]},
      #b_br{bool=TryTag,succ=Next,fail=H},
      {label,Next}] ++  Ais ++
         [{label,B},#cg_phi{vars=SsaVs},KillTryTag] ++ Bis ++
         Handler ++ His,
     St#cg{break=St0#cg.break}}.

extract_vars([V|Vs], Agg, N) ->
    I = #b_set{op=extract,dst=V,args=[Agg,#b_literal{val=N}]},
    [I|extract_vars(Vs, Agg, N+1)];
extract_vars([], _, _) -> [].

%% do_catch_cg(CatchBlock, Ret, St) -> {[Ainstr],St}.

do_catch_cg(Block, #k_var{name=R}, St0) ->
    {B,St1} = new_label(St0),
    {Next,St2} = new_label(St1),
    {H,St3} = new_label(St2),
    {CatchReg,St4} = new_ssa_var('@ssa_catch_tag', St3),
    {Dst,St5} = new_ssa_var(R, St4),
    {Succ,St6} = new_label(St5),
    {Cis,St7} = cg(Block, St6#cg{break=Succ,catch_label=H}),
    {CatchedVal,St8} = new_ssa_var('@catched_val', St7),
    {SuccVal,St9} = new_ssa_var('@success_val', St8),
    {CatchedAgg,St10} = new_ssa_var('@ssa_agg', St9),
    {CatchEndVal,St} = new_ssa_var('@catch_end_val', St10),
    Args = [#b_literal{val='catch'},CatchReg],
    {[#b_set{op=new_try_tag,dst=CatchReg,args=[#b_literal{val='catch'}]},
      #b_br{bool=CatchReg,succ=Next,fail=H},
      {label,Next}] ++ Cis ++
         [{label,H},
          #b_set{op=landingpad,dst=CatchedAgg,args=Args},
          #b_set{op=extract,dst=CatchedVal,
                 args=[CatchedAgg,#b_literal{val=0}]},
          #cg_break{args=[CatchedVal],phi=B},
          {label,Succ},
          #cg_phi{vars=[SuccVal]},
          #cg_break{args=[SuccVal],phi=B},
          {label,B},#cg_phi{vars=[CatchEndVal]},
          #b_set{op=catch_end,dst=Dst,args=[CatchReg,CatchEndVal]}],
     St#cg{break=St1#cg.break,catch_label=St1#cg.catch_label}}.

%% put_cg([Var], Constr, Le, Vdb, Bef, St) -> {[Ainstr],St}.
%%  Generate code for constructing terms.

put_cg([#k_var{name=R}], #k_cons{hd=Hd,tl=Tl}, _Le, St0) ->
    Args = ssa_args([Hd,Tl], St0),
    {Dst,St} = new_ssa_var(R, St0),
    PutList = #b_set{op=put_list,dst=Dst,args=Args},
    {[PutList],St};
put_cg([#k_var{name=R}], #k_tuple{es=Es}, _Le, St0) ->
    {Ret,St} = new_ssa_var(R, St0),
    Args = ssa_args(Es, St),
    PutTuple = #b_set{op=put_tuple,dst=Ret,args=Args},
    {[PutTuple],St};
put_cg([#k_var{name=R}], #k_binary{segs=Segs}, Le, St0) ->
    Fail = bif_fail_label(St0),
    {Dst,St1} = new_ssa_var(R, St0),
    cg_binary(Dst, Segs, Fail, Le, St1);
put_cg([#k_var{name=R}], #k_map{op=Op,var=Map,
                                es=[#k_map_pair{key=#k_var{}=K,val=V}]},
       Le, St0) ->
    %% Map: single variable key.
    SrcMap = ssa_arg(Map, St0),
    LineAnno = line_anno(Le),
    List = [ssa_arg(K, St0),ssa_arg(V, St0)],
    {Dst,St1} = new_ssa_var(R, St0),
    {Is,St} = put_cg_map(LineAnno, Op, SrcMap, Dst, List, St1),
    {Is,St};
put_cg([#k_var{name=R}], #k_map{op=Op,var=Map,es=Es}, Le, St0) ->
    %% Map: one or more literal keys.
    [] = [Var || #k_map_pair{key=#k_var{}=Var} <- Es], %Assertion
    SrcMap = ssa_arg(Map, St0),
    LineAnno = line_anno(Le),
    List = flatmap(fun(#k_map_pair{key=K,val=V}) ->
                           [ssa_arg(K, St0),ssa_arg(V, St0)]
                   end, Es),
    {Dst,St1} = new_ssa_var(R, St0),
    {Is,St} = put_cg_map(LineAnno, Op, SrcMap, Dst, List, St1),
    {Is,St};
put_cg([#k_var{name=R}], Con0, _Le, St0) ->
    %% Create an alias for a variable or literal.
    Con = ssa_arg(Con0, St0),
    St = set_ssa_var(R, Con, St0),
    {[],St}.

put_cg_map(LineAnno, Op, SrcMap, Dst, List, St0) ->
    Fail = bif_fail_label(St0),
    Args = [#b_literal{val=Op},SrcMap|List],
    PutMap = #b_set{anno=LineAnno,op=put_map,dst=Dst,args=Args},
    if
        Op =:= assoc ->
            {[PutMap],St0};
        true ->
            {Is,St} = make_cond_branch(succeeded, [Dst], Fail, St0),
            {[PutMap|Is],St}
    end.

%%%
%%% Code generation for constructing binaries.
%%%

cg_binary(Dst, Segs0, Fail, Le, St0) ->
    {PutCode0,SzCalc0,St1} = cg_bin_put(Segs0, Fail, St0),
    LineAnno = line_anno(Le),
    Anno = Le#k.a,
    case PutCode0 of
        [#b_set{op=bs_put,dst=Bool,args=[_,_,Src,#b_literal{val=all}|_]},
         #b_br{bool=Bool},
         {label,_}|_] ->
            #k_bin_seg{unit=Unit0,next=Segs} = Segs0,
            Unit = #b_literal{val=Unit0},
            {PutCode,SzCalc1,St2} = cg_bin_put(Segs, Fail, St1),
            {_,SzVar,SzCode0,St3} = cg_size_calc(1, SzCalc1, Fail, St2),
            SzCode = cg_bin_anno(SzCode0, LineAnno),
            Args = case member(single_use, Anno) of
                       true ->
                           [#b_literal{val=private_append},Src,SzVar,Unit];
                       false ->
                           [#b_literal{val=append},Src,SzVar,Unit]
                   end,
            BsInit = #b_set{anno=LineAnno,op=bs_init,dst=Dst,args=Args},
            {TestIs,St} = make_cond_branch(succeeded, [Dst], Fail, St3),
            {SzCode ++ [BsInit] ++ TestIs ++ PutCode,St};
        [#b_set{op=bs_put}|_] ->
            {Unit,SzVar,SzCode0,St2} = cg_size_calc(8, SzCalc0, Fail, St1),
            SzCode = cg_bin_anno(SzCode0, LineAnno),
            Args = [#b_literal{val=new},SzVar,Unit],
            BsInit = #b_set{anno=LineAnno,op=bs_init,dst=Dst,args=Args},
            {TestIs,St} = make_cond_branch(succeeded, [Dst], Fail, St2),
            {SzCode ++ [BsInit] ++ TestIs ++ PutCode0,St}
    end.

cg_bin_anno([Set|Sets], Anno) ->
    [Set#b_set{anno=Anno}|Sets];
cg_bin_anno([], _) -> [].

%% cg_size_calc(PreferredUnit, SzCalc, Fail, St0) ->
%%         {ActualUnit,SizeVariable,SizeCode,St}.
%%  Generate size calculation code.

cg_size_calc(Unit, error, _Fail, St) ->
    {#b_literal{val=Unit},#b_literal{val=badarg},[],St};
cg_size_calc(8, [{1,_}|_]=SzCalc, Fail, St) ->
    cg_size_calc(1, SzCalc, Fail, St);
cg_size_calc(8, SzCalc, Fail, St0) ->
    {Var,Pre,St} = cg_size_calc_1(SzCalc, Fail, St0),
    {#b_literal{val=8},Var,Pre,St};
cg_size_calc(1, SzCalc0, Fail, St0) ->
    SzCalc = map(fun({8,#b_literal{val=Size}}) ->
                         {1,#b_literal{val=8*Size}};
                    ({8,{{bif,byte_size},Src}}) ->
                         {1,{{bif,bit_size},Src}};
                    ({8,{_,_}=UtfCalc}) ->
                         {1,{'*',#b_literal{val=8},UtfCalc}};
                    ({_,_}=Pair) ->
                         Pair
                 end, SzCalc0),
    {Var,Pre,St} = cg_size_calc_1(SzCalc, Fail, St0),
    {#b_literal{val=1},Var,Pre,St}.

cg_size_calc_1(SzCalc, Fail, St0) ->
    cg_size_calc_2(SzCalc, #b_literal{val=0}, Fail, St0).

cg_size_calc_2([{_,{'*',Unit,{_,_}=Bif}}|T], Sum0, Fail, St0) ->
    {Sum1,Pre0,St1} = cg_size_calc_2(T, Sum0, Fail, St0),
    {BifDst,Pre1,St2} = cg_size_bif(Bif, Fail, St1),
    {Sum,Pre2,St} = cg_size_add(Sum1, BifDst, Unit, Fail, St2),
    {Sum,Pre0++Pre1++Pre2,St};
cg_size_calc_2([{_,#b_literal{}=Sz}|T], Sum0, Fail, St0) ->
    {Sum1,Pre0,St1} = cg_size_calc_2(T, Sum0, Fail, St0),
    {Sum,Pre,St} = cg_size_add(Sum1, Sz, #b_literal{val=1}, Fail, St1),
    {Sum,Pre0++Pre,St};
cg_size_calc_2([{_,#b_var{}=Sz}|T], Sum0, Fail, St0) ->
    {Sum1,Pre0,St1} = cg_size_calc_2(T, Sum0, Fail, St0),
    {Sum,Pre,St} = cg_size_add(Sum1, Sz, #b_literal{val=1}, Fail, St1),
    {Sum,Pre0++Pre,St};
cg_size_calc_2([{_,{_,_}=Bif}|T], Sum0, Fail, St0) ->
    {Sum1,Pre0,St1} = cg_size_calc_2(T, Sum0, Fail, St0),
    {BifDst,Pre1,St2} = cg_size_bif(Bif, Fail, St1),
    {Sum,Pre2,St} = cg_size_add(Sum1, BifDst, #b_literal{val=1}, Fail, St2),
    {Sum,Pre0++Pre1++Pre2,St};
cg_size_calc_2([], Sum, _Fail, St) ->
    {Sum,[],St}.

cg_size_bif(#b_var{}=Var, _Fail, St) ->
    {Var,[],St};
cg_size_bif({Name,Src}, Fail, St0) ->
    {Dst,St1} = new_ssa_var('@ssa_bif', St0),
    Bif = #b_set{op=Name,dst=Dst,args=[Src]},
    {TestIs,St} = make_cond_branch(succeeded, [Dst], Fail, St1),
    {Dst,[Bif|TestIs],St}.

cg_size_add(#b_literal{val=0}, Val, #b_literal{val=1}, _Fail, St) ->
    {Val,[],St};
cg_size_add(A, B, Unit, Fail, St0) ->
    {Dst,St1} = new_ssa_var('@ssa_sum', St0),
    {TestIs,St} = make_cond_branch(succeeded, [Dst], Fail, St1),
    BsAdd = #b_set{op=bs_add,dst=Dst,args=[A,B,Unit]},
    {Dst,[BsAdd|TestIs],St}.

cg_bin_put(Seg, Fail, St) ->
    cg_bin_put_1(Seg, Fail, [], [], St).

cg_bin_put_1(#k_bin_seg{size=Size0,unit=U,type=T,flags=Fs,seg=Src0,next=Next},
           Fail, Acc, SzCalcAcc, St0) ->
    [Src,Size] = ssa_args([Src0,Size0], St0),
    NeedSize = bs_need_size(T),
    TypeArg = #b_literal{val=T},
    Flags = #b_literal{val=Fs},
    Unit = #b_literal{val=U},
    Args = case NeedSize of
               true -> [TypeArg,Flags,Src,Size,Unit];
               false -> [TypeArg,Flags,Src]
           end,
    {Is,St} = make_cond_branch(bs_put, Args, Fail, St0),
    SzCalc = bin_size_calc(T, Src, Size, U),
    cg_bin_put_1(Next, Fail, reverse(Is, Acc), [SzCalc|SzCalcAcc], St);
cg_bin_put_1(#k_bin_end{}, _, Acc, SzCalcAcc, St) ->
    SzCalc = fold_size_calc(SzCalcAcc, 0, []),
    {reverse(Acc),SzCalc,St}.

bs_need_size(utf8) -> false;
bs_need_size(utf16) -> false;
bs_need_size(utf32) -> false;
bs_need_size(_) -> true.

bin_size_calc(utf8, Src, _Size, _Unit) ->
    {8,{bs_utf8_size,Src}};
bin_size_calc(utf16, Src, _Size, _Unit) ->
    {8,{bs_utf16_size,Src}};
bin_size_calc(utf32, _Src, _Size, _Unit) ->
    {8,#b_literal{val=4}};
bin_size_calc(binary, Src, #b_literal{val=all}, Unit) ->
    case Unit rem 8 of
        0 -> {8,{{bif,byte_size},Src}};
        _ -> {1,{{bif,bit_size},Src}}
    end;
bin_size_calc(_Type, _Src, Size, Unit) ->
    {Unit,Size}.

fold_size_calc([{Unit,#b_literal{val=Size}}|T], Bits, Acc) ->
    if
        is_integer(Size) ->
            fold_size_calc(T, Bits + Unit*Size, Acc);
        true ->
            error
    end;
fold_size_calc([{U,#b_var{}}=H|T], Bits, Acc) when U =:= 1; U =:= 8 ->
    fold_size_calc(T, Bits, [H|Acc]);
fold_size_calc([{U,#b_var{}=Var}|T], Bits, Acc) ->
    fold_size_calc(T, Bits, [{1,{'*',#b_literal{val=U},Var}}|Acc]);
fold_size_calc([{_,_}=H|T], Bits, Acc) ->
    fold_size_calc(T, Bits, [H|Acc]);
fold_size_calc([], Bits, Acc) ->
    Bytes = Bits div 8,
    RemBits = Bits rem 8,
    Sizes = sort([{1,#b_literal{val=RemBits}},{8,#b_literal{val=Bytes}}|Acc]),
    [Pair || {_,Sz}=Pair <- Sizes, Sz =/= #b_literal{val=0}].

%%%
%%% Utilities for creating the SSA types.
%%%

ssa_args(As, St) ->
    [ssa_arg(A, St) || A <- As].

ssa_arg(#k_var{name=V}, #cg{vars=Vars}) -> maps:get(V, Vars);
ssa_arg(#k_literal{val=V}, _) -> #b_literal{val=V};
ssa_arg(#k_atom{val=V}, _) -> #b_literal{val=V};
ssa_arg(#k_float{val=V}, _) -> #b_literal{val=V};
ssa_arg(#k_int{val=V}, _) -> #b_literal{val=V};
ssa_arg(#k_nil{}, _) -> #b_literal{val=[]}.

new_ssa_vars(Vs, St) ->
    mapfoldl(fun(#k_var{name=V}, S) ->
                     new_ssa_var(V, S)
             end, St, Vs).

new_ssa_var(VarBase, #cg{lcount=Uniq,vars=Vars}=St0)
  when is_atom(VarBase); is_integer(VarBase) ->
    case Vars of
        #{VarBase:=_} ->
            Var = #b_var{name={VarBase,Uniq}},
            St = St0#cg{lcount=Uniq+1,vars=Vars#{VarBase=>Var}},
            {Var,St};
        #{} ->
            Var = #b_var{name=VarBase},
            St = St0#cg{vars=Vars#{VarBase=>Var}},
            {Var,St}
    end.

set_ssa_var(VarBase, Val, #cg{vars=Vars}=St)
  when is_atom(VarBase); is_integer(VarBase) ->
    St#cg{vars=Vars#{VarBase=>Val}}.

%% new_label(St) -> {L,St}.

new_label(#cg{lcount=Next}=St) ->
    {Next,St#cg{lcount=Next+1}}.

%% line_anno(Le) -> #{} | #{location:={File,Line}}.
%%  Create a location annotation, containing information about the
%%  current filename and line number.  The annotation should be
%%  included in any operation that could cause an exception.

line_anno(#k{a=Anno}) ->
    line_anno_1(Anno).

line_anno_1([Line,{file,Name}]) when is_integer(Line) ->
    line_anno_2(Name, Line);
line_anno_1([_|_]=A) ->
    {Name,Line} = find_loc(A, no_file, 0),
    line_anno_2(Name, Line);
line_anno_1([]) ->
    #{}.

line_anno_2(no_file, _) ->
    #{};
line_anno_2(_, 0) ->
    %% Missing line number or line number 0.
    #{};
line_anno_2(Name, Line) ->
    #{location=>{Name,Line}}.

find_loc([Line|T], File, _) when is_integer(Line) ->
    find_loc(T, File, Line);
find_loc([{file,File}|T], _, Line) ->
    find_loc(T, File, Line);
find_loc([_|T], File, Line) ->
    find_loc(T, File, Line);
find_loc([], File, Line) -> {File,Line}.

flatmapfoldl(F, Accu0, [Hd|Tail]) ->
    {R,Accu1} = F(Hd, Accu0),
    {Rs,Accu2} = flatmapfoldl(F, Accu1, Tail),
    {R++Rs,Accu2};
flatmapfoldl(_, Accu, []) -> {[],Accu}.

%%%
%%% Finalize the code.
%%%

finalize(Asm0, St0) ->
    Asm1 = fix_phis(Asm0),
    {Asm,St} = fix_sets(Asm1, [], St0),
    {build_map(Asm),St}.

fix_phis(Is) ->
    fix_phis_1(Is, none, #{}).

fix_phis_1([{label,L},#cg_phi{vars=[]}=Phi|Is0], _Lbl, Map0) ->
    case maps:is_key(L, Map0) of
        false ->
            %% No #cg_break{} references this label. Nothing else can
            %% reference it, so it can be safely be removed.
            {Is,Map} = drop_upto_label(Is0, Map0),
            fix_phis_1(Is, none, Map);
        true ->
            %% There is a break referencing this label; probably caused
            %% by a try/catch whose return value is ignored.
            [{label,L}|fix_phis_1([Phi|Is0], L, Map0)]
    end;
fix_phis_1([{label,L}=I|Is], _Lbl, Map) ->
    [I|fix_phis_1(Is, L, Map)];
fix_phis_1([#cg_unreachable{}|Is0], _Lbl, Map0) ->
    {Is,Map} = drop_upto_label(Is0, Map0),
    fix_phis_1(Is, none, Map);
fix_phis_1([#cg_break{args=Args,phi=Target}|Is], Lbl, Map) when is_integer(Lbl) ->
    Pairs1 = case Map of
                 #{Target:=Pairs0} -> Pairs0;
                 #{} -> []
             end,
    Pairs = [[{Arg,Lbl} || Arg <- Args]|Pairs1],
    I = make_uncond_branch(Target),
    [I|fix_phis_1(Is, none, Map#{Target=>Pairs})];
fix_phis_1([#cg_phi{vars=Vars}|Is0], Lbl, Map0) ->
    Pairs = maps:get(Lbl, Map0),
    Map1 = maps:remove(Lbl, Map0),
    case gen_phis(Vars, Pairs) of
        [#b_set{op=phi,args=[]}] ->
            {Is,Map} = drop_upto_label(Is0, Map1),
            Ret = #b_ret{arg=#b_literal{val=unreachable}},
            [Ret|fix_phis_1(Is, none, Map)];
        Phis ->
            Phis ++ fix_phis_1(Is0, Lbl, Map1)
    end;
fix_phis_1([I|Is], Lbl, Map) ->
    [I|fix_phis_1(Is, Lbl, Map)];
fix_phis_1([], _, Map) ->
    [] = maps:to_list(Map),                     %Assertion.
    [].

gen_phis([V|Vs], Preds0) ->
    {Pairs,Preds} = collect_preds(Preds0, [], []),
    [#b_set{op=phi,dst=V,args=Pairs}|gen_phis(Vs, Preds)];
gen_phis([], _) -> [].

collect_preds([[First|Rest]|T], ColAcc, RestAcc) ->
    collect_preds(T, [First|ColAcc], [Rest|RestAcc]);
collect_preds([], ColAcc, RestAcc) ->
    {keysort(2, ColAcc),RestAcc}.

fix_sets([#b_set{dst=none}=Set|Is], Acc, St0) ->
    {Dst,St} = new_ssa_var('@ssa_ignored', St0),
    I = Set#b_set{dst=Dst},
    fix_sets(Is, [I|Acc], St);
fix_sets([I|Is], Acc, St) ->
    fix_sets(Is, [I|Acc], St);
fix_sets([], Acc, St) ->
    {reverse(Acc),St}.

build_map(Is) ->
    Blocks = build_graph_1(Is, [], []),
    maps:from_list(Blocks).

build_graph_1([{label,L}|Is], Lbls, []) ->
    build_graph_1(Is, [L|Lbls], []);
build_graph_1([{label,L}|Is], Lbls, [_|_]=BlockAcc) ->
    make_blocks(Lbls, BlockAcc) ++ build_graph_1(Is, [L], []);
build_graph_1([I|Is], Lbls, BlockAcc) ->
    build_graph_1(Is, Lbls, [I|BlockAcc]);
build_graph_1([], Lbls, BlockAcc) ->
    make_blocks(Lbls, BlockAcc).

make_blocks(Lbls, [Last|Is0]) ->
    Is = reverse(Is0),
    Block = #b_blk{is=Is,last=Last},
    [{L,Block} || L <- Lbls].

drop_upto_label([{label,_}|_]=Is, Map) ->
    {Is,Map};
drop_upto_label([#cg_break{phi=Target}|Is], Map) ->
    Pairs = case Map of
                #{Target:=Pairs0} -> Pairs0;
                #{} -> []
            end,
    drop_upto_label(Is, Map#{Target=>Pairs});
drop_upto_label([_|Is], Map) ->
    drop_upto_label(Is, Map).

k_get_anno(Thing) -> element(2, Thing).