%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose: Convert the Kernel Erlang format to the SSA format.
-module(beam_kernel_to_ssa).
%% The main interface.
-export([module/2]).
-import(lists, [append/1,duplicate/2,flatmap/2,foldl/3,
keysort/2,mapfoldl/3,map/2,member/2,
reverse/1,reverse/2,sort/1]).
-include("v3_kernel.hrl").
-include("beam_ssa.hrl").
-type label() :: beam_ssa:label().
%% Main codegen structure.
-record(cg, {lcount=1 :: label(), %Label counter
bfail=1 :: label(),
catch_label=none :: 'none' | label(),
vars=#{} :: map(), %Defined variables.
break=0 :: label(), %Break label
recv=0 :: label(), %Receive label
ultimate_failure=0 :: label() %Label for ultimate match failure.
}).
%% Internal records.
-record(cg_break, {args :: [beam_ssa:value()],
phi :: label()
}).
-record(cg_phi, {vars :: [beam_ssa:b_var()]
}).
-record(cg_unreachable, {}).
-spec module(#k_mdef{}, [compile:option()]) -> {'ok',#b_module{}}.
module(#k_mdef{name=Mod,exports=Es,attributes=Attr,body=Forms}, _Opts) ->
Body = functions(Forms, Mod),
Module = #b_module{name=Mod,exports=Es,attributes=Attr,body=Body},
{ok,Module}.
functions(Forms, Mod) ->
[function(F, Mod) || F <- Forms].
function(#k_fdef{anno=Anno0,func=Name,arity=Arity,
vars=As0,body=Kb}, Mod) ->
try
#k_match{} = Kb, %Assertion.
%% Generate the SSA form immediate format.
St0 = #cg{},
{As,St1} = new_ssa_vars(As0, St0),
{Asm,St} = cg_fun(Kb, St1),
Anno1 = line_anno(Anno0),
Anno = Anno1#{func_info=>{Mod,Name,Arity}},
#b_function{anno=Anno,args=As,bs=Asm,cnt=St#cg.lcount}
catch
Class:Error:Stack ->
io:fwrite("Function: ~w/~w\n", [Name,Arity]),
erlang:raise(Class, Error, Stack)
end.
%% cg_fun([Lkexpr], [HeadVar], State) -> {[Ainstr],State}
cg_fun(Ke, St0) ->
{UltimateFail,FailIs,St1} = make_failure(badarg, St0),
St2 = St1#cg{bfail=UltimateFail,ultimate_failure=UltimateFail},
{B,St} = cg(Ke, St2),
Asm = [{label,0}|B++FailIs],
finalize(Asm, St).
make_failure(Reason, St0) ->
{Lbl,St1} = new_label(St0),
{Dst,St} = new_ssa_var('@ssa_ret', St1),
Is = [{label,Lbl},
#b_set{op=call,dst=Dst,
args=[#b_remote{mod=#b_literal{val=erlang},
name=#b_literal{val=error},
arity=1},
#b_literal{val=Reason}]},
#b_ret{arg=Dst}],
{Lbl,Is,St}.
%% cg(Lkexpr, State) -> {[Ainstr],State}.
%% Generate code for a kexpr.
cg(#k_match{body=M,ret=Rs}, St) ->
do_match_cg(M, Rs, St);
cg(#k_guard_match{body=M,ret=Rs}, St) ->
do_match_cg(M, Rs, St);
cg(#k_seq{arg=Arg,body=Body}, St0) ->
{ArgIs,St1} = cg(Arg, St0),
{BodyIs,St} = cg(Body, St1),
{ArgIs++BodyIs,St};
cg(#k_call{anno=Le,op=Func,args=As,ret=Rs}, St) ->
call_cg(Func, As, Rs, Le, St);
cg(#k_enter{anno=Le,op=Func,args=As}, St) ->
enter_cg(Func, As, Le, St);
cg(#k_bif{anno=Le}=Bif, St) ->
bif_cg(Bif, Le, St);
cg(#k_try{arg=Ta,vars=Vs,body=Tb,evars=Evs,handler=Th,ret=Rs}, St) ->
try_cg(Ta, Vs, Tb, Evs, Th, Rs, St);
cg(#k_try_enter{arg=Ta,vars=Vs,body=Tb,evars=Evs,handler=Th}, St) ->
try_enter_cg(Ta, Vs, Tb, Evs, Th, St);
cg(#k_catch{body=Cb,ret=[R]}, St) ->
do_catch_cg(Cb, R, St);
cg(#k_receive{anno=Le,timeout=Te,var=Rvar,body=Rm,action=Tes,ret=Rs}, St) ->
recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, St);
cg(#k_receive_next{}, #cg{recv=Recv}=St) ->
Is = [#b_set{op=recv_next},make_uncond_branch(Recv)],
{Is,St};
cg(#k_receive_accept{}, St) ->
Remove = #b_set{op=remove_message},
{[Remove],St};
cg(#k_put{anno=Le,arg=Con,ret=Var}, St) ->
put_cg(Var, Con, Le, St);
cg(#k_return{args=[Ret0]}, St) ->
Ret = ssa_arg(Ret0, St),
{[#b_ret{arg=Ret}],St};
cg(#k_break{args=Bs}, #cg{break=Br}=St) ->
Args = ssa_args(Bs, St),
{[#cg_break{args=Args,phi=Br}],St};
cg(#k_guard_break{args=Bs}, St) ->
cg(#k_break{args=Bs}, St).
%% match_cg(Matc, [Ret], State) -> {[Ainstr],State}.
%% Generate code for a match.
do_match_cg(M, Rs, St0) ->
{B,St1} = new_label(St0),
{Mis,St2} = match_cg(M, St1#cg.bfail, St1#cg{break=B}),
{BreakVars,St} = new_ssa_vars(Rs, St2),
{Mis ++ [{label,B},#cg_phi{vars=BreakVars}],
St#cg{bfail=St0#cg.bfail,break=St1#cg.break}}.
%% match_cg(Match, Fail, State) -> {[Ainstr],State}.
%% Generate code for a match tree.
match_cg(#k_alt{first=F,then=S}, Fail, St0) ->
{Tf,St1} = new_label(St0),
{Fis,St2} = match_cg(F, Tf, St1),
{Sis,St3} = match_cg(S, Fail, St2),
{Fis ++ [{label,Tf}] ++ Sis,St3};
match_cg(#k_select{var=#k_var{}=V,types=Scs}, Fail, St) ->
match_fmf(fun (S, F, Sta) ->
select_cg(S, V, F, Fail, Sta)
end, Fail, St, Scs);
match_cg(#k_guard{clauses=Gcs}, Fail, St) ->
match_fmf(fun (G, F, Sta) ->
guard_clause_cg(G, F, Sta)
end, Fail, St, Gcs);
match_cg(Ke, _Fail, St0) ->
cg(Ke, St0).
%% select_cg(Sclause, V, TypeFail, ValueFail, State) -> {Is,State}.
%% Selecting type and value needs two failure labels, TypeFail is the
%% label to jump to of the next type test when this type fails, and
%% ValueFail is the label when this type is correct but the value is
%% wrong. These are different as in the second case there is no need
%% to try the next type, it will always fail.
select_cg(#k_type_clause{type=k_binary,values=[S]}, Var, Tf, Vf, St) ->
select_binary(S, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=k_bin_seg,values=Vs}, Var, Tf, _Vf, St) ->
select_bin_segs(Vs, Var, Tf, St);
select_cg(#k_type_clause{type=k_bin_int,values=Vs}, Var, Tf, _Vf, St) ->
select_bin_segs(Vs, Var, Tf, St);
select_cg(#k_type_clause{type=k_bin_end,values=[S]}, Var, Tf, _Vf, St) ->
select_bin_end(S, Var, Tf, St);
select_cg(#k_type_clause{type=k_map,values=Vs}, Var, Tf, Vf, St) ->
select_map(Vs, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=k_cons,values=[S]}, Var, Tf, Vf, St) ->
select_cons(S, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=k_nil,values=[S]}, Var, Tf, Vf, St) ->
select_nil(S, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=k_literal,values=Vs}, Var, Tf, Vf, St) ->
select_literal(Vs, Var, Tf, Vf, St);
select_cg(#k_type_clause{type=Type,values=Scs}, Var, Tf, Vf, St0) ->
{Vis,St1} =
mapfoldl(fun (S, Sta) ->
{Val,Is,Stb} = select_val(S, Var, Vf, Sta),
{{Is,[Val]},Stb}
end, St0, Scs),
OptVls = combine(lists:sort(combine(Vis))),
{Vls,Sis,St2} = select_labels(OptVls, St1, [], []),
Arg = ssa_arg(Var, St2),
{Is,St} = select_val_cg(Type, Arg, Vls, Tf, Vf, Sis, St2),
{Is,St}.
select_val_cg(k_tuple, Tuple, Vls, Tf, Vf, Sis, St0) ->
{Is0,St1} = make_cond_branch({bif,is_tuple}, [Tuple], Tf, St0),
{Arity,St2} = new_ssa_var('@ssa_arity', St1),
GetArity = #b_set{op={bif,tuple_size},dst=Arity,args=[Tuple]},
{Is,St} = select_val_cg(k_int, Arity, Vls, Vf, Vf, Sis, St2),
{Is0++[GetArity]++Is,St};
select_val_cg(Type, R, Vls, Tf, Vf, Sis, St0) ->
{TypeIs,St1} = if
Tf =:= Vf ->
%% The type and value failure labels are the same;
%% we don't need a type test.
{[],St0};
true ->
%% Different labels for type failure and
%% label failure; we need a type test.
Test = select_type_test(Type),
make_cond_branch(Test, [R], Tf, St0)
end,
case Vls of
[{Val,Succ}] ->
{Is,St} = make_cond({bif,'=:='}, [R,Val], Vf, Succ, St1),
{TypeIs++Is++Sis,St};
[_|_] ->
{TypeIs++[#b_switch{arg=R,fail=Vf,list=Vls}|Sis],St1}
end.
select_type_test(k_int) -> {bif,is_integer};
select_type_test(k_atom) -> {bif,is_atom};
select_type_test(k_float) -> {bif,is_float}.
combine([{Is,Vs1},{Is,Vs2}|Vis]) -> combine([{Is,Vs1 ++ Vs2}|Vis]);
combine([V|Vis]) -> [V|combine(Vis)];
combine([]) -> [].
select_labels([{Is,Vs}|Vis], St0, Vls, Sis) ->
{Lbl,St1} = new_label(St0),
select_labels(Vis, St1, add_vls(Vs, Lbl, Vls), [[{label,Lbl}|Is]|Sis]);
select_labels([], St, Vls, Sis) ->
{Vls,append(Sis),St}.
add_vls([V|Vs], Lbl, Acc) ->
add_vls(Vs, Lbl, [{#b_literal{val=V},Lbl}|Acc]);
add_vls([], _, Acc) -> Acc.
select_literal(S, V, Tf, Vf, St) ->
Src = ssa_arg(V, St),
F = fun(ValClause, Fail, St0) ->
{Val,ValIs,St1} = select_val(ValClause, V, Vf, St0),
Args = [Src,#b_literal{val=Val}],
{Is,St2} = make_cond_branch({bif,'=:='}, Args, Fail, St1),
{Is++ValIs,St2}
end,
match_fmf(F, Tf, St, S).
select_cons(#k_val_clause{val=#k_cons{hd=Hd,tl=Tl},body=B},
V, Tf, Vf, St0) ->
Es = [Hd,Tl],
{Eis,St1} = select_extract_cons(V, Es, St0),
{Bis,St2} = match_cg(B, Vf, St1),
Src = ssa_arg(V, St2),
{Is,St} = make_cond_branch(is_nonempty_list, [Src], Tf, St2),
{Is ++ Eis ++ Bis,St}.
select_nil(#k_val_clause{val=#k_nil{},body=B}, V, Tf, Vf, St0) ->
{Bis,St1} = match_cg(B, Vf, St0),
Src = ssa_arg(V, St1),
{Is,St} = make_cond_branch({bif,'=:='}, [Src,#b_literal{val=[]}], Tf, St1),
{Is ++ Bis,St}.
select_binary(#k_val_clause{val=#k_binary{segs=#k_var{name=Ctx0}},body=B},
#k_var{}=Src, Tf, Vf, St0) ->
{Ctx,St1} = new_ssa_var(Ctx0, St0),
{Bis0,St2} = match_cg(B, Vf, St1),
{TestIs,St} = make_cond_branch(succeeded, [Ctx], Tf, St2),
Bis1 = [#b_set{op=bs_start_match,dst=Ctx,
args=[ssa_arg(Src, St)]}] ++ TestIs ++ Bis0,
Bis = finish_bs_matching(Bis1),
{Bis,St}.
finish_bs_matching([#b_set{op=bs_match,
args=[#b_literal{val=string},Ctx,#b_literal{val=BinList}]}=Set|Is])
when is_list(BinList) ->
I = Set#b_set{args=[#b_literal{val=string},Ctx,
#b_literal{val=list_to_bitstring(BinList)}]},
finish_bs_matching([I|Is]);
finish_bs_matching([I|Is]) ->
[I|finish_bs_matching(Is)];
finish_bs_matching([]) -> [].
make_cond(Cond, Args, Fail, Succ, St0) ->
{Bool,St} = new_ssa_var('@ssa_bool', St0),
Bif = #b_set{op=Cond,dst=Bool,args=Args},
Br = #b_br{bool=Bool,succ=Succ,fail=Fail},
{[Bif,Br],St}.
make_cond_branch(Cond, Args, Fail, St0) ->
{Bool,St1} = new_ssa_var('@ssa_bool', St0),
{Succ,St} = new_label(St1),
Bif = #b_set{op=Cond,dst=Bool,args=Args},
Br = #b_br{bool=Bool,succ=Succ,fail=Fail},
{[Bif,Br,{label,Succ}],St}.
make_uncond_branch(Fail) ->
#b_br{bool=#b_literal{val=true},succ=Fail,fail=Fail}.
%% Instructions for selection of binary segments.
select_bin_segs(Scs, Ivar, Tf, St) ->
match_fmf(fun(S, Fail, Sta) ->
select_bin_seg(S, Ivar, Fail, Sta)
end, Tf, St, Scs).
select_bin_seg(#k_val_clause{val=#k_bin_seg{size=Size,unit=U,type=T,
seg=Seg,flags=Fs,next=Next},
body=B,anno=Anno},
#k_var{}=Src, Fail, St0) ->
LineAnno = line_anno(Anno),
Ctx = get_context(Src, St0),
{Mis,St1} = select_extract_bin(Next, Size, U, T, Fs, Fail,
Ctx, LineAnno, St0),
{Extracted,St2} = new_ssa_var(Seg#k_var.name, St1),
{Bis,St} = match_cg(B, Fail, St2),
BsGet = #b_set{op=bs_extract,dst=Extracted,args=[ssa_arg(Next, St)]},
Is = Mis ++ [BsGet] ++ Bis,
{Is,St};
select_bin_seg(#k_val_clause{val=#k_bin_int{size=Sz,unit=U,flags=Fs,
val=Val,next=Next},
body=B},
#k_var{}=Src, Fail, St0) ->
Ctx = get_context(Src, St0),
{Mis,St1} = select_extract_int(Next, Val, Sz, U, Fs, Fail,
Ctx, St0),
{Bis,St} = match_cg(B, Fail, St1),
Is = case Mis ++ Bis of
[#b_set{op=bs_match,args=[#b_literal{val=string},OtherCtx1,Bin1]},
#b_set{op=succeeded,dst=Bool1},
#b_br{bool=Bool1,succ=Succ,fail=Fail},
{label,Succ},
#b_set{op=bs_match,dst=Dst,args=[#b_literal{val=string},_OtherCtx2,Bin2]}|
[#b_set{op=succeeded,dst=Bool2},
#b_br{bool=Bool2,fail=Fail}|_]=Is0] ->
%% We used to do this optimization later, but it
%% turns out that in huge functions with many
%% string matching instructions, it's a huge win
%% to do the combination now. To avoid copying the
%% binary data again and again, we'll combine bitstrings
%% in a list and convert all of it to a bitstring later.
{#b_literal{val=B1},#b_literal{val=B2}} = {Bin1,Bin2},
Bin = #b_literal{val=[B1,B2]},
Set = #b_set{op=bs_match,dst=Dst,args=[#b_literal{val=string},OtherCtx1,Bin]},
[Set|Is0];
Is0 ->
Is0
end,
{Is,St}.
get_context(#k_var{}=Var, St) ->
ssa_arg(Var, St).
select_bin_end(#k_val_clause{val=#k_bin_end{},body=B}, Src, Tf, St0) ->
Ctx = get_context(Src, St0),
{Bis,St1} = match_cg(B, Tf, St0),
{TestIs,St} = make_cond_branch(bs_test_tail, [Ctx,#b_literal{val=0}], Tf, St1),
Is = TestIs++Bis,
{Is,St}.
select_extract_bin(#k_var{name=Hd}, Size0, Unit, Type, Flags, Vf,
Ctx, Anno, St0) ->
{Dst,St1} = new_ssa_var(Hd, St0),
Size = ssa_arg(Size0, St0),
build_bs_instr(Anno, Type, Vf, Ctx, Size, Unit, Flags, Dst, St1).
select_extract_int(#k_var{name=Tl}, 0, #k_int{val=0}, _U, _Fs, _Vf,
Ctx, St0) ->
St = set_ssa_var(Tl, Ctx, St0),
{[],St};
select_extract_int(#k_var{name=Tl}, Val, #k_int{val=Sz}, U, Fs, Vf,
Ctx, St0) ->
{Dst,St1} = new_ssa_var(Tl, St0),
Bits = U*Sz,
Bin = case member(big, Fs) of
true ->
<<Val:Bits>>;
false ->
true = member(little, Fs), %Assertion.
<<Val:Bits/little>>
end,
Bits = bit_size(Bin), %Assertion.
{TestIs,St} = make_cond_branch(succeeded, [Dst], Vf, St1),
Set = #b_set{op=bs_match,dst=Dst,
args=[#b_literal{val=string},Ctx,#b_literal{val=Bin}]},
{[Set|TestIs],St}.
build_bs_instr(Anno, Type, Fail, Ctx, Size, Unit0, Flags0, Dst, St0) ->
Unit = #b_literal{val=Unit0},
Flags = #b_literal{val=Flags0},
NeedSize = bs_need_size(Type),
TypeArg = #b_literal{val=Type},
Get = case NeedSize of
true ->
#b_set{anno=Anno,op=bs_match,dst=Dst,
args=[TypeArg,Ctx,Flags,Size,Unit]};
false ->
#b_set{anno=Anno,op=bs_match,dst=Dst,
args=[TypeArg,Ctx,Flags]}
end,
{Is,St} = make_cond_branch(succeeded, [Dst], Fail, St0),
{[Get|Is],St}.
select_val(#k_val_clause{val=#k_tuple{es=Es},body=B}, V, Vf, St0) ->
#k{us=Used} = k_get_anno(B),
{Eis,St1} = select_extract_tuple(V, Es, Used, St0),
{Bis,St2} = match_cg(B, Vf, St1),
{length(Es),Eis ++ Bis,St2};
select_val(#k_val_clause{val=Val0,body=B}, _V, Vf, St0) ->
Val = case Val0 of
#k_atom{val=Lit} -> Lit;
#k_float{val=Lit} -> Lit;
#k_int{val=Lit} -> Lit;
#k_literal{val=Lit} -> Lit
end,
{Bis,St1} = match_cg(B, Vf, St0),
{Val,Bis,St1}.
%% select_extract_tuple(Src, [V], State) -> {[E],State}.
%% Extract tuple elements, but only if they are actually used.
%%
%% Not extracting tuple elements that are not used is an
%% optimization for compile time and memory use during compilation.
%% It is probably worthwhile because it is common to extract only a
%% few elements from a huge record.
select_extract_tuple(Src, Vs, Used, St0) ->
Tuple = ssa_arg(Src, St0),
F = fun (#k_var{name=V}, {Elem,S0}) ->
case member(V, Used) of
true ->
Args = [Tuple,#b_literal{val=Elem}],
{Dst,S} = new_ssa_var(V, S0),
Get = #b_set{op=get_tuple_element,dst=Dst,args=Args},
{[Get],{Elem+1,S}};
false ->
{[],{Elem+1,S0}}
end
end,
{Es,{_,St}} = flatmapfoldl(F, {0,St0}, Vs),
{Es,St}.
select_map(Scs, V, Tf, Vf, St0) ->
MapSrc = ssa_arg(V, St0),
{Is,St1} =
match_fmf(fun(#k_val_clause{val=#k_map{op=exact,es=Es},
body=B}, Fail, St1) ->
select_map_val(V, Es, B, Fail, St1)
end, Vf, St0, Scs),
{TestIs,St} = make_cond_branch({bif,is_map}, [MapSrc], Tf, St1),
{TestIs++Is,St}.
select_map_val(V, Es, B, Fail, St0) ->
{Eis,St1} = select_extract_map(Es, V, Fail, St0),
{Bis,St2} = match_cg(B, Fail, St1),
{Eis++Bis,St2}.
select_extract_map([P|Ps], Src, Fail, St0) ->
MapSrc = ssa_arg(Src, St0),
#k_map_pair{key=Key0,val=#k_var{name=Dst0}} = P,
Key = ssa_arg(Key0, St0),
{Dst,St1} = new_ssa_var(Dst0, St0),
Set = #b_set{op=get_map_element,dst=Dst,args=[MapSrc,Key]},
{TestIs,St2} = make_cond_branch(succeeded, [Dst], Fail, St1),
{Is,St} = select_extract_map(Ps, Src, Fail, St2),
{[Set|TestIs]++Is,St};
select_extract_map([], _, _, St) ->
{[],St}.
select_extract_cons(Src0, [#k_var{name=Hd},#k_var{name=Tl}], St0) ->
Src = ssa_arg(Src0, St0),
{HdDst,St1} = new_ssa_var(Hd, St0),
{TlDst,St2} = new_ssa_var(Tl, St1),
GetHd = #b_set{op=get_hd,dst=HdDst,args=[Src]},
GetTl = #b_set{op=get_tl,dst=TlDst,args=[Src]},
{[GetHd,GetTl],St2}.
guard_clause_cg(#k_guard_clause{guard=G,body=B}, Fail, St0) ->
{Gis,St1} = guard_cg(G, Fail, St0),
{Bis,St} = match_cg(B, Fail, St1),
{Gis ++ Bis,St}.
%% guard_cg(Guard, Fail, State) -> {[Ainstr],State}.
%% A guard is a boolean expression of tests. Tests return true or
%% false. A fault in a test causes the test to return false. Tests
%% never return the boolean, instead we generate jump code to go to
%% the correct exit point. Primops and tests all go to the next
%% instruction on success or jump to a failure label.
guard_cg(#k_protected{arg=Ts,ret=Rs,inner=Inner}, Fail, St) ->
protected_cg(Ts, Rs, Inner, Fail, St);
guard_cg(#k_test{op=Test0,args=As,inverted=Inverted}, Fail, St0) ->
#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=Test}} = Test0,
test_cg(Test, Inverted, As, Fail, St0);
guard_cg(#k_seq{arg=Arg,body=Body}, Fail, St0) ->
{ArgIs,St1} = guard_cg(Arg, Fail, St0),
{BodyIs,St} = guard_cg(Body, Fail, St1),
{ArgIs++BodyIs,St};
guard_cg(G, _Fail, St) ->
cg(G, St).
test_cg('=/=', Inverted, As, Fail, St) ->
test_cg('=:=', not Inverted, As, Fail, St);
test_cg('/=', Inverted, As, Fail, St) ->
test_cg('==', not Inverted, As, Fail, St);
test_cg(Test, Inverted, As0, Fail, St0) ->
As = ssa_args(As0, St0),
case {Test,ssa_args(As0, St0)} of
{is_record,[Tuple,#b_literal{val=Atom}=Tag,#b_literal{val=Int}=Arity]}
when is_atom(Atom), is_integer(Int) ->
test_is_record_cg(Inverted, Fail, Tuple, Tag, Arity, St0);
{_,As} ->
{Bool,St1} = new_ssa_var('@ssa_bool', St0),
{Succ,St} = new_label(St1),
Bif = #b_set{op={bif,Test},dst=Bool,args=As},
Br = case Inverted of
false -> #b_br{bool=Bool,succ=Succ,fail=Fail};
true -> #b_br{bool=Bool,succ=Fail,fail=Succ}
end,
{[Bif,Br,{label,Succ}],St}
end.
test_is_record_cg(false, Fail, Tuple, TagVal, ArityVal, St0) ->
{Arity,St1} = new_ssa_var('@ssa_arity', St0),
{Tag,St2} = new_ssa_var('@ssa_tag', St1),
{Is0,St3} = make_cond_branch({bif,is_tuple}, [Tuple], Fail, St2),
GetArity = #b_set{op={bif,tuple_size},dst=Arity,args=[Tuple]},
{Is1,St4} = make_cond_branch({bif,'=:='}, [Arity,ArityVal], Fail, St3),
GetTag = #b_set{op=get_tuple_element,dst=Tag,
args=[Tuple,#b_literal{val=0}]},
{Is2,St} = make_cond_branch({bif,'=:='}, [Tag,TagVal], Fail, St4),
Is = Is0 ++ [GetArity] ++ Is1 ++ [GetTag] ++ Is2,
{Is,St};
test_is_record_cg(true, Fail, Tuple, TagVal, ArityVal, St0) ->
{Succ,St1} = new_label(St0),
{Arity,St2} = new_ssa_var('@ssa_arity', St1),
{Tag,St3} = new_ssa_var('@ssa_tag', St2),
{Is0,St4} = make_cond_branch({bif,is_tuple}, [Tuple], Succ, St3),
GetArity = #b_set{op={bif,tuple_size},dst=Arity,args=[Tuple]},
{Is1,St5} = make_cond_branch({bif,'=:='}, [Arity,ArityVal], Succ, St4),
GetTag = #b_set{op=get_tuple_element,dst=Tag,
args=[Tuple,#b_literal{val=0}]},
{Is2,St} = make_cond_branch({bif,'=:='}, [Tag,TagVal], Succ, St5),
Is3 = [make_uncond_branch(Fail),{label,Succ}],
Is = Is0 ++ [GetArity] ++ Is1 ++ [GetTag] ++ Is2 ++ Is3,
{Is,St}.
%% protected_cg([Kexpr], [Ret], Fail, St) -> {[Ainstr],St}.
%% Do a protected. Protecteds without return values are just done
%% for effect, the return value is not checked, success passes on to
%% the next instruction and failure jumps to Fail. If there are
%% return values then these must be set to 'false' on failure,
%% control always passes to the next instruction.
protected_cg(Ts, [], _, Fail, St0) ->
%% Protect these calls, revert when done.
{Tis,St1} = guard_cg(Ts, Fail, St0#cg{bfail=Fail}),
{Tis,St1#cg{bfail=St0#cg.bfail}};
protected_cg(Ts, Rs, Inner0, _Fail, St0) ->
{Pfail,St1} = new_label(St0),
{Br,St2} = new_label(St1),
Prot = duplicate(length(Rs), #b_literal{val=false}),
{Tis,St3} = guard_cg(Ts, Pfail, St2#cg{break=Pfail,bfail=Pfail}),
Inner = ssa_args(Inner0, St3),
{BreakVars,St} = new_ssa_vars(Rs, St3),
Is = Tis ++ [#cg_break{args=Inner,phi=Br},
{label,Pfail},#cg_break{args=Prot,phi=Br},
{label,Br},#cg_phi{vars=BreakVars}],
{Is,St#cg{break=St0#cg.break,bfail=St0#cg.bfail}}.
%% match_fmf(Fun, LastFail, State, [Clause]) -> {Is,State}.
%% This is a special flatmapfoldl for match code gen where we
%% generate a "failure" label for each clause. The last clause uses
%% an externally generated failure label, LastFail. N.B. We do not
%% know or care how the failure labels are used.
match_fmf(F, LastFail, St, [H]) ->
F(H, LastFail, St);
match_fmf(F, LastFail, St0, [H|T]) ->
{Fail,St1} = new_label(St0),
{R,St2} = F(H, Fail, St1),
{Rs,St3} = match_fmf(F, LastFail, St2, T),
{R ++ [{label,Fail}] ++ Rs,St3}.
%% fail_label(State) -> {Where,FailureLabel}.
%% Where = guard | no_catch | in_catch
%% Return an indication of which part of a function code is
%% being generated for and the appropriate failure label to
%% use.
%%
%% Where has the following meaning:
%%
%% guard - Inside a guard.
%% no_catch - In a function body, not in the scope of
%% a try/catch or catch.
%% in_catch - In the scope of a try/catch or catch.
fail_label(#cg{catch_label=Catch,bfail=Fail,ultimate_failure=Ult}) ->
if
Fail =/= Ult ->
{guard,Fail};
Catch =:= none ->
{no_catch,Fail};
is_integer(Catch) ->
{in_catch,Catch}
end.
%% bif_fail_label(State) -> FailureLabel.
%% Return the appropriate failure label for a guard BIF call or
%% primop that fails.
bif_fail_label(St) ->
{_,Fail} = fail_label(St),
Fail.
%% call_cg(Func, [Arg], [Ret], Le, State) ->
%% {[Ainstr],State}.
%% enter_cg(Func, [Arg], Le, St) -> {[Ainstr],St}.
%% Generate code for call and enter.
call_cg(Func, As, [], Le, St) ->
call_cg(Func, As, [#k_var{name='@ssa_ignored'}], Le, St);
call_cg(Func0, As, [#k_var{name=R}|MoreRs]=Rs, Le, St0) ->
case fail_label(St0) of
{guard,Fail} ->
%% Inside a guard. The only allowed function call is to
%% erlang:error/1,2. We will generate a branch to the
%% failure branch.
#k_remote{mod=#k_atom{val=erlang},
name=#k_atom{val=error}} = Func0, %Assertion.
[#k_var{name=DestVar}] = Rs,
St = set_ssa_var(DestVar, #b_literal{val=unused}, St0),
{[make_uncond_branch(Fail),#cg_unreachable{}],St};
{Catch,Fail} ->
%% Ordinary function call in a function body.
Args = ssa_args(As, St0),
{Ret,St1} = new_ssa_var(R, St0),
Func = call_target(Func0, Args, St0),
Call = #b_set{anno=line_anno(Le),op=call,dst=Ret,args=[Func|Args]},
%% If this is a call to erlang:error(), MoreRs could be a
%% nonempty list of variables that each need a value.
St2 = foldl(fun(#k_var{name=Dummy}, S) ->
set_ssa_var(Dummy, #b_literal{val=unused}, S)
end, St1, MoreRs),
case Catch of
no_catch ->
{[Call],St2};
in_catch ->
{TestIs,St} = make_cond_branch(succeeded, [Ret], Fail, St2),
{[Call|TestIs],St}
end
end.
enter_cg(Func0, As0, Le, St0) ->
Anno = line_anno(Le),
Func = call_target(Func0, As0, St0),
As = ssa_args(As0, St0),
{Ret,St} = new_ssa_var('@ssa_ret', St0),
Call = #b_set{anno=Anno,op=call,dst=Ret,args=[Func|As]},
{[Call,#b_ret{arg=Ret}],St}.
call_target(Func, As, St) ->
Arity = length(As),
case Func of
#k_remote{mod=Mod0,name=Name0} ->
Mod = ssa_arg(Mod0, St),
Name = ssa_arg(Name0, St),
#b_remote{mod=Mod,name=Name,arity=Arity};
#k_local{name=Name} when is_atom(Name) ->
#b_local{name=#b_literal{val=Name},arity=Arity};
#k_var{}=Var ->
ssa_arg(Var, St)
end.
%% bif_cg(#k_bif{}, Le,State) -> {[Ainstr],State}.
%% Generate code for a guard BIF or primop.
bif_cg(#k_bif{op=#k_internal{name=Name},args=As,ret=Rs}, Le, St) ->
internal_cg(Name, As, Rs, Le, St);
bif_cg(#k_bif{op=#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=Name}},
args=As,ret=Rs}, Le, St) ->
bif_cg(Name, As, Rs, Le, St).
%% internal_cg(Bif, [Arg], [Ret], Le, State) ->
%% {[Ainstr],State}.
internal_cg(make_fun, [Name0,Arity0|As], Rs, _Le, St0) ->
#k_atom{val=Name} = Name0,
#k_int{val=Arity} = Arity0,
[#k_var{name=Dst0}] = Rs,
{Dst,St} = new_ssa_var(Dst0, St0),
Args = ssa_args(As, St),
Local = #b_local{name=#b_literal{val=Name},arity=Arity},
MakeFun = #b_set{op=make_fun,dst=Dst,args=[Local|Args]},
{[MakeFun],St};
internal_cg(bs_init_writable=I, As, [#k_var{name=Dst0}], _Le, St0) ->
%% This behaves like a function call.
{Dst,St} = new_ssa_var(Dst0, St0),
Args = ssa_args(As, St),
Set = #b_set{op=I,dst=Dst,args=Args},
{[Set],St};
internal_cg(build_stacktrace=I, As, [#k_var{name=Dst0}], _Le, St0) ->
{Dst,St} = new_ssa_var(Dst0, St0),
Args = ssa_args(As, St),
Set = #b_set{op=I,dst=Dst,args=Args},
{[Set],St};
internal_cg(raise, As, [#k_var{name=Dst0}], _Le, St0) ->
Args = ssa_args(As, St0),
{Dst,St} = new_ssa_var(Dst0, St0),
Resume = #b_set{op=resume,dst=Dst,args=Args},
case St of
#cg{catch_label=none} ->
{[Resume],St};
#cg{catch_label=Catch} when is_integer(Catch) ->
Is = [Resume,make_uncond_branch(Catch),#cg_unreachable{}],
{Is,St}
end;
internal_cg(raw_raise=I, As, [#k_var{name=Dst0}], _Le, St0) ->
%% This behaves like a function call.
{Dst,St} = new_ssa_var(Dst0, St0),
Args = ssa_args(As, St),
Set = #b_set{op=I,dst=Dst,args=Args},
{[Set],St}.
bif_cg(Bif, As0, [#k_var{name=Dst0}], Le, St0) ->
{Dst,St1} = new_ssa_var(Dst0, St0),
case {Bif,ssa_args(As0, St0)} of
{is_record,[Tuple,#b_literal{val=Atom}=Tag,
#b_literal{val=Int}=Arity]}
when is_atom(Atom), is_integer(Int) ->
bif_is_record_cg(Dst, Tuple, Tag, Arity, St1);
{_,As} ->
I = #b_set{anno=line_anno(Le),op={bif,Bif},dst=Dst,args=As},
case erl_bifs:is_safe(erlang, Bif, length(As)) of
false ->
Fail = bif_fail_label(St1),
{Is,St} = make_cond_branch(succeeded, [Dst], Fail, St1),
{[I|Is],St};
true->
{[I],St1}
end
end.
bif_is_record_cg(Dst, Tuple, TagVal, ArityVal, St0) ->
{Arity,St1} = new_ssa_var('@ssa_arity', St0),
{Tag,St2} = new_ssa_var('@ssa_tag', St1),
{Phi,St3} = new_label(St2),
{False,St4} = new_label(St3),
{Is0,St5} = make_cond_branch({bif,is_tuple}, [Tuple], False, St4),
GetArity = #b_set{op={bif,tuple_size},dst=Arity,args=[Tuple]},
{Is1,St6} = make_cond_branch({bif,'=:='}, [Arity,ArityVal], False, St5),
GetTag = #b_set{op=get_tuple_element,dst=Tag,
args=[Tuple,#b_literal{val=0}]},
{Is2,St} = make_cond_branch({bif,'=:='}, [Tag,TagVal], False, St6),
Is3 = [#cg_break{args=[#b_literal{val=true}],phi=Phi},
{label,False},
#cg_break{args=[#b_literal{val=false}],phi=Phi},
{label,Phi},
#cg_phi{vars=[Dst]}],
Is = Is0 ++ [GetArity] ++ Is1 ++ [GetTag] ++ Is2 ++ Is3,
{Is,St}.
%% recv_loop_cg(TimeOut, ReceiveVar, ReceiveMatch, TimeOutExprs,
%% [Ret], Le, St) -> {[Ainstr],St}.
recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, St0) ->
%% Get labels.
{Rl,St1} = new_label(St0),
{Tl,St2} = new_label(St1),
{Bl,St3} = new_label(St2),
St4 = St3#cg{break=Bl,recv=Rl},
{Ris,St5} = cg_recv_mesg(Rvar, Rm, Tl, Le, St4),
{Wis,St6} = cg_recv_wait(Te, Tes, St5),
{BreakVars,St} = new_ssa_vars(Rs, St6),
{Ris ++ [{label,Tl}] ++ Wis ++
[{label,Bl},#cg_phi{vars=BreakVars}],
St#cg{break=St0#cg.break,recv=St0#cg.recv}}.
%% cg_recv_mesg( ) -> {[Ainstr],St}.
cg_recv_mesg(#k_var{name=R}, Rm, Tl, Le, St0) ->
{Dst,St1} = new_ssa_var(R, St0),
{Mis,St2} = match_cg(Rm, none, St1),
RecvLbl = St1#cg.recv,
{TestIs,St} = make_cond_branch(succeeded, [Dst], Tl, St2),
Is = [#b_br{anno=line_anno(Le),bool=#b_literal{val=true},
succ=RecvLbl,fail=RecvLbl},
{label,RecvLbl},
#b_set{op=peek_message,dst=Dst}|TestIs],
{Is++Mis,St}.
%% cg_recv_wait(Te, Tes, St) -> {[Ainstr],St}.
cg_recv_wait(#k_int{val=0}, Es, St0) ->
{Tis,St} = cg(Es, St0),
{[#b_set{op=timeout}|Tis],St};
cg_recv_wait(Te, Es, St0) ->
{Tis,St1} = cg(Es, St0),
Args = [ssa_arg(Te, St1)],
{WaitDst,St2} = new_ssa_var('@ssa_wait', St1),
{WaitIs,St} = make_cond_branch(succeeded, [WaitDst], St1#cg.recv, St2),
%% Infinite timeout will be optimized later.
Is = [#b_set{op=wait_timeout,dst=WaitDst,args=Args}] ++ WaitIs ++
[#b_set{op=timeout}] ++ Tis,
{Is,St}.
%% try_cg(TryBlock, [BodyVar], TryBody, [ExcpVar], TryHandler, [Ret], St) ->
%% {[Ainstr],St}.
try_cg(Ta, Vs, Tb, Evs, Th, Rs, St0) ->
{B,St1} = new_label(St0), %Body label
{H,St2} = new_label(St1), %Handler label
{E,St3} = new_label(St2), %End label
{Next,St4} = new_label(St3),
{TryTag,St5} = new_ssa_var('@ssa_catch_tag', St4),
{SsaVs,St6} = new_ssa_vars(Vs, St5),
{SsaEvs,St7} = new_ssa_vars(Evs, St6),
{Ais,St8} = cg(Ta, St7#cg{break=B,catch_label=H}),
St9 = St8#cg{break=E,catch_label=St7#cg.catch_label},
{Bis,St10} = cg(Tb, St9),
{His,St11} = cg(Th, St10),
{BreakVars,St12} = new_ssa_vars(Rs, St11),
{CatchedAgg,St} = new_ssa_var('@ssa_agg', St12),
ExtractVs = extract_vars(SsaEvs, CatchedAgg, 0),
KillTryTag = #b_set{op=kill_try_tag,args=[TryTag]},
Args = [#b_literal{val='try'},TryTag],
Handler = [{label,H},
#b_set{op=landingpad,dst=CatchedAgg,args=Args}] ++
ExtractVs ++ [KillTryTag],
{[#b_set{op=new_try_tag,dst=TryTag,args=[#b_literal{val='try'}]},
#b_br{bool=TryTag,succ=Next,fail=H},
{label,Next}] ++ Ais ++
[{label,B},#cg_phi{vars=SsaVs},KillTryTag] ++ Bis ++
Handler ++ His ++
[{label,E},#cg_phi{vars=BreakVars}],
St#cg{break=St0#cg.break}}.
try_enter_cg(Ta, Vs, Tb, Evs, Th, St0) ->
{B,St1} = new_label(St0), %Body label
{H,St2} = new_label(St1), %Handler label
{Next,St3} = new_label(St2),
{TryTag,St4} = new_ssa_var('@ssa_catch_tag', St3),
{SsaVs,St5} = new_ssa_vars(Vs, St4),
{SsaEvs,St6} = new_ssa_vars(Evs, St5),
{Ais,St7} = cg(Ta, St6#cg{break=B,catch_label=H}),
St8 = St7#cg{catch_label=St6#cg.catch_label},
{Bis,St9} = cg(Tb, St8),
{His,St10} = cg(Th, St9),
{CatchedAgg,St} = new_ssa_var('@ssa_agg', St10),
ExtractVs = extract_vars(SsaEvs, CatchedAgg, 0),
KillTryTag = #b_set{op=kill_try_tag,args=[TryTag]},
Args = [#b_literal{val='try'},TryTag],
Handler = [{label,H},
#b_set{op=landingpad,dst=CatchedAgg,args=Args}] ++
ExtractVs ++ [KillTryTag],
{[#b_set{op=new_try_tag,dst=TryTag,args=[#b_literal{val='try'}]},
#b_br{bool=TryTag,succ=Next,fail=H},
{label,Next}] ++ Ais ++
[{label,B},#cg_phi{vars=SsaVs},KillTryTag] ++ Bis ++
Handler ++ His,
St#cg{break=St0#cg.break}}.
extract_vars([V|Vs], Agg, N) ->
I = #b_set{op=extract,dst=V,args=[Agg,#b_literal{val=N}]},
[I|extract_vars(Vs, Agg, N+1)];
extract_vars([], _, _) -> [].
%% do_catch_cg(CatchBlock, Ret, St) -> {[Ainstr],St}.
do_catch_cg(Block, #k_var{name=R}, St0) ->
{B,St1} = new_label(St0),
{Next,St2} = new_label(St1),
{H,St3} = new_label(St2),
{CatchReg,St4} = new_ssa_var('@ssa_catch_tag', St3),
{Dst,St5} = new_ssa_var(R, St4),
{Succ,St6} = new_label(St5),
{Cis,St7} = cg(Block, St6#cg{break=Succ,catch_label=H}),
{CatchedVal,St8} = new_ssa_var('@catched_val', St7),
{SuccVal,St9} = new_ssa_var('@success_val', St8),
{CatchedAgg,St10} = new_ssa_var('@ssa_agg', St9),
{CatchEndVal,St} = new_ssa_var('@catch_end_val', St10),
Args = [#b_literal{val='catch'},CatchReg],
{[#b_set{op=new_try_tag,dst=CatchReg,args=[#b_literal{val='catch'}]},
#b_br{bool=CatchReg,succ=Next,fail=H},
{label,Next}] ++ Cis ++
[{label,H},
#b_set{op=landingpad,dst=CatchedAgg,args=Args},
#b_set{op=extract,dst=CatchedVal,
args=[CatchedAgg,#b_literal{val=0}]},
#cg_break{args=[CatchedVal],phi=B},
{label,Succ},
#cg_phi{vars=[SuccVal]},
#cg_break{args=[SuccVal],phi=B},
{label,B},#cg_phi{vars=[CatchEndVal]},
#b_set{op=catch_end,dst=Dst,args=[CatchReg,CatchEndVal]}],
St#cg{break=St1#cg.break,catch_label=St1#cg.catch_label}}.
%% put_cg([Var], Constr, Le, Vdb, Bef, St) -> {[Ainstr],St}.
%% Generate code for constructing terms.
put_cg([#k_var{name=R}], #k_cons{hd=Hd,tl=Tl}, _Le, St0) ->
Args = ssa_args([Hd,Tl], St0),
{Dst,St} = new_ssa_var(R, St0),
PutList = #b_set{op=put_list,dst=Dst,args=Args},
{[PutList],St};
put_cg([#k_var{name=R}], #k_tuple{es=Es}, _Le, St0) ->
{Ret,St} = new_ssa_var(R, St0),
Args = ssa_args(Es, St),
PutTuple = #b_set{op=put_tuple,dst=Ret,args=Args},
{[PutTuple],St};
put_cg([#k_var{name=R}], #k_binary{segs=Segs}, Le, St0) ->
Fail = bif_fail_label(St0),
{Dst,St1} = new_ssa_var(R, St0),
cg_binary(Dst, Segs, Fail, Le, St1);
put_cg([#k_var{name=R}], #k_map{op=Op,var=Map,
es=[#k_map_pair{key=#k_var{}=K,val=V}]},
Le, St0) ->
%% Map: single variable key.
SrcMap = ssa_arg(Map, St0),
LineAnno = line_anno(Le),
List = [ssa_arg(K, St0),ssa_arg(V, St0)],
{Dst,St1} = new_ssa_var(R, St0),
{Is,St} = put_cg_map(LineAnno, Op, SrcMap, Dst, List, St1),
{Is,St};
put_cg([#k_var{name=R}], #k_map{op=Op,var=Map,es=Es}, Le, St0) ->
%% Map: one or more literal keys.
[] = [Var || #k_map_pair{key=#k_var{}=Var} <- Es], %Assertion
SrcMap = ssa_arg(Map, St0),
LineAnno = line_anno(Le),
List = flatmap(fun(#k_map_pair{key=K,val=V}) ->
[ssa_arg(K, St0),ssa_arg(V, St0)]
end, Es),
{Dst,St1} = new_ssa_var(R, St0),
{Is,St} = put_cg_map(LineAnno, Op, SrcMap, Dst, List, St1),
{Is,St};
put_cg([#k_var{name=R}], Con0, _Le, St0) ->
%% Create an alias for a variable or literal.
Con = ssa_arg(Con0, St0),
St = set_ssa_var(R, Con, St0),
{[],St}.
put_cg_map(LineAnno, Op, SrcMap, Dst, List, St0) ->
Fail = bif_fail_label(St0),
Args = [#b_literal{val=Op},SrcMap|List],
PutMap = #b_set{anno=LineAnno,op=put_map,dst=Dst,args=Args},
if
Op =:= assoc ->
{[PutMap],St0};
true ->
{Is,St} = make_cond_branch(succeeded, [Dst], Fail, St0),
{[PutMap|Is],St}
end.
%%%
%%% Code generation for constructing binaries.
%%%
cg_binary(Dst, Segs0, Fail, Le, St0) ->
{PutCode0,SzCalc0,St1} = cg_bin_put(Segs0, Fail, St0),
LineAnno = line_anno(Le),
Anno = Le#k.a,
case PutCode0 of
[#b_set{op=bs_put,dst=Bool,args=[_,_,Src,#b_literal{val=all}|_]},
#b_br{bool=Bool},
{label,_}|_] ->
#k_bin_seg{unit=Unit0,next=Segs} = Segs0,
Unit = #b_literal{val=Unit0},
{PutCode,SzCalc1,St2} = cg_bin_put(Segs, Fail, St1),
{_,SzVar,SzCode0,St3} = cg_size_calc(1, SzCalc1, Fail, St2),
SzCode = cg_bin_anno(SzCode0, LineAnno),
Args = case member(single_use, Anno) of
true ->
[#b_literal{val=private_append},Src,SzVar,Unit];
false ->
[#b_literal{val=append},Src,SzVar,Unit]
end,
BsInit = #b_set{anno=LineAnno,op=bs_init,dst=Dst,args=Args},
{TestIs,St} = make_cond_branch(succeeded, [Dst], Fail, St3),
{SzCode ++ [BsInit] ++ TestIs ++ PutCode,St};
[#b_set{op=bs_put}|_] ->
{Unit,SzVar,SzCode0,St2} = cg_size_calc(8, SzCalc0, Fail, St1),
SzCode = cg_bin_anno(SzCode0, LineAnno),
Args = [#b_literal{val=new},SzVar,Unit],
BsInit = #b_set{anno=LineAnno,op=bs_init,dst=Dst,args=Args},
{TestIs,St} = make_cond_branch(succeeded, [Dst], Fail, St2),
{SzCode ++ [BsInit] ++ TestIs ++ PutCode0,St}
end.
cg_bin_anno([Set|Sets], Anno) ->
[Set#b_set{anno=Anno}|Sets];
cg_bin_anno([], _) -> [].
%% cg_size_calc(PreferredUnit, SzCalc, Fail, St0) ->
%% {ActualUnit,SizeVariable,SizeCode,St}.
%% Generate size calculation code.
cg_size_calc(Unit, error, _Fail, St) ->
{#b_literal{val=Unit},#b_literal{val=badarg},[],St};
cg_size_calc(8, [{1,_}|_]=SzCalc, Fail, St) ->
cg_size_calc(1, SzCalc, Fail, St);
cg_size_calc(8, SzCalc, Fail, St0) ->
{Var,Pre,St} = cg_size_calc_1(SzCalc, Fail, St0),
{#b_literal{val=8},Var,Pre,St};
cg_size_calc(1, SzCalc0, Fail, St0) ->
SzCalc = map(fun({8,#b_literal{val=Size}}) ->
{1,#b_literal{val=8*Size}};
({8,{{bif,byte_size},Src}}) ->
{1,{{bif,bit_size},Src}};
({8,{_,_}=UtfCalc}) ->
{1,{'*',#b_literal{val=8},UtfCalc}};
({_,_}=Pair) ->
Pair
end, SzCalc0),
{Var,Pre,St} = cg_size_calc_1(SzCalc, Fail, St0),
{#b_literal{val=1},Var,Pre,St}.
cg_size_calc_1(SzCalc, Fail, St0) ->
cg_size_calc_2(SzCalc, #b_literal{val=0}, Fail, St0).
cg_size_calc_2([{_,{'*',Unit,{_,_}=Bif}}|T], Sum0, Fail, St0) ->
{Sum1,Pre0,St1} = cg_size_calc_2(T, Sum0, Fail, St0),
{BifDst,Pre1,St2} = cg_size_bif(Bif, Fail, St1),
{Sum,Pre2,St} = cg_size_add(Sum1, BifDst, Unit, Fail, St2),
{Sum,Pre0++Pre1++Pre2,St};
cg_size_calc_2([{_,#b_literal{}=Sz}|T], Sum0, Fail, St0) ->
{Sum1,Pre0,St1} = cg_size_calc_2(T, Sum0, Fail, St0),
{Sum,Pre,St} = cg_size_add(Sum1, Sz, #b_literal{val=1}, Fail, St1),
{Sum,Pre0++Pre,St};
cg_size_calc_2([{_,#b_var{}=Sz}|T], Sum0, Fail, St0) ->
{Sum1,Pre0,St1} = cg_size_calc_2(T, Sum0, Fail, St0),
{Sum,Pre,St} = cg_size_add(Sum1, Sz, #b_literal{val=1}, Fail, St1),
{Sum,Pre0++Pre,St};
cg_size_calc_2([{_,{_,_}=Bif}|T], Sum0, Fail, St0) ->
{Sum1,Pre0,St1} = cg_size_calc_2(T, Sum0, Fail, St0),
{BifDst,Pre1,St2} = cg_size_bif(Bif, Fail, St1),
{Sum,Pre2,St} = cg_size_add(Sum1, BifDst, #b_literal{val=1}, Fail, St2),
{Sum,Pre0++Pre1++Pre2,St};
cg_size_calc_2([], Sum, _Fail, St) ->
{Sum,[],St}.
cg_size_bif(#b_var{}=Var, _Fail, St) ->
{Var,[],St};
cg_size_bif({Name,Src}, Fail, St0) ->
{Dst,St1} = new_ssa_var('@ssa_bif', St0),
Bif = #b_set{op=Name,dst=Dst,args=[Src]},
{TestIs,St} = make_cond_branch(succeeded, [Dst], Fail, St1),
{Dst,[Bif|TestIs],St}.
cg_size_add(#b_literal{val=0}, Val, #b_literal{val=1}, _Fail, St) ->
{Val,[],St};
cg_size_add(A, B, Unit, Fail, St0) ->
{Dst,St1} = new_ssa_var('@ssa_sum', St0),
{TestIs,St} = make_cond_branch(succeeded, [Dst], Fail, St1),
BsAdd = #b_set{op=bs_add,dst=Dst,args=[A,B,Unit]},
{Dst,[BsAdd|TestIs],St}.
cg_bin_put(Seg, Fail, St) ->
cg_bin_put_1(Seg, Fail, [], [], St).
cg_bin_put_1(#k_bin_seg{size=Size0,unit=U,type=T,flags=Fs,seg=Src0,next=Next},
Fail, Acc, SzCalcAcc, St0) ->
[Src,Size] = ssa_args([Src0,Size0], St0),
NeedSize = bs_need_size(T),
TypeArg = #b_literal{val=T},
Flags = #b_literal{val=Fs},
Unit = #b_literal{val=U},
Args = case NeedSize of
true -> [TypeArg,Flags,Src,Size,Unit];
false -> [TypeArg,Flags,Src]
end,
{Is,St} = make_cond_branch(bs_put, Args, Fail, St0),
SzCalc = bin_size_calc(T, Src, Size, U),
cg_bin_put_1(Next, Fail, reverse(Is, Acc), [SzCalc|SzCalcAcc], St);
cg_bin_put_1(#k_bin_end{}, _, Acc, SzCalcAcc, St) ->
SzCalc = fold_size_calc(SzCalcAcc, 0, []),
{reverse(Acc),SzCalc,St}.
bs_need_size(utf8) -> false;
bs_need_size(utf16) -> false;
bs_need_size(utf32) -> false;
bs_need_size(_) -> true.
bin_size_calc(utf8, Src, _Size, _Unit) ->
{8,{bs_utf8_size,Src}};
bin_size_calc(utf16, Src, _Size, _Unit) ->
{8,{bs_utf16_size,Src}};
bin_size_calc(utf32, _Src, _Size, _Unit) ->
{8,#b_literal{val=4}};
bin_size_calc(binary, Src, #b_literal{val=all}, Unit) ->
case Unit rem 8 of
0 -> {8,{{bif,byte_size},Src}};
_ -> {1,{{bif,bit_size},Src}}
end;
bin_size_calc(_Type, _Src, Size, Unit) ->
{Unit,Size}.
fold_size_calc([{Unit,#b_literal{val=Size}}|T], Bits, Acc) ->
if
is_integer(Size) ->
fold_size_calc(T, Bits + Unit*Size, Acc);
true ->
error
end;
fold_size_calc([{U,#b_var{}}=H|T], Bits, Acc) when U =:= 1; U =:= 8 ->
fold_size_calc(T, Bits, [H|Acc]);
fold_size_calc([{U,#b_var{}=Var}|T], Bits, Acc) ->
fold_size_calc(T, Bits, [{1,{'*',#b_literal{val=U},Var}}|Acc]);
fold_size_calc([{_,_}=H|T], Bits, Acc) ->
fold_size_calc(T, Bits, [H|Acc]);
fold_size_calc([], Bits, Acc) ->
Bytes = Bits div 8,
RemBits = Bits rem 8,
Sizes = sort([{1,#b_literal{val=RemBits}},{8,#b_literal{val=Bytes}}|Acc]),
[Pair || {_,Sz}=Pair <- Sizes, Sz =/= #b_literal{val=0}].
%%%
%%% Utilities for creating the SSA types.
%%%
ssa_args(As, St) ->
[ssa_arg(A, St) || A <- As].
ssa_arg(#k_var{name=V}, #cg{vars=Vars}) -> maps:get(V, Vars);
ssa_arg(#k_literal{val=V}, _) -> #b_literal{val=V};
ssa_arg(#k_atom{val=V}, _) -> #b_literal{val=V};
ssa_arg(#k_float{val=V}, _) -> #b_literal{val=V};
ssa_arg(#k_int{val=V}, _) -> #b_literal{val=V};
ssa_arg(#k_nil{}, _) -> #b_literal{val=[]}.
new_ssa_vars(Vs, St) ->
mapfoldl(fun(#k_var{name=V}, S) ->
new_ssa_var(V, S)
end, St, Vs).
new_ssa_var(VarBase, #cg{lcount=Uniq,vars=Vars}=St0)
when is_atom(VarBase); is_integer(VarBase) ->
case Vars of
#{VarBase:=_} ->
Var = #b_var{name={VarBase,Uniq}},
St = St0#cg{lcount=Uniq+1,vars=Vars#{VarBase=>Var}},
{Var,St};
#{} ->
Var = #b_var{name=VarBase},
St = St0#cg{vars=Vars#{VarBase=>Var}},
{Var,St}
end.
set_ssa_var(VarBase, Val, #cg{vars=Vars}=St)
when is_atom(VarBase); is_integer(VarBase) ->
St#cg{vars=Vars#{VarBase=>Val}}.
%% new_label(St) -> {L,St}.
new_label(#cg{lcount=Next}=St) ->
{Next,St#cg{lcount=Next+1}}.
%% line_anno(Le) -> #{} | #{location:={File,Line}}.
%% Create a location annotation, containing information about the
%% current filename and line number. The annotation should be
%% included in any operation that could cause an exception.
line_anno(#k{a=Anno}) ->
line_anno_1(Anno).
line_anno_1([Line,{file,Name}]) when is_integer(Line) ->
line_anno_2(Name, Line);
line_anno_1([_|_]=A) ->
{Name,Line} = find_loc(A, no_file, 0),
line_anno_2(Name, Line);
line_anno_1([]) ->
#{}.
line_anno_2(no_file, _) ->
#{};
line_anno_2(_, 0) ->
%% Missing line number or line number 0.
#{};
line_anno_2(Name, Line) ->
#{location=>{Name,Line}}.
find_loc([Line|T], File, _) when is_integer(Line) ->
find_loc(T, File, Line);
find_loc([{file,File}|T], _, Line) ->
find_loc(T, File, Line);
find_loc([_|T], File, Line) ->
find_loc(T, File, Line);
find_loc([], File, Line) -> {File,Line}.
flatmapfoldl(F, Accu0, [Hd|Tail]) ->
{R,Accu1} = F(Hd, Accu0),
{Rs,Accu2} = flatmapfoldl(F, Accu1, Tail),
{R++Rs,Accu2};
flatmapfoldl(_, Accu, []) -> {[],Accu}.
%%%
%%% Finalize the code.
%%%
finalize(Asm0, St0) ->
Asm1 = fix_phis(Asm0),
{Asm,St} = fix_sets(Asm1, [], St0),
{build_map(Asm),St}.
fix_phis(Is) ->
fix_phis_1(Is, none, #{}).
fix_phis_1([{label,L},#cg_phi{vars=[]}=Phi|Is0], _Lbl, Map0) ->
case maps:is_key(L, Map0) of
false ->
%% No #cg_break{} references this label. Nothing else can
%% reference it, so it can be safely be removed.
{Is,Map} = drop_upto_label(Is0, Map0),
fix_phis_1(Is, none, Map);
true ->
%% There is a break referencing this label; probably caused
%% by a try/catch whose return value is ignored.
[{label,L}|fix_phis_1([Phi|Is0], L, Map0)]
end;
fix_phis_1([{label,L}=I|Is], _Lbl, Map) ->
[I|fix_phis_1(Is, L, Map)];
fix_phis_1([#cg_unreachable{}|Is0], _Lbl, Map0) ->
{Is,Map} = drop_upto_label(Is0, Map0),
fix_phis_1(Is, none, Map);
fix_phis_1([#cg_break{args=Args,phi=Target}|Is], Lbl, Map) when is_integer(Lbl) ->
Pairs1 = case Map of
#{Target:=Pairs0} -> Pairs0;
#{} -> []
end,
Pairs = [[{Arg,Lbl} || Arg <- Args]|Pairs1],
I = make_uncond_branch(Target),
[I|fix_phis_1(Is, none, Map#{Target=>Pairs})];
fix_phis_1([#cg_phi{vars=Vars}|Is0], Lbl, Map0) ->
Pairs = maps:get(Lbl, Map0),
Map1 = maps:remove(Lbl, Map0),
case gen_phis(Vars, Pairs) of
[#b_set{op=phi,args=[]}] ->
{Is,Map} = drop_upto_label(Is0, Map1),
Ret = #b_ret{arg=#b_literal{val=unreachable}},
[Ret|fix_phis_1(Is, none, Map)];
Phis ->
Phis ++ fix_phis_1(Is0, Lbl, Map1)
end;
fix_phis_1([I|Is], Lbl, Map) ->
[I|fix_phis_1(Is, Lbl, Map)];
fix_phis_1([], _, Map) ->
[] = maps:to_list(Map), %Assertion.
[].
gen_phis([V|Vs], Preds0) ->
{Pairs,Preds} = collect_preds(Preds0, [], []),
[#b_set{op=phi,dst=V,args=Pairs}|gen_phis(Vs, Preds)];
gen_phis([], _) -> [].
collect_preds([[First|Rest]|T], ColAcc, RestAcc) ->
collect_preds(T, [First|ColAcc], [Rest|RestAcc]);
collect_preds([], ColAcc, RestAcc) ->
{keysort(2, ColAcc),RestAcc}.
fix_sets([#b_set{dst=none}=Set|Is], Acc, St0) ->
{Dst,St} = new_ssa_var('@ssa_ignored', St0),
I = Set#b_set{dst=Dst},
fix_sets(Is, [I|Acc], St);
fix_sets([I|Is], Acc, St) ->
fix_sets(Is, [I|Acc], St);
fix_sets([], Acc, St) ->
{reverse(Acc),St}.
build_map(Is) ->
Blocks = build_graph_1(Is, [], []),
maps:from_list(Blocks).
build_graph_1([{label,L}|Is], Lbls, []) ->
build_graph_1(Is, [L|Lbls], []);
build_graph_1([{label,L}|Is], Lbls, [_|_]=BlockAcc) ->
make_blocks(Lbls, BlockAcc) ++ build_graph_1(Is, [L], []);
build_graph_1([I|Is], Lbls, BlockAcc) ->
build_graph_1(Is, Lbls, [I|BlockAcc]);
build_graph_1([], Lbls, BlockAcc) ->
make_blocks(Lbls, BlockAcc).
make_blocks(Lbls, [Last|Is0]) ->
Is = reverse(Is0),
Block = #b_blk{is=Is,last=Last},
[{L,Block} || L <- Lbls].
drop_upto_label([{label,_}|_]=Is, Map) ->
{Is,Map};
drop_upto_label([#cg_break{phi=Target}|Is], Map) ->
Pairs = case Map of
#{Target:=Pairs0} -> Pairs0;
#{} -> []
end,
drop_upto_label(Is, Map#{Target=>Pairs});
drop_upto_label([_|Is], Map) ->
drop_upto_label(Is, Map).
k_get_anno(Thing) -> element(2, Thing).