aboutsummaryrefslogblamecommitdiffstats
path: root/lib/compiler/src/sys_core_fold.erl
blob: 4e676398052fe90f842e9dda3986a6e270388777 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

                   
  
                                                        
  




                                                                      
  



                                                                         
  







































































































































                                                                              






                                                                   

                                                                 










                                                               













































































































































































































































































































                                                                                     

                                                  












































































































































                                                                                

                                                        





                                                       








                                                              






































                                                                               
                                                           





                                                                            
                                                                  


                                                                             
                                                 
                                                                           
                                                                        




                                                                         
                                                




                                                             
                                                                             
              
                                                           







                                                                             
                                                                  
                                                         
                                                 
                                                                           
                                                                        




                                                                         
                                                




                                                             
                                                                             
              
                                                               




                                                                           

                                                                              



                                                                         
                                               




                                                             
                                                                             
              
                                                           





                                                                           


                                                                
                                                 

                                                                  




                                                                         
                                               




                                                             
                                                                             
              
                                                               






                                                                           


                                                                          

                                                                      

                                                                     




                                                                          
                                               




                                                             
                                                                             
              
                                                              










                                                                             
                                                 


                                                                           
                                                                       
                                                     

                                                                  





                                                                         
                                                




                                                             
                                                                             
         
                                                                  





                                                                           




                                                                    


                                                                                  
                                               




                                                                     
                                                                                
              
                                                                  





                                                                           




                                                                    


                                                                                  
                                               




                                                                     
                                                                                
              
                                                                     









                                                                             
                                                           


                                                                           
                                                                        

                                                     


                                                              
















                                                                              
                                               





                                                                        


                                                               





                                                                        
                                                                     









                                                                             
                                                           



                                                                           


                                                        
                                                      
                                                                              

















                                                                               
                                               





                                                                        


                                                               








                                                                        




                                                
































































                                                                               

                                                                    



























































































































































                                                                                        















                                                              







                                                          













                                                                   













































                                                                          


                                               




































































































































































































































































































































































































































































                                                                                       


                                                   
                                                        

                                           







                                                                          





                                                     































































































































































































                                                                               









                                                              
                                                

                                                 
                      

                                              


                                                                          












































































                                                                                    
                                    








































































































































































































































































































































































































































































































































                                                                                         



                                                                       
                 
            
                 
        




















                                                                
                                      
                                                            
                                          



























































                                                                                 
                                   


























































                                                                                


                                       
                






                                                                
                                                                      

                                                               












                                                 
                                     























































                                                                                        

                                                                               









































                                                                             
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2011. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Constant folding optimisation for Core

%% Propagate atomic values and fold in values of safe calls to
%% constant arguments.  Also detect and remove literals which are
%% ignored in a 'seq'.  Could handle lets better by chasing down
%% complex 'arg' expressions and finding values.
%%
%% Try to optimise case expressions by removing unmatchable or
%% unreachable clauses.  Also change explicit tuple arg into multiple
%% values and extend clause patterns.  We must be careful here not to
%% generate cases which we know to be safe but later stages will not
%% recognise as such, e.g. the following is NOT acceptable:
%%
%%    case 'b' of
%%        <'b'> -> ...
%%    end
%%
%% Variable folding is complicated by variable shadowing, for example
%% in:
%%    'foo'/1 =
%%        fun (X) ->
%%            let <A> = X
%%            in  let <X> = Y
%%                in ... <use A>
%% If we were to simply substitute X for A then we would be using the
%% wrong X.  Our solution is to rename variables that are the values
%% of substitutions.  We could rename all shadowing variables but do
%% the minimum.  We would then get:
%%    'foo'/1 =
%%        fun (X) ->
%%            let <A> = X
%%            in  let <X1> = Y
%%                in ... <use A>
%% which is optimised to:
%%    'foo'/1 =
%%        fun (X) ->
%%            let <X1> = Y
%%            in ... <use X>
%%
%% This is done by carefully shadowing variables and substituting
%% values.  See details when defining functions.
%%
%% It would be possible to extend to replace repeated evaluation of
%% "simple" expressions by the value (variable) of the first call.
%% For example, after a "let Z = X+1" then X+1 would be replaced by Z
%% where X is valid.  The Sub uses the full Core expression as key.
%% It would complicate handling of patterns as we would have to remove
%% all values where the key contains pattern variables.

-module(sys_core_fold).

-export([module/2,format_error/1]).

-import(lists, [map/2,foldl/3,foldr/3,mapfoldl/3,all/2,any/2,
		reverse/1,reverse/2,member/2,nth/2,flatten/1]).

-import(cerl, [ann_c_cons/3,ann_c_tuple/2]).

-include("core_parse.hrl").

%%-define(DEBUG, 1).

-ifdef(DEBUG).
-define(ASSERT(E),
	case E of
	    true -> ok;
	    false ->
		io:format("~p, line ~p: assertion failed\n", [?MODULE,?LINE]),
		exit(assertion_failed)
	end).
-else.
-define(ASSERT(E), ignore).
-endif.

%% Variable value info.
-record(sub, {v=[],				%Variable substitutions
	      s=[],				%Variables in scope
	      t=[],				%Types
	      in_guard=false}).			%In guard or not.

-spec module(cerl:c_module(), [compile:option()]) ->
	{'ok', cerl:c_module(), [_]}.

module(#c_module{defs=Ds0}=Mod, Opts) ->
    put(bin_opt_info, member(bin_opt_info, Opts)),
    put(no_inline_list_funcs, not member(inline_list_funcs, Opts)),
    case get(new_var_num) of
	undefined -> put(new_var_num, 0);
	_ -> ok
    end,
    init_warnings(),
    Ds1 = [function_1(D) || D <- Ds0],
    erase(no_inline_list_funcs),
    erase(bin_opt_info),
    {ok,Mod#c_module{defs=Ds1},get_warnings()}.

function_1({#c_var{name={F,Arity}}=Name,B0}) ->
    try
	B = expr(B0, value, sub_new()),			%This must be a fun!
	{Name,B}
    catch
	Class:Error ->
	    Stack = erlang:get_stacktrace(),
	    io:fwrite("Function: ~w/~w\n", [F,Arity]),
	    erlang:raise(Class, Error, Stack)
    end.

%% body(Expr, Sub) -> Expr.
%% body(Expr, Context, Sub) -> Expr.
%%  No special handling of anything except values.

body(Body, Sub) ->
    body(Body, value, Sub).

body(#c_values{anno=A,es=Es0}, Ctxt, Sub) ->
    Es1 = expr_list(Es0, Ctxt, Sub),
    #c_values{anno=A,es=Es1};
body(E, Ctxt, Sub) ->
    ?ASSERT(verify_scope(E, Sub)),
    expr(E, Ctxt, Sub).

%% guard(Expr, Sub) -> Expr.
%%  Do guard expression.  We optimize it in the same way as
%%  expressions in function bodies.

guard(Expr, Sub) ->
    ?ASSERT(verify_scope(Expr, Sub)),
    expr(Expr, value, Sub#sub{in_guard=true}).

%% opt_guard_try(Expr) -> Expr.
%%
opt_guard_try(#c_seq{arg=Arg,body=Body0}=Seq) ->
    Body = opt_guard_try(Body0),
    case {Arg,Body} of
	{#c_call{module=#c_literal{val=Mod},
		 name=#c_literal{val=Name},
		 args=Args},#c_literal{val=false}} ->
	    %% We have sequence consisting of a call (evaluated
	    %% for a possible exception and/or side effect only),
	    %% followed by 'false'.
	    %%   Since the sequence is inside a try block that will
	    %% default to 'false' if any exception occurs, not
	    %% evalutating the call will not change the behaviour
	    %% provided that the call has no side effects.
	    case erl_bifs:is_pure(Mod, Name, length(Args)) of
		false ->
		    %% Not a pure BIF (meaning that this is not
		    %% a guard and that we must keep the call).
		    Seq#c_seq{body=Body};
		true ->
		    %% The BIF has no side effects, so it can
		    %% be safely removed.
		    Body
	    end;
	{_,_} ->
	    Seq#c_seq{body=Body}
    end;
opt_guard_try(#c_case{clauses=Cs}=Term) ->
    Term#c_case{clauses=opt_guard_try_list(Cs)};
opt_guard_try(#c_clause{body=B0}=Term) ->
    Term#c_clause{body=opt_guard_try(B0)};
opt_guard_try(#c_let{arg=Arg,body=B0}=Term) ->
    case opt_guard_try(B0) of
	#c_literal{}=B ->
	    opt_guard_try(#c_seq{arg=Arg,body=B});
	B ->
	    Term#c_let{body=B}
    end;
opt_guard_try(Term) -> Term.

opt_guard_try_list([C|Cs]) ->
    [opt_guard_try(C)|opt_guard_try_list(Cs)];
opt_guard_try_list([]) -> [].

%% expr(Expr, Sub) -> Expr.
%% expr(Expr, Context, Sub) -> Expr.

expr(Expr, Sub) ->
    expr(Expr, value, Sub).

expr(#c_var{}=V, Ctxt, Sub) ->
    %% Return void() in effect context to potentially shorten the life time
    %% of the variable and potentially generate better code
    %% (for instance, if the variable no longer needs to survive a function
    %% call, there will be no need to save it in the stack frame).
    case Ctxt of
	effect -> void();
	value -> sub_get_var(V, Sub)
    end;
expr(#c_literal{val=Val}=L, Ctxt, _Sub) ->
    case Ctxt of
	effect ->
	    case Val of
		[] ->
		    %% Keep as [] - might give slightly better code.
		    L;
		_ when is_atom(Val) ->
		    %% For cleanliness replace with void().
		    void();
		_ ->
		    %% Warn and replace with void().
		    add_warning(L, useless_building),
		    void()
	    end;
	value -> L
    end;
expr(#c_cons{anno=Anno,hd=H0,tl=T0}=Cons, Ctxt, Sub) ->
    H1 = expr(H0, Ctxt, Sub),
    T1 = expr(T0, Ctxt, Sub),
    case Ctxt of
	effect ->
	    add_warning(Cons, useless_building),
	    expr(make_effect_seq([H1,T1], Sub), Ctxt, Sub);
	value ->
	    ann_c_cons(Anno, H1, T1)
    end;
expr(#c_tuple{anno=Anno,es=Es0}=Tuple, Ctxt, Sub) ->
    Es = expr_list(Es0, Ctxt, Sub),
    case Ctxt of
	effect ->
	    add_warning(Tuple, useless_building),
	    expr(make_effect_seq(Es, Sub), Ctxt, Sub);
	value ->
	    ann_c_tuple(Anno, Es)
    end;
expr(#c_binary{segments=Ss}=Bin0, Ctxt, Sub) ->
    %% Warn for useless building, but always build the binary
    %% anyway to preserve a possible exception.
    case Ctxt of
	effect -> add_warning(Bin0, useless_building);
	value -> ok
    end,
    Bin1 = Bin0#c_binary{segments=bitstr_list(Ss, Sub)},
    Bin = bin_un_utf(Bin1),
    eval_binary(Bin);
expr(#c_fun{}=Fun, effect, _) ->
    %% A fun is created, but not used. Warn, and replace with the void value.
    add_warning(Fun, useless_building),
    void();
expr(#c_fun{vars=Vs0,body=B0}=Fun, Ctxt0, Sub0) ->
    {Vs1,Sub1} = pattern_list(Vs0, Sub0),
    Ctxt = case Ctxt0 of
	       {letrec,Ctxt1} -> Ctxt1;
	       value -> value
	   end,
    B1 = body(B0, Ctxt, Sub1),
    Fun#c_fun{vars=Vs1,body=B1};
expr(#c_seq{arg=Arg0,body=B0}=Seq0, Ctxt, Sub) ->
    %% Optimise away pure literal arg as its value is ignored.
    B1 = body(B0, Ctxt, Sub),
    Arg = body(Arg0, effect, Sub),
    case will_fail(Arg) of
	true ->
	    Arg;
	false ->
	    %% Arg cannot be "values" here - only a single value
	    %% make sense here.
	    case is_safe_simple(Arg, Sub) of
		true -> B1;
		false -> Seq0#c_seq{arg=Arg,body=B1}
	    end
    end;
expr(#c_let{}=Let, Ctxt, Sub) ->
    case simplify_let(Let, Sub) of
	impossible ->
	    %% The argument for the let is "simple", i.e. has no
	    %% complex structures such as let or seq that can be entered.
	    ?ASSERT(verify_scope(Let, Sub)),
	    opt_simple_let(Let, Ctxt, Sub);
	Expr ->
	    %% The let body was successfully moved into the let argument.
	    %% Now recursively re-process the new expression.
	    expr(Expr, Ctxt, sub_new_preserve_types(Sub))
    end;
expr(#c_letrec{defs=Fs0,body=B0}=Letrec, Ctxt, Sub) ->
    Fs1 = map(fun ({Name,Fb}) ->
		      {Name,expr(Fb, {letrec,Ctxt}, Sub)}
	      end, Fs0),
    B1 = body(B0, value, Sub),
    Letrec#c_letrec{defs=Fs1,body=B1};
expr(#c_case{}=Case0, Ctxt, Sub) ->
    case opt_bool_case(Case0) of
	#c_case{arg=Arg0,clauses=Cs0}=Case1 ->
	    Arg1 = body(Arg0, value, Sub),
	    {Arg2,Cs1} = case_opt(Arg1, Cs0),
	    Cs2 = clauses(Arg2, Cs1, Case1, Ctxt, Sub),
	    Case = eval_case(Case1#c_case{arg=Arg2,clauses=Cs2}, Sub),
	    bsm_an(Case);
	Other ->
	    expr(Other, Ctxt, Sub)
    end;
expr(#c_receive{clauses=Cs0,timeout=T0,action=A0}=Recv, Ctxt, Sub) ->
    Cs1 = clauses(#c_var{name='_'}, Cs0, Recv, Ctxt, Sub), %This is all we know
    T1 = expr(T0, value, Sub),
    A1 = body(A0, Ctxt, Sub),
    Recv#c_receive{clauses=Cs1,timeout=T1,action=A1};
expr(#c_apply{op=Op0,args=As0}=App, _, Sub) ->
    Op1 = expr(Op0, value, Sub),
    As1 = expr_list(As0, value, Sub),
    App#c_apply{op=Op1,args=As1};
expr(#c_call{module=M0,name=N0}=Call0, Ctxt, Sub) ->
    M1 = expr(M0, value, Sub),
    N1 = expr(N0, value, Sub),
    Call = Call0#c_call{module=M1,name=N1},
    case useless_call(Ctxt, Call) of
	no -> call(Call, M1, N1, Sub);
	{yes,Seq} -> expr(Seq, Ctxt, Sub)
    end;
expr(#c_primop{args=As0}=Prim, _, Sub) ->
    As1 = expr_list(As0, value, Sub),
    Prim#c_primop{args=As1};
expr(#c_catch{body=B0}=Catch, _, Sub) ->
    %% We can remove catch if the value is simple
    B1 = body(B0, value, Sub),
    case is_safe_simple(B1, Sub) of
	true -> B1;
	false -> Catch#c_catch{body=B1}
    end;
expr(#c_try{arg=E0,vars=[#c_var{name=X}],body=#c_var{name=X},
	    handler=#c_literal{val=false}=False}=Try, _, Sub) ->
    %% Since guard may call expr/2, we must do some optimization of
    %% the kind of try's that occur in guards.
    E1 = body(E0, value, Sub),
    case will_fail(E1) of
	false ->
	    %% Remove any calls that are evaluated for effect only.
	    E2 = opt_guard_try(E1),

	    %% We can remove try/catch if the expression is an
	    %% expression that cannot fail.
	    case is_safe_bool_expr(E2, Sub) orelse is_safe_simple(E2, Sub) of
		true -> E2;
		false -> Try#c_try{arg=E2}
	    end;
	true ->
	    %% Expression will always fail.
	    False
    end;
expr(#c_try{anno=A,arg=E0,vars=Vs0,body=B0,evars=Evs0,handler=H0}=Try, _, Sub0) ->
    %% Here is the general try/catch construct outside of guards.
    %% We can remove try if the value is simple and replace it with a let.
    E1 = body(E0, value, Sub0),
    {Vs1,Sub1} = pattern_list(Vs0, Sub0),
    B1 = body(B0, value, Sub1),
    case is_safe_simple(E1, Sub0) of
	true ->
	    expr(#c_let{anno=A,vars=Vs1,arg=E1,body=B1}, value, Sub0);
	false ->
	    {Evs1,Sub2} = pattern_list(Evs0, Sub0),
	    H1 = body(H0, value, Sub2),
	    Try#c_try{arg=E1,vars=Vs1,body=B1,evars=Evs1,handler=H1}
    end.

expr_list(Es, Ctxt, Sub) ->
    [expr(E, Ctxt, Sub) || E <- Es].

bitstr_list(Es, Sub) ->
    [bitstr(E, Sub) || E <- Es].

bitstr(#c_bitstr{val=Val,size=Size}=BinSeg, Sub) ->
    BinSeg#c_bitstr{val=expr(Val, Sub),size=expr(Size, value, Sub)}.

%% is_safe_simple(Expr, Sub) -> true | false.
%%  A safe simple cannot fail with badarg and is safe to use
%%  in a guard.
%%
%%  Currently, we don't attempt to check binaries because they
%%  are difficult to check.

is_safe_simple(#c_var{}, _) -> true;
is_safe_simple(#c_cons{hd=H,tl=T}, Sub) ->
    is_safe_simple(H, Sub) andalso is_safe_simple(T, Sub);
is_safe_simple(#c_tuple{es=Es}, Sub) -> is_safe_simple_list(Es, Sub);
is_safe_simple(#c_literal{}, _) -> true;
is_safe_simple(#c_call{module=#c_literal{val=erlang},
		       name=#c_literal{val=Name},
		       args=Args}, Sub) when is_atom(Name) ->
    NumArgs = length(Args),
    case erl_internal:bool_op(Name, NumArgs) of
	true ->
	    %% Boolean operators are safe if the arguments are boolean.
	    all(fun(#c_var{name=V}) -> is_boolean_type(V, Sub);
		   (#c_literal{val=Lit}) -> is_boolean(Lit);
		   (_) -> false
		end, Args);
	false ->
	    %% We need a rather complicated test to ensure that
	    %% we only allow safe calls that are allowed in a guard.
	    %% (Note that is_function/2 is a type test, but is not safe.)
	    erl_bifs:is_safe(erlang, Name, NumArgs) andalso
		      (erl_internal:comp_op(Name, NumArgs) orelse
		       erl_internal:new_type_test(Name, NumArgs))
    end;
is_safe_simple(_, _) -> false.

is_safe_simple_list(Es, Sub) -> all(fun(E) -> is_safe_simple(E, Sub) end, Es).

%% will_fail(Expr) -> true|false.
%%  Determine whether the expression will fail with an exception.
%%  Return true if the expression always will fail with an exception,
%%  i.e. never return normally.

will_fail(#c_let{arg=A,body=B}) ->
    will_fail(A) orelse will_fail(B);
will_fail(#c_call{module=#c_literal{val=Mod},name=#c_literal{val=Name},args=Args}) ->
    erl_bifs:is_exit_bif(Mod, Name, length(Args));
will_fail(#c_primop{name=#c_literal{val=match_fail},args=[_]}) -> true;
will_fail(_) -> false.

%% bin_un_utf(#c_binary{}) -> #c_binary{}
%%  Convert any literal UTF-8/16/32 literals to byte-sized
%%  integer fields.

bin_un_utf(#c_binary{anno=Anno,segments=Ss}=Bin) ->
    Bin#c_binary{segments=bin_un_utf_1(Ss, Anno)}.

bin_un_utf_1([#c_bitstr{val=#c_literal{},type=#c_literal{val=utf8}}=H|T],
	     Anno) ->
    bin_un_utf_eval(H, Anno) ++ bin_un_utf_1(T, Anno);
bin_un_utf_1([#c_bitstr{val=#c_literal{},type=#c_literal{val=utf16}}=H|T],
	     Anno) ->
    bin_un_utf_eval(H, Anno) ++ bin_un_utf_1(T, Anno);
bin_un_utf_1([#c_bitstr{val=#c_literal{},type=#c_literal{val=utf32}}=H|T],
	     Anno) ->
    bin_un_utf_eval(H, Anno) ++ bin_un_utf_1(T, Anno);
bin_un_utf_1([H|T], Anno) ->
    [H|bin_un_utf_1(T, Anno)];
bin_un_utf_1([], _) -> [].

bin_un_utf_eval(Bitstr, Anno) ->
    Segments = [Bitstr],
    case eval_binary(#c_binary{anno=Anno,segments=Segments}) of
	#c_literal{anno=Anno,val=Bytes} when is_binary(Bytes) ->
	    [#c_bitstr{anno=Anno,
		       val=#c_literal{anno=Anno,val=B},
		       size=#c_literal{anno=Anno,val=8},
		       unit=#c_literal{anno=Anno,val=1},
		       type=#c_literal{anno=Anno,val=integer},
		       flags=#c_literal{anno=Anno,val=[unsigned,big]}} ||
		B <- binary_to_list(Bytes)];
	_ ->
	    Segments
    end.

%% eval_binary(#c_binary{}) -> #c_binary{} | #c_literal{}
%%  Evaluate a binary at compile time if possible to create
%%  a binary literal.

eval_binary(#c_binary{anno=Anno,segments=Ss}=Bin) ->
    try
	#c_literal{anno=Anno,val=eval_binary_1(Ss, <<>>)}
    catch
	throw:impossible ->
	    Bin;
	  throw:{badarg,Warning} ->
	    add_warning(Bin, Warning),
	    #c_call{anno=Anno,
		    module=#c_literal{val=erlang},
		    name=#c_literal{val=error},
		    args=[#c_literal{val=badarg}]}
    end.

eval_binary_1([#c_bitstr{val=#c_literal{val=Val},size=#c_literal{val=Sz},
			 unit=#c_literal{val=Unit},type=#c_literal{val=Type},
			 flags=#c_literal{val=Flags}}|Ss], Acc0) ->
    Endian = case member(big, Flags) of
		 true ->
		     big;
		 false ->
		     case member(little, Flags) of
			 true -> little;
			 false -> throw(impossible) %Native endian.
		     end
	     end,

    %% Make sure that the size is reasonable.
    case Type of
	binary when is_bitstring(Val) ->
	    if
		Sz =:= all ->
		    ok;
		Sz*Unit =< bit_size(Val) ->
		    ok;
		true ->
		    %% Field size is greater than the actual binary - will fail.
		    throw({badarg,embedded_binary_size})
	    end;
	integer when is_integer(Val) ->
	    %% Estimate the number of bits needed to to hold the integer
	    %% literal. Check whether the field size is reasonable in
	    %% proportion to the number of bits needed.
	    if
		Sz*Unit =< 256 ->
		    %% Don't be cheap - always accept fields up to this size.
		    ok;
		true ->
		    case count_bits(Val) of
			BitsNeeded when 2*BitsNeeded >= Sz*Unit ->
			    ok;
			_ ->
			    %% More than about half of the field size will be
			    %% filled out with zeroes - not acceptable.
			    throw(impossible)
		    end
	    end;
	float when is_float(Val) ->
	    %% Bad float size.
	    case Sz*Unit of
		32 -> ok;
		64 -> ok;
		_ -> throw(impossible)
	    end;
	utf8 -> ok;
	utf16 -> ok;
	utf32 -> ok;
	_ ->
	    throw(impossible)
    end,

    %% Evaluate the field.
    try eval_binary_2(Acc0, Val, Sz, Unit, Type, Endian) of
	Acc -> eval_binary_1(Ss, Acc)
    catch
	error:_ ->
	    throw(impossible)
    end;
eval_binary_1([], Acc) -> Acc;
eval_binary_1(_, _) -> throw(impossible).

eval_binary_2(Acc, Val, Size, Unit, integer, little) ->
    <<Acc/bitstring,Val:(Size*Unit)/little>>;
eval_binary_2(Acc, Val, Size, Unit, integer, big) ->
    <<Acc/bitstring,Val:(Size*Unit)/big>>;
eval_binary_2(Acc, Val, _Size, _Unit, utf8, _) ->
    try
	<<Acc/bitstring,Val/utf8>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, _Size, _Unit, utf16, big) ->
    try
	<<Acc/bitstring,Val/big-utf16>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, _Size, _Unit, utf16, little) ->
    try
	<<Acc/bitstring,Val/little-utf16>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, _Size, _Unit, utf32, big) ->
    try
	<<Acc/bitstring,Val/big-utf32>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, _Size, _Unit, utf32, little) ->
    try
	<<Acc/bitstring,Val/little-utf32>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, Size, Unit, float, little) ->
    <<Acc/bitstring,Val:(Size*Unit)/little-float>>;
eval_binary_2(Acc, Val, Size, Unit, float, big) ->
    <<Acc/bitstring,Val:(Size*Unit)/big-float>>;
eval_binary_2(Acc, Val, all, Unit, binary, _) ->
    case bit_size(Val) of
	Size when Size rem Unit =:= 0 ->
	    <<Acc/bitstring,Val:Size/bitstring>>;
	Size ->
	    throw({badarg,{embedded_unit,Unit,Size}})
    end;
eval_binary_2(Acc, Val, Size, Unit, binary, _) ->
    <<Acc/bitstring,Val:(Size*Unit)/bitstring>>.

%% Count the number of bits approximately needed to store Int.
%% (We don't need an exact result for this purpose.)

count_bits(Int) ->
    count_bits_1(abs(Int), 64).

count_bits_1(0, Bits) -> Bits;
count_bits_1(Int, Bits) -> count_bits_1(Int bsr 64, Bits+64).

%% useless_call(Context, #c_call{}) -> no | {yes,Expr}
%%  Check whether the function is called only for effect,
%%  and if the function either has no effect whatsoever or
%%  the only effect is an exception. Generate appropriate
%%  warnings. If the call is "useless" (has no effect),
%%  a rewritten expression consisting of a sequence of
%%  the arguments only is returned.

useless_call(effect, #c_call{anno=Anno,
			     module=#c_literal{val=Mod},
			     name=#c_literal{val=Name},
			     args=Args}=Call) ->
    A = length(Args),
    case erl_bifs:is_safe(Mod, Name, A) of
	false ->
	    case erl_bifs:is_pure(Mod, Name, A) of
		true ->
		    case member(result_not_wanted, Anno) of
			false ->
			    add_warning(Call, result_ignored);
			true ->
			    ok
		    end;
		false ->
		    ok
	    end,
	    no;
	true ->
	    add_warning(Call, {no_effect,{Mod,Name,A}}),
	    {yes,make_effect_seq(Args, sub_new())}
    end;
useless_call(_, _) -> no.

%% make_effect_seq([Expr], Sub) -> #c_seq{}|void()
%%  Convert a list of epressions evaluated in effect context to a chain of
%%  #c_seq{}. The body in the innermost #c_seq{} will be void().
%%  Anything that will not have any effect will be thrown away.

make_effect_seq([H|T], Sub) ->
    case is_safe_simple(H, Sub) of
	true -> make_effect_seq(T, Sub);
	false -> #c_seq{arg=H,body=make_effect_seq(T, Sub)}
    end;
make_effect_seq([], _) -> void().

%% Handling remote calls. The module/name fields have been processed.

call(#c_call{args=As}=Call, #c_literal{val=M}=M0, #c_literal{val=N}=N0, Sub) ->
    case get(no_inline_list_funcs) of
  	true ->
 	    call_0(Call, M0, N0, As, Sub);
  	false ->
  	    call_1(Call, M, N, As, Sub)
      end;
call(#c_call{args=As}=Call, M, N, Sub) ->
    call_0(Call, M, N, As, Sub).

call_0(Call, M, N, As0, Sub) ->
    As1 = expr_list(As0, value, Sub),
    fold_call(Call#c_call{args=As1}, M, N, As1, Sub).

%% We inline some very common higher order list operations.
%% We use the same evaluation order as the library function.

call_1(#c_call{anno=Anno}, lists, all, [Arg1,Arg2], Sub) ->
    Loop = #c_var{name={'lists^all',1}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    Err1 = #c_tuple{es=[#c_literal{val='case_clause'}, X]},
    CC1 = #c_clause{pats=[#c_literal{val=true}], guard=#c_literal{val=true},
		    body=#c_apply{anno=Anno, op=Loop, args=[Xs]}},
    CC2 = #c_clause{pats=[#c_literal{val=false}], guard=#c_literal{val=true},
		    body=#c_literal{val=false}},
    CC3 = #c_clause{pats=[X], guard=#c_literal{val=true},
		    body=match_fail(Anno, Err1)},
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
		   body=#c_case{arg=#c_apply{anno=Anno, op=F, args=[X]},
				clauses = [CC1, CC2, CC3]}},
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
		   body=#c_literal{val=true}},
    Err2 = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err2)},
    Fun = #c_fun{vars=[Xs],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
		body=#c_letrec{defs=[{Loop,Fun}],
			       body=#c_apply{anno=Anno, op=Loop, args=[L]}}},
	 Sub);
call_1(#c_call{anno=Anno}, lists, any, [Arg1,Arg2], Sub) ->
    Loop = #c_var{name={'lists^any',1}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    Err1 = #c_tuple{es=[#c_literal{val='case_clause'}, X]},
    CC1 = #c_clause{pats=[#c_literal{val=true}], guard=#c_literal{val=true},
		    body=#c_literal{val=true}},
    CC2 = #c_clause{pats=[#c_literal{val=false}], guard=#c_literal{val=true},
		    body=#c_apply{anno=Anno, op=Loop, args=[Xs]}},
    CC3 = #c_clause{pats=[X], guard=#c_literal{val=true},
		    body=match_fail(Anno, Err1)},
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
		   body=#c_case{arg=#c_apply{anno=Anno, op=F, args=[X]},
				clauses = [CC1, CC2, CC3]}},
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
		   body=#c_literal{val=false}},
    Err2 = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err2)},
    Fun = #c_fun{vars=[Xs],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
		body=#c_letrec{defs=[{Loop,Fun}],
			       body=#c_apply{anno=Anno, op=Loop, args=[L]}}},
	 Sub);
call_1(#c_call{anno=Anno}, lists, foreach, [Arg1,Arg2], Sub) ->
    Loop = #c_var{name={'lists^foreach',1}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
		   body=#c_seq{arg=#c_apply{anno=Anno, op=F, args=[X]},
			       body=#c_apply{anno=Anno, op=Loop, args=[Xs]}}},
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
		   body=#c_literal{val=ok}},
    Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err)},
    Fun = #c_fun{vars=[Xs],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
		body=#c_letrec{defs=[{Loop,Fun}],
			       body=#c_apply{anno=Anno, op=Loop, args=[L]}}},
	 Sub);
call_1(#c_call{anno=Anno}, lists, map, [Arg1,Arg2], Sub) ->
    Loop = #c_var{name={'lists^map',1}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    H = #c_var{name='H'},
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
		   body=#c_let{vars=[H], arg=#c_apply{anno=Anno,
						      op=F,
						      args=[X]},
			       body=#c_cons{hd=H,
					    tl=#c_apply{anno=Anno,
							op=Loop,
							args=[Xs]}}}},
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
		   body=#c_literal{val=[]}},
    Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err)},
    Fun = #c_fun{vars=[Xs],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
		body=#c_letrec{defs=[{Loop,Fun}],
			       body=#c_apply{anno=Anno, op=Loop, args=[L]}}},
	 Sub);
call_1(#c_call{anno=Anno}, lists, flatmap, [Arg1,Arg2], Sub) ->
    Loop = #c_var{name={'lists^flatmap',1}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    H = #c_var{name='H'},
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
		   body=#c_let{vars=[H],
			       arg=#c_apply{anno=Anno, op=F, args=[X]},
			       body=#c_call{anno=Anno,
					    module=#c_literal{val=erlang},
					    name=#c_literal{val='++'},
					    args=[H,
						  #c_apply{anno=Anno,
							   op=Loop,
							   args=[Xs]}]}}},
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
		   body=#c_literal{val=[]}},
    Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err)},
    Fun = #c_fun{vars=[Xs],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
		body=#c_letrec{defs=[{Loop,Fun}],
			       body=#c_apply{anno=Anno, op=Loop, args=[L]}}},
	 Sub);
call_1(#c_call{anno=Anno}, lists, filter, [Arg1,Arg2], Sub) ->
    Loop = #c_var{name={'lists^filter',1}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    B = #c_var{name='B'},
    Err1 = #c_tuple{es=[#c_literal{val='case_clause'}, X]},
    CC1 = #c_clause{pats=[#c_literal{val=true}], guard=#c_literal{val=true},
		    body=#c_cons{hd=X, tl=Xs}},
    CC2 = #c_clause{pats=[#c_literal{val=false}], guard=#c_literal{val=true},
		    body=Xs},
    CC3 = #c_clause{pats=[X], guard=#c_literal{val=true},
		    body=match_fail(Anno, Err1)},
    Case = #c_case{arg=B, clauses = [CC1, CC2, CC3]},
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
		   body=#c_let{vars=[B],
			       arg=#c_apply{anno=Anno, op=F, args=[X]},
			       body=#c_let{vars=[Xs],
					   arg=#c_apply{anno=Anno,
							op=Loop,
							args=[Xs]},
					   body=Case}}},
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
		   body=#c_literal{val=[]}},
    Err2 = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err2)},
    Fun = #c_fun{vars=[Xs],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
		body=#c_letrec{defs=[{Loop,Fun}],
			       body=#c_apply{anno=Anno, op=Loop, args=[L]}}},
    Sub);
call_1(#c_call{anno=Anno}, lists, foldl, [Arg1,Arg2,Arg3], Sub) ->
    Loop = #c_var{name={'lists^foldl',2}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    A = #c_var{name='A'},
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
		   body=#c_apply{anno=Anno,
				 op=Loop,
				 args=[Xs, #c_apply{anno=Anno,
						    op=F,
						    args=[X, A]}]}},
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true}, body=A},
    Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err)},
    Fun = #c_fun{vars=[Xs, A],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, A, L], arg=#c_values{es=[Arg1, Arg2, Arg3]},
		body=#c_letrec{defs=[{Loop,Fun}],
			       body=#c_apply{anno=Anno, op=Loop, args=[L, A]}}},
	 Sub);
call_1(#c_call{anno=Anno}, lists, foldr, [Arg1,Arg2,Arg3], Sub) ->
    Loop = #c_var{name={'lists^foldr',2}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    A = #c_var{name='A'},
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
		   body=#c_apply{anno=Anno,
				 op=F,
				 args=[X, #c_apply{anno=Anno,
						   op=Loop,
						   args=[Xs, A]}]}},
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true}, body=A},
    Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err)},
    Fun = #c_fun{vars=[Xs, A],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, A, L], arg=#c_values{es=[Arg1, Arg2, Arg3]},
		body=#c_letrec{defs=[{Loop,Fun}],
			       body=#c_apply{anno=Anno, op=Loop, args=[L, A]}}},
	 Sub);
call_1(#c_call{anno=Anno}, lists, mapfoldl, [Arg1,Arg2,Arg3], Sub) ->
    Loop = #c_var{name={'lists^mapfoldl',2}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    Avar = #c_var{name='A'},
    Match =
	fun (A, P, E) ->
		C1 = #c_clause{pats=[P], guard=#c_literal{val=true}, body=E},
		Err = #c_tuple{es=[#c_literal{val='badmatch'}, X]},
		C2 = #c_clause{pats=[X], guard=#c_literal{val=true},
			       body=match_fail(Anno, Err)},
		#c_case{arg=A, clauses=[C1, C2]}
	end,
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
		   body=Match(#c_apply{anno=Anno, op=F, args=[X, Avar]},
			      #c_tuple{es=[X, Avar]},
%%% Tuple passing version
			      Match(#c_apply{anno=Anno,
					     op=Loop,
					     args=[Xs, Avar]},
				    #c_tuple{es=[Xs, Avar]},
				    #c_tuple{es=[#c_cons{hd=X, tl=Xs}, Avar]})
%%% Multiple-value version
%%% 			      #c_let{vars=[Xs,A],
%%% 				     %% The tuple here will be optimised
%%% 				     %% away later; no worries.
%%% 				     arg=#c_apply{op=Loop, args=[Xs, A]},
%%% 				     body=#c_values{es=[#c_cons{hd=X, tl=Xs},
%%% 							A]}}
			     )},
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
%%% Tuple passing version
		   body=#c_tuple{es=[#c_literal{val=[]}, Avar]}},
%%% Multiple-value version
%%% 		   body=#c_values{es=[#c_literal{val=[]}, A]}},
    Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err)},
    Fun = #c_fun{vars=[Xs, Avar],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, Avar, L], arg=#c_values{es=[Arg1, Arg2, Arg3]},
		body=#c_letrec{defs=[{Loop,Fun}],
%%% Tuple passing version
			       body=#c_apply{anno=Anno,
					     op=Loop,
					     args=[L, Avar]}}},
%%% Multiple-value version
%%% 			       body=#c_let{vars=[Xs, A],
%%% 					   arg=#c_apply{op=Loop,
%%% 							args=[L, A]},
%%% 					   body=#c_tuple{es=[Xs, A]}}}},
	 Sub);
call_1(#c_call{anno=Anno}, lists, mapfoldr, [Arg1,Arg2,Arg3], Sub) ->
    Loop = #c_var{name={'lists^mapfoldr',2}},
    F = #c_var{name='F'},
    Xs = #c_var{name='Xs'},
    X = #c_var{name='X'},
    Avar = #c_var{name='A'},
    Match =
	fun (A, P, E) ->
		C1 = #c_clause{pats=[P], guard=#c_literal{val=true}, body=E},
		Err = #c_tuple{es=[#c_literal{val='badmatch'}, X]},
		C2 = #c_clause{pats=[X], guard=#c_literal{val=true},
			       body=match_fail(Anno, Err)},
		#c_case{arg=A, clauses=[C1, C2]}
	end,
    C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
%%% Tuple passing version
		   body=Match(#c_apply{anno=Anno,
				       op=Loop,
				       args=[Xs, Avar]},
			      #c_tuple{es=[Xs, Avar]},
			      Match(#c_apply{anno=Anno, op=F, args=[X, Avar]},
				    #c_tuple{es=[X, Avar]},
				    #c_tuple{es=[#c_cons{hd=X, tl=Xs}, Avar]}))
%%% Multiple-value version
%%% 		   body=#c_let{vars=[Xs,A],
%%% 			       %% The tuple will be optimised away
%%% 			       arg=#c_apply{op=Loop, args=[Xs, A]},
%%% 			       body=Match(#c_apply{op=F, args=[X, A]},
%%% 					  #c_tuple{es=[X, A]},
%%% 					  #c_values{es=[#c_cons{hd=X, tl=Xs},
%%% 						        A]})}
		  },
    C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
%%% Tuple passing version
		   body=#c_tuple{es=[#c_literal{val=[]}, Avar]}},
%%% Multiple-value version
%%% 		   body=#c_values{es=[#c_literal{val=[]}, A]}},
    Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
    C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
		   body=match_fail(Anno, Err)},
    Fun = #c_fun{vars=[Xs, Avar],
		 body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
    L = #c_var{name='L'},
    expr(#c_let{vars=[F, Avar, L], arg=#c_values{es=[Arg1, Arg2, Arg3]},
		body=#c_letrec{defs=[{Loop,Fun}],
%%% Tuple passing version
			       body=#c_apply{anno=Anno,
					     op=Loop,
					     args=[L, Avar]}}},
%%% Multiple-value version
%%% 			       body=#c_let{vars=[Xs, A],
%%% 					   arg=#c_apply{op=Loop,
%%% 							args=[L, A]},
%%% 					   body=#c_tuple{es=[Xs, A]}}}},
	 Sub);
call_1(#c_call{module=M, name=N}=Call, _, _, As, Sub) ->
    call_0(Call, M, N, As, Sub).

match_fail(Anno, Arg) ->
    #c_primop{anno=Anno,
	      name=#c_literal{val='match_fail'},
	      args=[Arg]}.

%% fold_call(Call, Mod, Name, Args, Sub) -> Expr.
%%  Try to safely evaluate the call.  Just try to evaluate arguments,
%%  do the call and convert return values to literals.  If this
%%  succeeds then use the new value, otherwise just fail and use
%%  original call.  Do this at every level.
%%
%%  We attempt to evaluate calls to certain BIFs even if the
%%  arguments are not literals. For instance, we evaluate length/1
%%  if the shape of the list is known, and element/2 and setelement/3
%%  if the position is constant and the shape of the tuple is known.
%%
fold_call(Call, #c_literal{val=M}, #c_literal{val=F}, Args, Sub) ->
    fold_call_1(Call, M, F, Args, Sub);
fold_call(Call, _M, _N, _Args, _Sub) -> Call.

fold_call_1(Call, erlang, apply, [Mod,Func,Args], _) ->
    simplify_apply(Call, Mod, Func, Args);
fold_call_1(Call, Mod, Name, Args, Sub) ->
    NumArgs = length(Args),
    case erl_bifs:is_pure(Mod, Name, NumArgs) of
	false -> Call;				%Not pure - keep call.
	true -> fold_call_2(Call, Mod, Name, Args, Sub)
    end.

fold_call_2(Call, Module, Name, Args0, Sub) ->
    try
	Args = [core_lib:literal_value(A) || A <- Args0],
	try apply(Module, Name, Args) of
	    Val ->
		case cerl:is_literal_term(Val) of
		    true ->
			#c_literal{val=Val};
		    false ->
			%% Successful evaluation, but it was not
			%% possible to express the computed value as a literal.
			Call
		end
	catch
	    error:Reason ->
		%% Evaluation of the function failed. Warn and replace
		%% the call with a call to erlang:error/1.
		eval_failure(Call, Reason)
	end
    catch
	error:_ ->
	    %% There was at least one non-literal argument.
	    fold_non_lit_args(Call, Module, Name, Args0, Sub)
    end.

%% fold_non_lit_args(Call, Module, Name, Args, Sub) -> Expr.
%%  Attempt to evaluate some pure BIF calls with one or more
%%  non-literals arguments.
%%
fold_non_lit_args(Call, erlang, is_boolean, [Arg], Sub) ->
    eval_is_boolean(Call, Arg, Sub);
fold_non_lit_args(Call, erlang, element, [Arg1,Arg2], Sub) ->
    eval_element(Call, Arg1, Arg2, Sub);
fold_non_lit_args(Call, erlang, length, [Arg], _) ->
    eval_length(Call, Arg);
fold_non_lit_args(Call, erlang, '++', [Arg1,Arg2], _) ->
    eval_append(Call, Arg1, Arg2);
fold_non_lit_args(Call, lists, append, [Arg1,Arg2], _) ->
    eval_append(Call, Arg1, Arg2);
fold_non_lit_args(Call, erlang, setelement, [Arg1,Arg2,Arg3], _) ->
    eval_setelement(Call, Arg1, Arg2, Arg3);
fold_non_lit_args(Call, erlang, is_record, [Arg1,Arg2,Arg3], Sub) ->
    eval_is_record(Call, Arg1, Arg2, Arg3, Sub);
fold_non_lit_args(Call, erlang, N, Args, Sub) ->
    NumArgs = length(Args),
    case erl_internal:comp_op(N, NumArgs) of
	true ->
	    eval_rel_op(Call, N, Args, Sub);
	false ->
	    case erl_internal:bool_op(N, NumArgs) of
		true ->
		    eval_bool_op(Call, N, Args, Sub);
		false ->
		    Call
	    end
    end;
fold_non_lit_args(Call, _, _, _, _) -> Call.

%% Evaluate a relational operation using type information.
eval_rel_op(Call, Op, [#c_var{name=V},#c_var{name=V}], _) ->
    Bool = erlang:Op(same, same),
    #c_literal{anno=core_lib:get_anno(Call),val=Bool};
eval_rel_op(Call, '=:=', [#c_var{name=V}=Var,#c_literal{val=true}], Sub) ->
    %% BoolVar =:= true  ==>  BoolVar
    case is_boolean_type(V, Sub) of
	true -> Var;
	false -> Call
    end;
eval_rel_op(Call, '==', Ops, _Sub) ->
    case is_exact_eq_ok(Ops) of
	true ->
	    Name = #c_literal{anno=core_lib:get_anno(Call),val='=:='},
	    Call#c_call{name=Name};
	false ->
	    Call
    end;
eval_rel_op(Call, '/=', Ops, _Sub) ->
    case is_exact_eq_ok(Ops) of
	true ->
	    Name = #c_literal{anno=core_lib:get_anno(Call),val='=/='},
	    Call#c_call{name=Name};
	false ->
	    Call
    end;
eval_rel_op(Call, _, _, _) -> Call.

is_exact_eq_ok([#c_literal{val=Lit}|_]) ->
    is_non_numeric(Lit);
is_exact_eq_ok([_|T]) ->
    is_exact_eq_ok(T);
is_exact_eq_ok([]) -> false.

is_non_numeric([H|T]) ->
    is_non_numeric(H) andalso is_non_numeric(T);
is_non_numeric(Tuple) when is_tuple(Tuple) ->
    is_non_numeric_tuple(Tuple, tuple_size(Tuple));
is_non_numeric(Num) when is_number(Num) ->
    false;
is_non_numeric(_) -> true.

is_non_numeric_tuple(Tuple, El) when El >= 1 ->
    is_non_numeric(element(El, Tuple)) andalso
	is_non_numeric_tuple(Tuple, El-1);
is_non_numeric_tuple(_Tuple, 0) -> true.

%% Evaluate a bool op using type information. We KNOW that
%% there must be at least one non-literal argument (i.e.
%% there is no need to handle the case that all argments
%% are literal).
eval_bool_op(Call, 'and', [#c_literal{val=true},#c_var{name=V}=Res], Sub) ->
    case is_boolean_type(V, Sub) of
	true -> Res;
	false-> Call
    end;
eval_bool_op(Call, 'and', [#c_var{name=V}=Res,#c_literal{val=true}], Sub) ->
    case is_boolean_type(V, Sub) of
	true -> Res;
	false-> Call
    end;
eval_bool_op(Call, 'and', [#c_literal{val=false}=Res,#c_var{name=V}], Sub) ->
    case is_boolean_type(V, Sub) of
	true -> Res;
	false-> Call
    end;
eval_bool_op(Call, 'and', [#c_var{name=V},#c_literal{val=false}=Res], Sub) ->
    case is_boolean_type(V, Sub) of
	true -> Res;
	false-> Call
    end;
eval_bool_op(Call, _, _, _) -> Call.

%% Evaluate is_boolean/1 using type information.
eval_is_boolean(Call, #c_var{name=V}, Sub) ->
    case is_boolean_type(V, Sub) of
	true -> #c_literal{val=true};
	false -> Call
    end;
eval_is_boolean(_, #c_cons{}, _) ->
    #c_literal{val=false};
eval_is_boolean(_, #c_tuple{}, _) ->
    #c_literal{val=false};
eval_is_boolean(Call, _, _) ->
    Call.

%% eval_length(Call, List) -> Val.
%%  Evaluates the length for the prefix of List which has a known
%%  shape.
%%
eval_length(Call, Core) -> eval_length(Call, Core, 0).

eval_length(Call, #c_literal{val=Val}, Len0) ->
    try
	Len = Len0 + length(Val),
	#c_literal{anno=Call#c_call.anno,val=Len}
    catch
	_:_ ->
	    eval_failure(Call, badarg)
    end;
eval_length(Call, #c_cons{tl=T}, Len) ->
    eval_length(Call, T, Len+1);
eval_length(Call, _List, 0) ->
    Call;		%Could do nothing
eval_length(Call, List, Len) ->
    A = Call#c_call.anno,
    #c_call{anno=A,
	    module=#c_literal{anno=A,val=erlang},
	    name=#c_literal{anno=A,val='+'},
	    args=[#c_literal{anno=A,val=Len},Call#c_call{args=[List]}]}.

%% eval_append(Call, FirstList, SecondList) -> Val.
%%  Evaluates the constant part of '++' expression.
%%
eval_append(Call, #c_literal{val=Cs1}=S1, #c_literal{val=Cs2}) ->
    try
	S1#c_literal{val=Cs1 ++ Cs2}
    catch error:badarg ->
	    eval_failure(Call, badarg)
    end;
eval_append(Call, #c_literal{val=Cs}, List) when length(Cs) =< 4 ->
    Anno = Call#c_call.anno,
    foldr(fun (C, L) ->
		  ann_c_cons(Anno, #c_literal{val=C}, L)
	  end, List, Cs);
eval_append(Call, #c_cons{anno=Anno,hd=H,tl=T}, List) ->
    ann_c_cons(Anno, H, eval_append(Call, T, List));
eval_append(Call, X, Y) ->
    Call#c_call{args=[X,Y]}.			%Rebuild call arguments.

%% eval_element(Call, Pos, Tuple, Types) -> Val.
%%  Evaluates element/2 if the position Pos is a literal and
%%  the shape of the tuple Tuple is known.
%%
eval_element(Call, #c_literal{val=Pos}, #c_tuple{es=Es}, _Types) when is_integer(Pos) ->
    if
	1 =< Pos, Pos =< length(Es) ->
	    lists:nth(Pos, Es);
	true ->
	    eval_failure(Call, badarg)
    end;
eval_element(Call, #c_literal{val=Pos}, #c_var{name=V}, Types)
  when is_integer(Pos) ->
    case orddict:find(V, Types#sub.t) of
	{ok,#c_tuple{es=Elements}} ->
	    if
		1 =< Pos, Pos =< length(Elements) ->
		    case lists:nth(Pos, Elements) of
			#c_alias{var=Alias} -> Alias;
			Res -> Res
		    end;
		true ->
		    eval_failure(Call, badarg)
	    end;
	error ->
	    Call
    end;
eval_element(Call, Pos, Tuple, _Types) ->
    case is_not_integer(Pos) orelse is_not_tuple(Tuple) of
	true ->
	    eval_failure(Call, badarg);
	false ->
	    Call
    end.

%% eval_is_record(Call, Var, Tag, Size, Types) -> Val.
%%  Evaluates is_record/3 using type information.
%%
eval_is_record(Call, #c_var{name=V}, #c_literal{val=NeededTag}=Lit,
	       #c_literal{val=Size}, Types) ->
    case orddict:find(V, Types#sub.t) of
	{ok,#c_tuple{es=[#c_literal{val=Tag}|_]=Es}} ->
	    Lit#c_literal{val=Tag =:= NeededTag andalso
			  length(Es) =:= Size};
	_ ->
	    Call
    end;
eval_is_record(Call, _, _, _, _) -> Call.

%% is_not_integer(Core) -> true | false.
%%  Returns true if Core is definitely not an integer.

is_not_integer(#c_literal{val=Val}) when not is_integer(Val) -> true;
is_not_integer(#c_tuple{}) -> true;
is_not_integer(#c_cons{}) -> true;
is_not_integer(_) -> false.

%% is_not_tuple(Core) -> true | false.
%%  Returns true if Core is definitely not a tuple.

is_not_tuple(#c_literal{val=Val}) when not is_tuple(Val) -> true;
is_not_tuple(#c_cons{}) -> true;
is_not_tuple(_) -> false.

%% eval_setelement(Call, Pos, Tuple, NewVal) -> Core.
%%  Evaluates setelement/3 if position Pos is an integer
%%  the shape of the tuple Tuple is known.
%%
eval_setelement(Call, Pos, Tuple, NewVal) ->
    try
	eval_setelement_1(Pos, Tuple, NewVal)
    catch
	error:_ ->
	    Call
    end.

eval_setelement_1(#c_literal{val=Pos}, #c_tuple{anno=A,es=Es}, NewVal)
  when is_integer(Pos) ->
    ann_c_tuple(A, eval_setelement_2(Pos, Es, NewVal));
eval_setelement_1(#c_literal{val=Pos}, #c_literal{anno=A,val=Es0}, NewVal)
  when is_integer(Pos) ->
    Es = [#c_literal{anno=A,val=E} || E <- tuple_to_list(Es0)],
    ann_c_tuple(A, eval_setelement_2(Pos, Es, NewVal)).

eval_setelement_2(1, [_|T], NewVal) ->
    [NewVal|T];
eval_setelement_2(Pos, [H|T], NewVal) when Pos > 1 ->
    [H|eval_setelement_2(Pos-1, T, NewVal)].

%% eval_failure(Call, Reason) -> Core.
%%  Warn for a call that will fail and replace the call with
%%  a call to erlang:error(Reason).
%%
eval_failure(Call, Reason) ->
    add_warning(Call, {eval_failure,Reason}),
    Call#c_call{module=#c_literal{val=erlang},
		name=#c_literal{val=error},
		args=[#c_literal{val=Reason}]}.

%% simplify_apply(Call0, Mod, Func, Args) -> Call
%%  Simplify an apply/3 to a call if the number of arguments
%%  are known at compile time.

simplify_apply(Call, Mod, Func, Args) ->
    case is_atom_or_var(Mod) andalso is_atom_or_var(Func) of
	true -> simplify_apply_1(Args, Call, Mod, Func, []);
	false -> Call
    end.

simplify_apply_1(#c_literal{val=MoreArgs0}, Call, Mod, Func, Args)
  when length(MoreArgs0) >= 0 ->
    MoreArgs = [#c_literal{val=Arg} || Arg <- MoreArgs0],
    Call#c_call{module=Mod,name=Func,args=reverse(Args, MoreArgs)};
simplify_apply_1(#c_cons{hd=Arg,tl=T}, Call, Mod, Func, Args) ->
    simplify_apply_1(T, Call, Mod, Func, [Arg|Args]);
simplify_apply_1(_, Call, _, _, _) -> Call.

is_atom_or_var(#c_literal{val=Atom}) when is_atom(Atom) -> true;
is_atom_or_var(#c_var{}) -> true;
is_atom_or_var(_) -> false.

%% clause(Clause, Cepxr, Context, Sub) -> Clause.

clause(#c_clause{pats=Ps0,guard=G0,body=B0}=Cl, Cexpr, Ctxt, Sub0) ->
    {Ps1,Sub1} = pattern_list(Ps0, Sub0),
    Sub2 = update_types(Cexpr, Ps1, Sub1),
    GSub = case {Cexpr,Ps1} of
	       {#c_var{name='_'},_} ->
		   %% In a 'receive', Cexpr is the variable '_', which represents the
		   %% message being matched. We must NOT do any extra substiutions.
		   Sub2;
	       {#c_var{},[#c_var{}=Var]} ->
		   %% The idea here is to optimize expressions such as
		   %%
		   %%   case A of A -> ...
		   %%
		   %% to get rid of the extra guard test that the compiler
		   %% added when converting to the Core Erlang representation:
		   %%
		   %%   case A of NewVar when A =:= NewVar -> ...
		   %%
		   %% By replacing NewVar with A everywhere in the guard
		   %% expression, we get
		   %%
		   %%   case A of NewVar when A =:= A -> ...
		   %%
		   %% which by constant-expression evaluation is reduced to
		   %%
		   %%   case A of NewVar when true -> ...
		   %%
		   sub_set_var(Var, Cexpr, Sub2);
	       _ ->
		   Sub2
	   end,
    G1 = guard(G0, GSub),
    B1 = body(B0, Ctxt, Sub2),
    Cl#c_clause{pats=Ps1,guard=G1,body=B1}.

%% let_substs(LetVars, LetArg, Sub) -> {[Var],[Val],Sub}.
%%  Add suitable substitutions to Sub of variables in LetVars.  First
%%  remove variables in LetVars from Sub, then fix subs.  N.B. must
%%  work out new subs in parallel and then apply them to subs.  Return
%%  the unsubstituted variables and values.

let_substs(Vs0, As0, Sub0) ->
    {Vs1,Sub1} = pattern_list(Vs0, Sub0),
    {Vs2,As1,Ss} = let_substs_1(Vs1, As0, Sub1),
    Sub2 = scope_add([V || #c_var{name=V} <- Vs2], Sub1),
    {Vs2,As1,
     foldl(fun ({V,S}, Sub) -> sub_set_name(V, S, Sub) end, Sub2, Ss)}.

let_substs_1(Vs, #c_values{es=As}, Sub) ->
    let_subst_list(Vs, As, Sub);
let_substs_1([V], A, Sub) -> let_subst_list([V], [A], Sub);
let_substs_1(Vs, A, _) -> {Vs,A,[]}.

let_subst_list([V|Vs0], [A|As0], Sub) ->
    {Vs1,As1,Ss} = let_subst_list(Vs0, As0, Sub),
    case is_subst(A) of
	true -> {Vs1,As1,sub_subst_var(V, A, Sub) ++ Ss};
	false -> {[V|Vs1],[A|As1],Ss}
    end;
let_subst_list([], [], _) -> {[],[],[]}.

%% pattern(Pattern, InSub) -> {Pattern,OutSub}.
%% pattern(Pattern, InSub, OutSub) -> {Pattern,OutSub}.
%%  Variables occurring in Pattern will shadow so they must be removed
%%  from Sub.  If they occur as a value in Sub then we create a new
%%  variable and then add a substitution for that.
%%
%%  Patterns are complicated by sizes in binaries.  These are pure
%%  input variables which create no bindings.  We, therefore, need to
%%  carry around the original substitutions to get the correct
%%  handling.

%%pattern(Pat, Sub) -> pattern(Pat, Sub, Sub).

pattern(#c_var{name=V0}=Pat, Isub, Osub) ->
    case sub_is_val(Pat, Isub) of
	true ->
	    V1 = make_var_name(),
	    Pat1 = #c_var{name=V1},
	    {Pat1,sub_set_var(Pat, Pat1, scope_add([V1], Osub))};
	false ->
	    {Pat,sub_del_var(Pat, scope_add([V0], Osub))}
    end;
pattern(#c_literal{}=Pat, _, Osub) -> {Pat,Osub};
pattern(#c_cons{anno=Anno,hd=H0,tl=T0}, Isub, Osub0) ->
    {H1,Osub1} = pattern(H0, Isub, Osub0),
    {T1,Osub2} = pattern(T0, Isub, Osub1),
    {ann_c_cons(Anno, H1, T1),Osub2};
pattern(#c_tuple{anno=Anno,es=Es0}, Isub, Osub0) ->
    {Es1,Osub1} = pattern_list(Es0, Isub, Osub0),
    {ann_c_tuple(Anno, Es1),Osub1};
pattern(#c_binary{segments=V0}=Pat, Isub, Osub0) ->
    {V1,Osub1} = bin_pattern_list(V0, Isub, Osub0),
    {Pat#c_binary{segments=V1},Osub1};
pattern(#c_alias{var=V0,pat=P0}=Pat, Isub, Osub0) ->
    {V1,Osub1} = pattern(V0, Isub, Osub0),
    {P1,Osub2} = pattern(P0, Isub, Osub1),
    Osub = update_types(V1, [P1], Osub2),
    {Pat#c_alias{var=V1,pat=P1},Osub}.

bin_pattern_list(Ps0, Isub, Osub0) ->
    {Ps,{_,Osub}} = mapfoldl(fun bin_pattern/2, {Isub,Osub0}, Ps0),
    {Ps,Osub}.

bin_pattern(#c_bitstr{val=E0,size=Size0}=Pat, {Isub0,Osub0}) ->
    Size1 = expr(Size0, Isub0),
    {E1,Osub} = pattern(E0, Isub0, Osub0),
    Isub = case E0 of
	       #c_var{} -> sub_set_var(E0, E1, Isub0);
	       _ -> Isub0
	   end,
    {Pat#c_bitstr{val=E1,size=Size1},{Isub,Osub}}.

pattern_list(Ps, Sub) -> pattern_list(Ps, Sub, Sub).

pattern_list(Ps0, Isub, Osub0) ->
    mapfoldl(fun (P, Osub) -> pattern(P, Isub, Osub) end, Osub0, Ps0).

%% is_subst(Expr) -> true | false.
%%  Test whether an expression is a suitable substitution.

is_subst(#c_var{name={_,_}}) ->
    %% Funs must not be duplicated (which will happen if the variable
    %% is used more than once), because the funs will not be equal
    %% (their "index" fields will be different).
    false;
is_subst(#c_var{}) -> true;
is_subst(#c_literal{}) -> true;
is_subst(_) -> false.

%% sub_new() -> #sub{}.
%% sub_get_var(Var, #sub{}) -> Value.
%% sub_set_var(Var, Value, #sub{}) -> #sub{}.
%% sub_set_name(Name, Value, #sub{}) -> #sub{}.
%% sub_del_var(Var, #sub{}) -> #sub{}.
%% sub_subst_var(Var, Value, #sub{}) -> [{Name,Value}].
%% sub_is_val(Var, #sub{}) -> boolean().
%% sub_subst_scope(#sub{}) -> #sub{}
%%
%%  We use the variable name as key so as not have problems with
%%  annotations.  When adding a new substitute we fold substitute
%%  chains so we never have to search more than once.  Use orddict so
%%  we know the format.
%%
%%  sub_subst_scope/1 adds dummy substitutions for all variables
%%  in the scope in order to force renaming if variables in the
%%  scope occurs as pattern variables.

sub_new() -> #sub{v=orddict:new(),s=gb_trees:empty(),t=[]}.

sub_new(#sub{}=Sub) ->
    Sub#sub{v=orddict:new(),t=[]}.

sub_new_preserve_types(#sub{}=Sub) ->
    Sub#sub{v=orddict:new()}.

sub_get_var(#c_var{name=V}=Var, #sub{v=S}) ->
    case orddict:find(V, S) of
	{ok,Val} -> Val;
	error -> Var
    end.

sub_set_var(#c_var{name=V}, Val, Sub) ->
    sub_set_name(V, Val, Sub).

sub_set_name(V, Val, #sub{v=S,s=Scope,t=Tdb0}=Sub) ->
    Tdb1 = kill_types(V, Tdb0),
    Tdb = copy_type(V, Val, Tdb1),
    Sub#sub{v=orddict:store(V, Val, S),s=gb_sets:add(V, Scope),t=Tdb}.

sub_del_var(#c_var{name=V}, #sub{v=S,t=Tdb}=Sub) ->
    Sub#sub{v=orddict:erase(V, S),t=kill_types(V, Tdb)}.

sub_subst_var(#c_var{name=V}, Val, #sub{v=S0}) ->
    %% Fold chained substitutions.
    [{V,Val}] ++ [ {K,Val} || {K,#c_var{name=V1}} <- S0, V1 =:= V].

sub_subst_scope(#sub{v=S0,s=Scope}=Sub) ->
    S = [{-1,#c_var{name=Sv}} || Sv <- gb_sets:to_list(Scope)]++S0,
    Sub#sub{v=S}.

sub_is_val(#c_var{name=V}, #sub{v=S}) ->
    v_is_value(V, S).

v_is_value(Var, Sub) ->
    any(fun ({_,#c_var{name=Val}}) when Val =:= Var -> true;
	    (_) -> false
	end, Sub).

%% clauses(E, [Clause], TopLevel, Context, Sub) -> [Clause].
%%  Trim the clauses by removing all clauses AFTER the first one which
%%  is guaranteed to match.  Also remove all trivially false clauses.

clauses(E, Cs0, TopLevel, Ctxt, Sub) ->
    Cs = clauses_1(E, Cs0, Ctxt, Sub),

    %% Here we want to warn if no clauses whatsoever will ever
    %% match, because that is probably a mistake.
    case all(fun is_compiler_generated/1, Cs) andalso
	any(fun(C) -> not is_compiler_generated(C) end, Cs0) of
	true ->
	    %% The original list of clauses did contain at least one
	    %% user-specified clause, but none of them will match.
	    %% That is probably a mistake.
	    add_warning(TopLevel, no_clause_match);
	false ->
	    %% Either there were user-specified clauses left in
	    %% the transformed clauses, or else none of the original
	    %% clauses were user-specified to begin with (as in 'andalso').
	    ok
    end,

    Cs.

clauses_1(E, [C0|Cs], Ctxt, Sub) ->
    #c_clause{pats=Ps,guard=G} = C1 = clause(C0, E, Ctxt, Sub),
    %%ok = io:fwrite("~w: ~p~n", [?LINE,{E,Ps}]),
    case {will_match(E, Ps),will_succeed(G)} of
	{yes,yes} ->
	    Line = get_line(core_lib:get_anno(C1)),
	    case core_lib:is_literal(E) of
		false ->
		    shadow_warning(Cs, Line);
		true ->
		    %% If the case expression is a literal,
		    %% it is probably OK that some clauses don't match.
		    %% It is a probably some sort of debug macro.
		    ok
	    end,
	    [C1];				%Skip the rest
	{no,_Suc} ->
	    clauses_1(E, Cs, Ctxt, Sub);	%Skip this clause
	{_Mat,no} ->
	    add_warning(C1, nomatch_guard),
	    clauses_1(E, Cs, Ctxt, Sub);	%Skip this clause
	{_Mat,_Suc} ->
	    [C1|clauses_1(E, Cs, Ctxt, Sub)]
    end;
clauses_1(_, [], _, _) -> [].

shadow_warning([C|Cs], none) ->
    add_warning(C, nomatch_shadow),
    shadow_warning(Cs, none);
shadow_warning([C|Cs], Line) ->
    add_warning(C, {nomatch_shadow, Line}),
    shadow_warning(Cs, Line);
shadow_warning([], _) -> ok.

%% will_succeed(Guard) -> yes | maybe | no.
%%  Test if we know whether a guard will succeed/fail or just don't
%%  know.  Be VERY conservative!

will_succeed(#c_literal{val=true}) -> yes;
will_succeed(#c_literal{val=false}) -> no;
will_succeed(_Guard) -> maybe.

%% will_match(Expr, [Pattern]) -> yes | maybe | no.
%%  Test if we know whether a match will succeed/fail or just don't
%%  know.  Be conservative.

will_match(#c_values{es=Es}, Ps) ->
    will_match_list(Es, Ps, yes);
will_match(E, [P]) ->
    will_match_1(E, P).

will_match_1(_E, #c_var{}) -> yes;		%Will always match
will_match_1(E, #c_alias{pat=P}) ->		%Pattern decides
    will_match_1(E, P);
will_match_1(#c_var{}, _P) -> maybe;
will_match_1(#c_tuple{es=Es}, #c_tuple{es=Ps}) ->
    will_match_list(Es, Ps, yes);
will_match_1(#c_literal{val=Lit}, P) ->
    will_match_lit(Lit, P);
will_match_1(_, _) -> maybe.

will_match_list([E|Es], [P|Ps], M) ->
    case will_match_1(E, P) of
	yes -> will_match_list(Es, Ps, M);
	maybe -> will_match_list(Es, Ps, maybe);
	no -> no
    end;
will_match_list([], [], M) -> M.

will_match_lit(Cons, #c_cons{hd=Hp,tl=Tp}) ->
    case Cons of
	[H|T] ->
	    case will_match_lit(H, Hp) of
		yes -> will_match_lit(T, Tp);
		Other -> Other
	    end;
	_ ->
	    no
    end;
will_match_lit(Tuple, #c_tuple{es=Es}) ->
    case is_tuple(Tuple) andalso tuple_size(Tuple) =:= length(Es) of
	true -> will_match_lit_list(tuple_to_list(Tuple), Es);
	false -> no
    end;
will_match_lit(Bin, #c_binary{}) ->
    case is_bitstring(Bin) of
	true -> maybe;
	false -> no
    end;
will_match_lit(_, #c_var{}) ->
    yes;
will_match_lit(Lit, #c_alias{pat=P}) ->
    will_match_lit(Lit, P);
will_match_lit(Lit1, #c_literal{val=Lit2}) ->
    case Lit1 =:= Lit2 of
	true -> yes;
	false -> no
    end.

will_match_lit_list([H|T], [P|Ps]) ->
    case will_match_lit(H, P) of
	yes -> will_match_lit_list(T, Ps);
	Other -> Other
    end;
will_match_lit_list([], []) -> yes.

%% opt_bool_case(CoreExpr) - CoreExpr'.
%%  Do various optimizations to case statement that has a
%%  boolean case expression.
%%
%%  We start with some simple optimizations and normalization
%%  to facilitate later optimizations.
%%
%%  If the case expression can only return a boolean
%%  (or fail), we can remove any clause that cannot
%%  possibly match 'true' or 'false'. Also, any clause
%%  following both 'true' and 'false' clause can
%%  be removed. If successful, we will end up this:
%%
%%  case BoolExpr of           	    case BoolExpr of
%%     true ->			       false ->
%%       ...; 			    	  ...;
%%     false ->            OR          true ->
%%       ...				  ...
%%     end.			    end.
%%
%%  We give up if there are clauses with guards, or if there
%%  is a variable clause that matches anything.
%%
opt_bool_case(#c_case{arg=Arg}=Case0) ->
    case is_bool_expr(Arg) of
	false ->
	    Case0;
	true ->
	    try opt_bool_clauses(Case0) of
		Case ->
		    opt_bool_not(Case)
	    catch
		impossible ->
		    Case0
	    end
    end;
opt_bool_case(Core) -> Core.

opt_bool_clauses(#c_case{clauses=Cs}=Case) ->
    Case#c_case{clauses=opt_bool_clauses(Cs, false, false)}.

opt_bool_clauses(Cs, true, true) ->
    %% We have now seen clauses that match both true and false.
    %% Any remaining clauses cannot possibly match.
    case Cs of
	[_|_] ->
	    shadow_warning(Cs, none),
	    [];
	[] ->
	    []
    end;
opt_bool_clauses([#c_clause{pats=[#c_literal{val=Lit}],
			    guard=#c_literal{val=true},
			    body=B}=C0|Cs], SeenT, SeenF) ->
    case is_boolean(Lit) of
	false ->
	    %% Not a boolean - this clause can't match.
	    add_warning(C0, nomatch_clause_type),
	    opt_bool_clauses(Cs, SeenT, SeenF);
	true ->
	    %% This clause will match.
	    C = C0#c_clause{body=opt_bool_case(B)},
	    case Lit of
		false -> [C|opt_bool_clauses(Cs, SeenT, true)];
		true -> [C|opt_bool_clauses(Cs, true, SeenF)]
	    end
    end;
opt_bool_clauses([#c_clause{pats=Ps,guard=#c_literal{val=true}}=C|Cs], SeenT, SeenF) ->
    case Ps of
	[#c_var{}] ->
	    %% Will match a boolean.
	    throw(impossible);
	[#c_alias{}] ->
	    %% Might match a boolean.
	    throw(impossible);
	_ ->
	    %% The clause cannot possible match a boolean.
	    %% We can remove it.
	    add_warning(C, nomatch_clause_type),
	    opt_bool_clauses(Cs, SeenT, SeenF)
    end;
opt_bool_clauses([_|_], _, _) ->
    %% A clause with a guard. Give up.
    throw(impossible).
%% We intentionally do not have a clause that match an empty
%% list. An empty list would indicate that the clauses do not
%% match all possible values for the case expression, which
%% means that the Core Erlang program is illegal. We prefer to
%% crash on such illegal input, rather than producing code that will
%% fail mysteriously at run time.


%% opt_bool_not(Case) -> CoreExpr.
%%  Try to eliminate one or more calls to 'not' at the top level
%%  of the case expression.
%%
%%  We KNOW that the case expression is guaranteed to return
%%  a boolean and that there are exactly two clauses: one that
%%  matches 'true' and one that matches 'false'.
%%
%%  case not Expr of       	    case Expr of
%%     true ->			       false ->
%%       ...; 			    	  ...;
%%     false ->           ==>          true ->
%%       ...				  ...;
%%     end.			       NewVar ->
%%                                        erlang:error(badarg)
%%                                  end.

opt_bool_not(#c_case{arg=Arg,clauses=Cs0}=Case0) ->
    case Arg of
	#c_call{anno=Anno,module=#c_literal{val=erlang},
 		name=#c_literal{val='not'},
 		args=[Expr]} ->
	    Cs = [opt_bool_not_invert(C) || C <- Cs0] ++
		 [#c_clause{anno=[compiler_generated],
			    pats=[#c_var{name=cor_variable}],
			    guard=#c_literal{val=true},
			    body=#c_call{anno=Anno,
					 module=#c_literal{val=erlang},
					 name=#c_literal{val=error},
					 args=[#c_literal{val=badarg}]}}],
	    Case = Case0#c_case{arg=Expr,clauses=Cs},
	    opt_bool_not(Case);
	_ ->
	    opt_bool_case_redundant(Case0)
    end.

opt_bool_not_invert(#c_clause{pats=[#c_literal{val=Bool}]}=C) ->
    C#c_clause{pats=[#c_literal{val=not Bool}]}.

%% opt_bool_case_redundant(Core) -> Core'.
%%  If the sole purpose of the case is to verify that the case
%%  expression is indeed boolean, we do not need the case
%%  (since we have already verified that the case expression is
%%  boolean).
%%
%%    case BoolExpr of
%%      true -> true   	       	       ==>      BoolExpr
%%      false -> false
%%    end.
%%
opt_bool_case_redundant(#c_case{arg=Arg,clauses=Cs}=Case) ->
    case all(fun opt_bool_case_redundant_1/1, Cs) of
	true -> Arg;
	false -> opt_bool_case_guard(Case)
    end.

opt_bool_case_redundant_1(#c_clause{pats=[#c_literal{val=B}],
				    body=#c_literal{val=B}}) ->
    true;
opt_bool_case_redundant_1(_) -> false.

%% opt_bool_case_guard(Case) -> Case'.
%%  Move a boolean case expression into the guard if we are sure that
%%  it cannot fail.
%%
%%    case SafeBoolExpr of	 	case <> of
%%      true -> TrueClause;    	   ==>    <> when SafeBoolExpr -> TrueClause;
%%      false -> FalseClause		  <> when true -> FalseClause
%%    end.		 		end.
%%
%%  Generally, evaluting a boolean expression in a guard should
%%  be faster than evaulating it in the body.
%%
opt_bool_case_guard(#c_case{arg=#c_literal{}}=Case) ->
    %% It is not necessary to move a literal case expression into the
    %% guard, because it will be handled quite well in other
    %% optimizations, and moving the literal into the guard will
    %% cause some extra warnings, for instance for this code
    %%
    %%    case true of
    %%       true -> ...;
    %%       false -> ...
    %%    end.
    %%
    Case;
opt_bool_case_guard(#c_case{arg=Arg,clauses=Cs0}=Case) ->
    case is_safe_bool_expr(Arg, sub_new()) of
	false ->
	    Case;
	true ->
	    Cs = opt_bool_case_guard(Arg, Cs0),
	    Case#c_case{arg=#c_values{anno=core_lib:get_anno(Arg),es=[]},
			clauses=Cs}
    end.

opt_bool_case_guard(Arg, [#c_clause{pats=[#c_literal{val=true}]}=Tc,Fc]) ->
    [Tc#c_clause{pats=[],guard=Arg},Fc#c_clause{pats=[]}];
opt_bool_case_guard(Arg, [#c_clause{pats=[#c_literal{val=false}]}=Fc,Tc]) ->
    [Tc#c_clause{pats=[],guard=Arg},Fc#c_clause{pats=[]}].

%% eval_case(Case) -> #c_case{} | #c_let{}.
%%  If possible, evaluate a case at compile time.  We know that the
%%  last clause is guaranteed to match so if there is only one clause
%%  with a pattern containing only variables then rewrite to a let.

eval_case(#c_case{arg=#c_var{name=V},
		  clauses=[#c_clause{pats=[P],guard=G,body=B}|_]}=Case,
	  #sub{t=Tdb}=Sub) ->
    case orddict:find(V, Tdb) of
	{ok,Type} ->
	    case {will_match_type(P, Type),will_succeed(G)} of
		{yes,yes} ->
		    {Ps,Es} = remove_non_vars(P, Type),
		    expr(#c_let{vars=Ps,arg=#c_values{es=Es},body=B},
			 sub_new(Sub));
		{_,_} ->
		    eval_case_1(Case, Sub)
	    end;
	error -> eval_case_1(Case, Sub)
    end;
eval_case(Case, Sub) -> eval_case_1(Case, Sub).

eval_case_1(#c_case{arg=E,clauses=[#c_clause{pats=Ps,body=B}]}=Case, Sub) ->
    case is_var_pat(Ps) of
	true -> expr(#c_let{vars=Ps,arg=E,body=B}, sub_new(Sub));
	false -> eval_case_2(E, Ps, B, Case)
    end;
eval_case_1(Case, _) -> Case.

eval_case_2(E, [P], B, Case) ->
    %% Recall that there is only one clause and that it is guaranteed to match.
    %%   If E and P are literals, they must be the same literal and the body
    %% can be used directly as there are no variables that need to be bound.
    %%   Otherwise, P could be an alias meaning that two or more variables
    %% would be bound to E. We don't bother to optimize that case as it
    %% is rather uncommon.
    case core_lib:is_literal(E) andalso core_lib:is_literal(P) of
	false -> Case;
	true -> B
    end;
eval_case_2(_, _, _, Case) -> Case.

is_var_pat(Ps) ->
    all(fun (#c_var{}) -> true;
	    (_Pat) -> false
	end, Ps).

will_match_type(#c_tuple{es=Es}, #c_tuple{es=Ps}) ->
    will_match_list_type(Es, Ps);
will_match_type(#c_literal{val=Atom}, #c_literal{val=Atom}) -> yes;
will_match_type(#c_var{}, #c_var{}) -> yes;
will_match_type(#c_var{}, #c_alias{}) -> yes;
will_match_type(_, _) -> no.

will_match_list_type([E|Es], [P|Ps]) ->
    case will_match_type(E, P) of
	yes -> will_match_list_type(Es, Ps);
	no -> no
    end;
will_match_list_type([], []) -> yes;
will_match_list_type(_, _) -> no.		%Different length

remove_non_vars(Ps0, Es0) ->
    {Ps,Es} = remove_non_vars(Ps0, Es0, [], []),
    {reverse(Ps),reverse(Es)}.

remove_non_vars(#c_tuple{es=Ps}, #c_tuple{es=Es}, Pacc, Eacc) ->
    remove_non_vars_list(Ps, Es, Pacc, Eacc);
remove_non_vars(#c_var{}=Var, #c_alias{var=Evar}, Pacc, Eacc) ->
    {[Var|Pacc],[Evar|Eacc]};
remove_non_vars(#c_var{}=Var, #c_var{}=Evar, Pacc, Eacc) ->
    {[Var|Pacc],[Evar|Eacc]};
remove_non_vars(P, E, Pacc, Eacc) ->
    true = core_lib:is_literal(P) andalso core_lib:is_literal(E), %Assertion.
    {Pacc,Eacc}.

remove_non_vars_list([P|Ps], [E|Es], Pacc0, Eacc0) ->
    {Pacc,Eacc} = remove_non_vars(P, E, Pacc0, Eacc0),
    remove_non_vars_list(Ps, Es, Pacc, Eacc);
remove_non_vars_list([], [], Pacc, Eacc) ->
    {Pacc,Eacc}.

%% case_opt(CaseArg, [Clause]) -> {CaseArg,[Clause]}.
%%  Try and optimise case by avoid building a tuple in
%%  the case expression. Instead of building a tuple
%%  in the case expression, combine the elements into
%%  multiple "values". If a clause refers to the tuple
%%  in the case expression (that was not built), introduce
%%  a let into the guard and/or body to build the tuple.
%%
%%     case {Expr1,Expr2} of		 case <Expr1,Expr2> of
%%         {P1,P2} -> ...		     <P1,P2> -> ...
%%          .  	       	       	  ==>        .
%%          .				     .
%%          .				     .
%%         Var ->                            <Var1,Var2> ->
%%             ... Var ...                      let <Var> = {Var1,Var2}
%%                                                  in ... Var ...
%%          .                                 .
%%          .                                 .
%%          .				      .
%%     end.				 end.
%%
case_opt(#c_tuple{anno=A,es=Es}, Cs0) ->
    Cs1 = case_opt_cs(Cs0, length(Es)),
    {core_lib:set_anno(core_lib:make_values(Es), A),Cs1};
case_opt(Arg, Cs) -> {Arg,Cs}.

case_opt_cs([#c_clause{pats=Ps0,guard=G,body=B}=C|Cs], Arity) ->
    case case_tuple_pat(Ps0, Arity) of
	{ok,Ps1,Avs} ->
	    Flet = fun ({V,Pat}, Body) -> letify(V, Pat, Body) end,
	    [C#c_clause{pats=Ps1,
			guard=foldl(Flet, G, Avs),
			body=foldl(Flet, B, Avs)}|case_opt_cs(Cs, Arity)];
	error ->				%Can't match
	    add_warning(C, nomatch_clause_type),
	    case_opt_cs(Cs, Arity)
    end;
case_opt_cs([], _) -> [].

%% case_tuple_pat([Pattern], Arity) -> {ok,[Pattern],[{AliasVar,Pat}]} | error.

case_tuple_pat([#c_tuple{es=Ps}], Arity) when length(Ps) =:= Arity ->
    {ok,Ps,[]};
case_tuple_pat([#c_literal{val=T}], Arity) when tuple_size(T) =:= Arity ->
    Ps = [#c_literal{val=E} || E <- tuple_to_list(T)],
    {ok,Ps,[]};
case_tuple_pat([#c_var{anno=Anno0}=V], Arity) ->
    Vars = make_vars(Anno0, 1, Arity),

    %% If the entire case statement is evaluated in an effect
    %% context (e.g. "case {A,B} of ... end, ok"), there will
    %% be a warning that a term is constructed but never used.
    %% To avoid that warning, we must annotate the tuple as
    %% compiler generated.

    Anno = [compiler_generated|Anno0],
    {ok,Vars,[{V,#c_tuple{anno=Anno,es=Vars}}]};
case_tuple_pat([#c_alias{var=V,pat=P}], Arity) ->
    case case_tuple_pat([P], Arity) of
	{ok,Ps,Avs} ->
	    Anno0 = core_lib:get_anno(P),
	    Anno = [compiler_generated|Anno0],
	    {ok,Ps,[{V,#c_tuple{anno=Anno,es=unalias_pat_list(Ps)}}|Avs]};
	error ->
	    error
    end;
case_tuple_pat(_, _) -> error.

%% unalias_pat(Pattern) -> Pattern.
%%  Remove all the aliases in a pattern but using the alias variables
%%  instead of the values.  We KNOW they will be bound.

unalias_pat(#c_alias{var=V}) -> V;
unalias_pat(#c_cons{anno=Anno,hd=H0,tl=T0}) ->
    H1 = unalias_pat(H0),
    T1 = unalias_pat(T0),
    ann_c_cons(Anno, H1, T1);
unalias_pat(#c_tuple{anno=Anno,es=Ps}) ->
    ann_c_tuple(Anno, unalias_pat_list(Ps));
unalias_pat(Atomic) -> Atomic.

unalias_pat_list(Ps) -> [unalias_pat(P) || P <- Ps].

make_vars(A, I, Max) when I =< Max ->
    [make_var(A)|make_vars(A, I+1, Max)];
make_vars(_, _, _) -> [].

make_var(A) ->
    #c_var{anno=A,name=make_var_name()}.

make_var_name() ->
    N = get(new_var_num),
    put(new_var_num, N+1),
    list_to_atom("fol"++integer_to_list(N)).

letify(#c_var{name=Vname}=Var, Val, Body) ->
    case core_lib:is_var_used(Vname, Body) of
	true ->
	    A = element(2, Body),
	    #c_let{anno=A,vars=[Var],arg=Val,body=Body};
	false -> Body
    end.

%% opt_case_in_let(LetExpr) -> LetExpr'

opt_case_in_let(#c_let{vars=Vs,arg=Arg,body=B}=Let) ->
    opt_case_in_let_0(Vs, Arg, B, Let).

opt_case_in_let_0([#c_var{name=V}], Arg,
		  #c_case{arg=#c_var{name=V},clauses=Cs}=Case, Let) ->
    case opt_case_in_let_1(V, Arg, Cs) of
	impossible ->
	    case is_simple_case_arg(Arg) andalso
		not core_lib:is_var_used(V, Case#c_case{arg=#c_literal{val=nil}}) of
		true ->
		    opt_bool_case(Case#c_case{arg=Arg});
		false ->
		    Let
	    end;
	Expr -> Expr
    end;
opt_case_in_let_0(_, _, _, Let) -> Let.

opt_case_in_let_1(V, Arg, Cs) ->
    try
	opt_case_in_let_2(V, Arg, Cs)
    catch
	_:_ -> impossible
    end.

opt_case_in_let_2(V, Arg0,
		  [#c_clause{pats=[#c_tuple{es=Es}],
			     guard=#c_literal{val=true},body=B}|_]) ->

    %%  In {V1,V2,...} = case E of P -> ... {Val1,Val2,...}; ... end.
    %%  avoid building tuples, by converting tuples to multiple values.
    %%  (The optimisation is not done if the built tuple is used or returned.)

    true = all(fun (#c_var{}) -> true;
		   (_) -> false end, Es),	%Only variables in tuple
    false = core_lib:is_var_used(V, B),		%Built tuple must not be used.
    Arg1 = tuple_to_values(Arg0, length(Es)),	%Might fail.
    #c_let{vars=Es,arg=Arg1,body=B}.

%% is_simple_case_arg(Expr) -> true|false
%%  Determine whether the Expr is simple enough to be worth
%%  substituting into a case argument. (Common substitutions
%%  of variables and literals are assumed to have been already
%%  handled by the caller.)

is_simple_case_arg(#c_cons{}) -> true;
is_simple_case_arg(#c_tuple{}) -> true;
is_simple_case_arg(#c_call{}) -> true;
is_simple_case_arg(#c_apply{}) -> true;
is_simple_case_arg(_) -> false.

%% is_bool_expr(Core) -> true|false
%%  Check whether the Core expression is guaranteed to return
%%  a boolean IF IT RETURNS AT ALL.
%%
is_bool_expr(Core) ->
    is_bool_expr(Core, sub_new()).

%% is_bool_expr(Core, Sub) -> true|false
%%  Check whether the Core expression is guaranteed to return
%%  a boolean IF IT RETURNS AT ALL. Uses type information
%%  to be able to identify more expressions as booleans.
%%
is_bool_expr(#c_call{module=#c_literal{val=erlang},
		     name=#c_literal{val=Name},args=Args}=Call, _) ->
    NumArgs = length(Args),
    erl_internal:comp_op(Name, NumArgs) orelse
	erl_internal:new_type_test(Name, NumArgs) orelse
        erl_internal:bool_op(Name, NumArgs) orelse
	will_fail(Call);
is_bool_expr(#c_try{arg=E,vars=[#c_var{name=X}],body=#c_var{name=X},
		   handler=#c_literal{val=false}}, Sub) ->
    is_bool_expr(E, Sub);
is_bool_expr(#c_case{clauses=Cs}, Sub) ->
    is_bool_expr_list(Cs, Sub);
is_bool_expr(#c_clause{body=B}, Sub) ->
    is_bool_expr(B, Sub);
is_bool_expr(#c_let{vars=[V],arg=Arg,body=B}, Sub0) ->
    Sub = case is_bool_expr(Arg, Sub0) of
	      true -> update_types(V, [#c_literal{val=true}], Sub0);
	      false -> Sub0
	  end,
    is_bool_expr(B, Sub);
is_bool_expr(#c_let{body=B}, Sub) ->
    %% Binding of multiple variables.
    is_bool_expr(B, Sub);
is_bool_expr(#c_literal{val=Bool}, _) when is_boolean(Bool) ->
    true;
is_bool_expr(#c_var{name=V}, Sub) ->
    is_boolean_type(V, Sub);
is_bool_expr(_, _) -> false.

is_bool_expr_list([C|Cs], Sub) ->
    is_bool_expr(C, Sub) andalso is_bool_expr_list(Cs, Sub);
is_bool_expr_list([], _) -> true.

%% is_safe_bool_expr(Core) -> true|false
%%  Check whether the Core expression ALWAYS returns a boolean
%%  (i.e. it cannot fail). Also make sure that the expression
%%  is suitable for a guard (no calls to non-guard BIFs, local
%%  functions, or is_record/2).
%%
is_safe_bool_expr(Core, Sub) ->
    is_safe_bool_expr_1(Core, Sub, gb_sets:empty()).

is_safe_bool_expr_1(#c_call{module=#c_literal{val=erlang},
			    name=#c_literal{val=is_record},
			    args=[_,_]},
		    _Sub, _BoolVars) ->
    %% The is_record/2 BIF is NOT allowed in guards.
    %%
    %% NOTE: Calls like is_record(Expr, LiteralTag), where LiteralTag
    %% is a literal atom referring to a defined record, have already
    %% been rewritten to is_record(Expr, LiteralTag, TupleSize).
    false;
is_safe_bool_expr_1(#c_call{module=#c_literal{val=erlang},
			    name=#c_literal{val=Name},args=Args},
		    Sub, BoolVars) ->
    NumArgs = length(Args),
    case (erl_internal:comp_op(Name, NumArgs) orelse
	  erl_internal:new_type_test(Name, NumArgs)) andalso
	is_safe_simple_list(Args, Sub) of
	true ->
	    true;
	false ->
	    %% Boolean operators are safe if all arguments are boolean.
	    erl_internal:bool_op(Name, NumArgs) andalso
		is_safe_bool_expr_list(Args, Sub, BoolVars)
    end;
is_safe_bool_expr_1(#c_let{vars=Vars,arg=Arg,body=B}, Sub, BoolVars) ->
    case is_safe_simple(Arg, Sub) of
	true ->
	    case {is_safe_bool_expr_1(Arg, Sub, BoolVars),Vars} of
		{true,[#c_var{name=V}]} ->
		    is_safe_bool_expr_1(B, Sub, gb_sets:add(V, BoolVars));
		{false,_} ->
		    is_safe_bool_expr_1(B, Sub, BoolVars)
	    end;
	false -> false
    end;
is_safe_bool_expr_1(#c_literal{val=Val}, _Sub, _) ->
    is_boolean(Val);
is_safe_bool_expr_1(#c_var{name=V}, _Sub, BoolVars) ->
    gb_sets:is_element(V, BoolVars);
is_safe_bool_expr_1(_, _, _) -> false.

is_safe_bool_expr_list([C|Cs], Sub, BoolVars) ->
    case is_safe_bool_expr_1(C, Sub, BoolVars) of
	true -> is_safe_bool_expr_list(Cs, Sub, BoolVars);
	false -> false
    end;
is_safe_bool_expr_list([], _, _) -> true.

%% tuple_to_values(Expr, TupleArity) -> Expr'
%%  Convert tuples in return position of arity TupleArity to values.
%%  Throws an exception for constructs that are not handled.

tuple_to_values(#c_tuple{es=Es}, Arity) when length(Es) =:= Arity ->
    core_lib:make_values(Es);
tuple_to_values(#c_literal{val=Tuple}=Lit, Arity) when tuple_size(Tuple) =:= Arity ->
    Es = [Lit#c_literal{val=E} || E <- tuple_to_list(Tuple)],
    core_lib:make_values(Es);
tuple_to_values(#c_case{clauses=Cs0}=Case, Arity) ->
    Cs1 = [tuple_to_values(E, Arity) || E <- Cs0],
    Case#c_case{clauses=Cs1};
tuple_to_values(#c_seq{body=B0}=Seq, Arity) ->
    Seq#c_seq{body=tuple_to_values(B0, Arity)};
tuple_to_values(#c_let{body=B0}=Let, Arity) ->
    Let#c_let{body=tuple_to_values(B0, Arity)};
tuple_to_values(#c_receive{clauses=Cs0,timeout=Timeout,action=A0}=Rec, Arity) ->
    Cs = [tuple_to_values(E, Arity) || E <- Cs0],
    A = case Timeout of
	    #c_literal{val=infinity} -> A0;
	    _ -> tuple_to_values(A0, Arity)
	end,
    Rec#c_receive{clauses=Cs,action=A};
tuple_to_values(#c_clause{body=B0}=Clause, Arity) ->
    B = tuple_to_values(B0, Arity),
    Clause#c_clause{body=B};
tuple_to_values(Expr, _) ->
    case will_fail(Expr) of
	true -> Expr;
	false -> erlang:error({not_handled,Expr})
    end.

%% simplify_let(Let, Sub) -> Expr | impossible
%%  If the argument part of an let contains a complex expression, such
%%  as a let or a sequence, move the original let body into the complex
%%  expression.

simplify_let(#c_let{arg=Arg0}=Let0, Sub) ->
    Arg = opt_bool_case(Arg0),
    Let = Let0#c_let{arg=Arg},
    move_let_into_expr(Let, Arg, Sub).

move_let_into_expr(#c_let{vars=InnerVs0,body=InnerBody0}=Inner,
		   #c_let{vars=OuterVs0,arg=Arg0,body=OuterBody0}=Outer, Sub0) ->
    %%
    %% let <InnerVars> = let <OuterVars> = <Arg>
    %%                   in <OuterBody>
    %% in <InnerBody>
    %%
    %%       ==>
    %%
    %% let <OuterVars> = <Arg>
    %% in let <InnerVars> = <OuterBody>
    %%    in <InnerBody>
    %%
    Arg = body(Arg0, Sub0),
    ScopeSub0 = sub_subst_scope(Sub0#sub{t=[]}),
    {OuterVs,ScopeSub} = pattern_list(OuterVs0, ScopeSub0),
    
    OuterBody = body(OuterBody0, ScopeSub),

    {InnerVs,Sub} = pattern_list(InnerVs0, Sub0),
    InnerBody = body(InnerBody0, Sub),
    Outer#c_let{vars=OuterVs,arg=Arg,
		body=Inner#c_let{vars=InnerVs,arg=OuterBody,body=InnerBody}};
move_let_into_expr(#c_let{vars=Lvs0,body=Lbody0}=Let,
		   #c_case{arg=Cexpr0,clauses=[Ca0,Cb0|Cs]}=Case, Sub0) ->
    %% Test if there are no more clauses than Ca0 and Cb0, or if
    %% Cb0 is guaranteed to match.
    TwoClauses = Cs =:= [] orelse
	case Cb0 of
	    #c_clause{pats=[#c_var{}],guard=#c_literal{val=true}} -> true;
	    _ -> false
	end,
    case {TwoClauses,is_failing_clause(Ca0),is_failing_clause(Cb0)} of
	{true,false,true} ->
	    %% let <Lvars> = case <Case-expr> of
	    %%                  <Cvars> -> <Clause-body>;
	    %%                  <OtherCvars> -> erlang:error(...)
	    %%               end
	    %% in <Let-body>
	    %%
	    %%     ==>
	    %%
	    %% case <Case-expr> of
	    %%   <Cvars> ->
	    %%       let <Lvars> = <Clause-body>
	    %%       in <Let-body>;
	    %%   <OtherCvars> -> erlang:error(...)
	    %% end

	    Cexpr = body(Cexpr0, Sub0),
	    CaVars0 = Ca0#c_clause.pats,
	    G0 = Ca0#c_clause.guard,
	    B0 = Ca0#c_clause.body,
	    ScopeSub0 = sub_subst_scope(Sub0#sub{t=[]}),
	    {CaVars,ScopeSub} = pattern_list(CaVars0, ScopeSub0),
	    G = guard(G0, ScopeSub),

	    B1 = body(B0, ScopeSub),

	    {Lvs,B2,Sub1} = let_substs(Lvs0, B1, Sub0),
	    Sub2 = Sub1#sub{s=gb_sets:union(ScopeSub#sub.s,
					    Sub1#sub.s)},
	    Lbody = body(Lbody0, Sub2),
	    B = Let#c_let{vars=Lvs,arg=core_lib:make_values(B2),body=Lbody},

	    Ca = Ca0#c_clause{pats=CaVars,guard=G,body=B},
	    Cb = clause(Cb0, Cexpr, value, Sub0),
	    Case#c_case{arg=Cexpr,clauses=[Ca,Cb]};
	{_,_,_} -> impossible
    end;
move_let_into_expr(_Let, _Expr, _Sub) -> impossible.

is_failing_clause(#c_clause{body=B}) ->
    will_fail(B).

scope_add(Vs, #sub{s=Scope0}=Sub) ->
    Scope = foldl(fun(V, S) when is_integer(V); is_atom(V) ->
			  gb_sets:add(V, S)
		  end, Scope0, Vs),
    Sub#sub{s=Scope}.

%% opt_simple_let(#c_let{}, Context, Sub) -> CoreTerm
%%  Optimize a let construct that does not contain any lets in
%%  in its argument.

opt_simple_let(#c_let{arg=Arg0}=Let, Ctxt, Sub0) ->
    Arg = body(Arg0, value, Sub0),		%This is a body
    case will_fail(Arg) of
	true -> Arg;
	false -> opt_simple_let_1(Let, Arg, Ctxt, Sub0)
    end.

opt_simple_let_1(#c_let{vars=Vs0,body=B0}=Let, Arg0, Ctxt, Sub0) ->
    %% Optimise let and add new substitutions.
    {Vs,Args,Sub1} = let_substs(Vs0, Arg0, Sub0),
    BodySub = case {Vs,Args} of
		  {[V],[A]} ->
		      case is_bool_expr(A, Sub0) of
			  true ->
			      update_types(V, [#c_literal{val=true}], Sub1);
			  false ->
			      Sub1
		      end;
		  {_,_} -> Sub1
	      end,
    B = body(B0, Ctxt, BodySub),
    Arg = core_lib:make_values(Args),
    opt_simple_let_2(Let, Vs, Arg, B, Ctxt, Sub1).

opt_simple_let_2(Let0, Vs0, Arg0, Body0, effect, Sub) ->
    case {Vs0,Arg0,Body0} of
	{[],#c_values{es=[]},Body} ->
	    %% No variables left (because of substitutions).
	    Body;
	{[_|_],Arg,#c_literal{}} ->
	    %% The body is a literal. That means that we can ignore
	    %% it and that the return value is Arg revisited in
	    %% effect context.
	    body(Arg, effect, sub_new_preserve_types(Sub));
	{Vs,Arg,Body} ->
	    %% Since we are in effect context, there is a chance
	    %% that the body no longer references the variables.
	    %% In that case we can construct a sequence and visit
	    %% that in effect context:
	    %%   let <Var> = Arg in BodyWithoutVar  ==> seq Arg BodyWithoutVar
	    case is_any_var_used(Vs, Body) of
		false ->
		    expr(#c_seq{arg=Arg,body=Body}, effect, sub_new_preserve_types(Sub));
		true ->
		    Let = Let0#c_let{vars=Vs,arg=Arg,body=Body},
		    opt_case_in_let_arg(opt_case_in_let(Let), effect, Sub)
	    end
    end;
opt_simple_let_2(Let, Vs0, Arg0, Body, value, Sub) ->
    case {Vs0,Arg0,Body} of
	{[#c_var{name=N1}],Arg,#c_var{name=N2}} ->
	    case N1 =:= N2 of
		true ->
		    %% let <Var> = Arg in <Var>  ==>  Arg
		    Arg;
		false ->
		    %% let <Var> = Arg in <OtherVar>  ==>  seq Arg OtherVar
		    expr(#c_seq{arg=Arg,body=Body}, value, sub_new_preserve_types(Sub))
	    end;
	{[],#c_values{es=[]},_} ->
	    %% No variables left.
	    Body;
	{_,Arg,#c_literal{}} ->
	    %% The variable is not used in the body. The argument
	    %% can be evaluated in effect context to simplify it.
	    expr(#c_seq{arg=Arg,body=Body}, value, sub_new_preserve_types(Sub));
	{Vs,Arg,Body} ->
	    opt_case_in_let_arg(
	      opt_case_in_let(Let#c_let{vars=Vs,arg=Arg,body=Body}),
	      value, Sub)
    end.

%% In guards only, rewrite a case in a let argument like
%%
%%    let <Var> = case <> of
%%                    <> when AnyGuard -> Literal1;
%%                    <> when AnyGuard -> Literal2
%%                end
%%    in LetBody
%%
%% to
%%
%%    case <> of
%%         <> when AnyGuard ->
%%              let <Var> = Literal1 in LetBody
%%         <> when 'true' ->
%%              let <Var> = Literal2 in LetBody
%%    end
%%    
%% In the worst case, the size of the code could increase.
%% In practice, though, substituting the literals into
%% LetBody and doing constant folding will decrease the code
%% size. (Doing this transformation outside of guards could
%% lead to a substantational increase in code size.)
%%
opt_case_in_let_arg(#c_let{arg=#c_case{}=Case}=Let, Ctxt,
		    #sub{in_guard=true}=Sub) ->
    opt_case_in_let_arg_1(Let, Case, Ctxt, Sub);
opt_case_in_let_arg(Let, _, _) -> Let.

opt_case_in_let_arg_1(Let0, #c_case{arg=#c_values{es=[]},
				   clauses=Cs}=Case0, Ctxt, Sub) ->
    Let = mark_compiler_generated(Let0),
    case Cs of
	[#c_clause{body=#c_literal{}=BodyA}=Ca0,
	 #c_clause{body=#c_literal{}=BodyB}=Cb0] ->
	    Ca = Ca0#c_clause{body=Let#c_let{arg=BodyA}},
	    Cb = Cb0#c_clause{body=Let#c_let{arg=BodyB}},
	    Case = Case0#c_case{clauses=[Ca,Cb]},
	    expr(Case, Ctxt, sub_new_preserve_types(Sub));
	_ -> Let
    end;
opt_case_in_let_arg_1(Let, _, _, _) -> Let.

is_any_var_used([#c_var{name=V}|Vs], Expr) ->
    case core_lib:is_var_used(V, Expr) of
	false -> is_any_var_used(Vs, Expr);
	true -> true
    end;
is_any_var_used([], _) -> false.

is_boolean_type(V, #sub{t=Tdb}) ->
    case orddict:find(V, Tdb) of
	{ok,bool} -> true;
	_ -> false
    end.

%% update_types(Expr, Pattern, Sub) -> Sub'
%%  Update the type database.
update_types(Expr, Pat, #sub{t=Tdb0}=Sub) ->
    Tdb = update_types_1(Expr, Pat, Tdb0),
    Sub#sub{t=Tdb}.

update_types_1(#c_var{name=V,anno=Anno}, Pat, Types) ->
    case member(reuse_for_context, Anno) of
	true ->
	    %% If a variable has been marked for reuse of binary context,
	    %% optimizations based on type information are unsafe.
	    kill_types(V, Types);
	false ->
	    update_types_2(V, Pat, Types)
    end;
update_types_1(_, _, Types) -> Types.

update_types_2(V, [#c_tuple{}=P], Types) ->
    orddict:store(V, P, Types);
update_types_2(V, [#c_literal{val=Bool}], Types) when is_boolean(Bool) ->
    orddict:store(V, bool, Types);
update_types_2(_, _, Types) -> Types.

%% kill_types(V, Tdb) -> Tdb'
%%  Kill any entries that references the variable,
%%  either in the key or in the value.

kill_types(V, [{V,_}|Tdb]) ->
    kill_types(V, Tdb);
kill_types(V, [{_,#c_tuple{}=Tuple}=Entry|Tdb]) ->
    case core_lib:is_var_used(V, Tuple) of
	false -> [Entry|kill_types(V, Tdb)];
	true -> kill_types(V, Tdb)
    end;
kill_types(V, [{_,Atom}=Entry|Tdb]) when is_atom(Atom) ->
    [Entry|kill_types(V, Tdb)];
kill_types(_, []) -> [].

%% copy_type(DestVar, SrcVar, Tdb) -> Tdb'
%%  If the SrcVar has a type, assign it to DestVar.
%%
copy_type(V, #c_var{name=Src}, Tdb) ->
    case orddict:find(Src, Tdb) of
	{ok,Type} -> orddict:store(V, Type, Tdb);
	error -> Tdb
    end;
copy_type(_, _, Tdb) -> Tdb.

%% The atom `ok', is widely used in Erlang for "void" values.

void() -> #c_literal{val=ok}.

%%%
%%% Annotate bit syntax matching to faciliate optimization in further passes.
%%%

bsm_an(#c_case{arg=#c_var{}=V}=Case) ->
    bsm_an_1([V], Case);
bsm_an(#c_case{arg=#c_values{es=Es}}=Case) ->
    bsm_an_1(Es, Case);
bsm_an(Other) -> Other.

bsm_an_1(Vs, #c_case{clauses=Cs}=Case) ->
    case bsm_leftmost(Cs) of
	none -> Case;
	Pos -> bsm_an_2(Vs, Cs, Case, Pos)
    end.

bsm_an_2(Vs, Cs, Case, Pos) ->
    case bsm_nonempty(Cs, Pos) of
	true -> bsm_an_3(Vs, Cs, Case, Pos);
	false -> Case
    end.

bsm_an_3(Vs, Cs, Case, Pos) ->
    try
	bsm_ensure_no_partition(Cs, Pos),
	bsm_do_an(Vs, Pos, Cs, Case)
    catch
	throw:{problem,Where,What} ->
	    add_bin_opt_info(Where, What),
	    Case
    end.

bsm_do_an(Vs0, Pos, Cs0, Case) ->
    case nth(Pos, Vs0) of
	#c_var{name=Vname}=V0 ->
	    Cs = bsm_do_an_var(Vname, Pos, Cs0, []),
	    V = bsm_annotate_for_reuse(V0),
	    Bef = lists:sublist(Vs0, Pos-1),
	    Aft = lists:nthtail(Pos, Vs0),
	    case Bef ++ [V|Aft] of
		[_] ->
		    Case#c_case{arg=V,clauses=Cs};
		Vs ->
		    Case#c_case{arg=#c_values{es=Vs},clauses=Cs}
	    end;
	_ ->
	    Case
    end.

bsm_do_an_var(V, S, [#c_clause{pats=Ps,guard=G,body=B0}=C0|Cs], Acc) ->
    case nth(S, Ps) of
	#c_var{name=VarName} ->
	    case core_lib:is_var_used(V, G) of
		true -> bsm_problem(C0, orig_bin_var_used_in_guard);
		false -> ok
	    end,
	    case core_lib:is_var_used(VarName, G) of
		true -> bsm_problem(C0, bin_var_used_in_guard);
		false -> ok
	    end,
	    B1 = bsm_maybe_ctx_to_binary(VarName, B0),
	    B = bsm_maybe_ctx_to_binary(V, B1),
	    C = C0#c_clause{body=B},
	    bsm_do_an_var(V, S, Cs, [C|Acc]);
	#c_alias{}=P ->
	    case bsm_could_match_binary(P) of
		false ->
		    bsm_do_an_var(V, S, Cs, [C0|Acc]);
		true ->
		    bsm_problem(C0, bin_opt_alias)
	    end;
	P ->
	    case bsm_could_match_binary(P) andalso bsm_is_var_used(V, G, B0) of
		false ->
		    bsm_do_an_var(V, S, Cs, [C0|Acc]);
		true ->
		    bsm_problem(C0, bin_var_used)
	    end
    end;
bsm_do_an_var(_, _, [], Acc) -> reverse(Acc).

bsm_annotate_for_reuse(#c_var{anno=Anno}=Var) ->
    case member(reuse_for_context, Anno) of
	false -> Var#c_var{anno=[reuse_for_context|Anno]};
	true -> Var
    end.

bsm_is_var_used(V, G, B) ->
    core_lib:is_var_used(V, G) orelse core_lib:is_var_used(V, B).

bsm_maybe_ctx_to_binary(V, B) ->
    case core_lib:is_var_used(V, B) andalso not previous_ctx_to_binary(V, B) of
	false ->
	    B;
	true ->
	    #c_seq{arg=#c_primop{name=#c_literal{val=bs_context_to_binary},
				 args=[#c_var{name=V}]},
		   body=B}
    end.

previous_ctx_to_binary(V, Core) ->
    case Core of
	#c_seq{arg=#c_primop{name=#c_literal{val=bs_context_to_binary},
			     args=[#c_var{name=V}]}} ->
	    true;
	_ ->
	    false
    end.

%% bsm_leftmost(Cs) -> none | ArgumentNumber
%%  Find the leftmost argument that does binary matching. Return
%%  the number of the argument (1-N).

bsm_leftmost(Cs) ->
    bsm_leftmost_1(Cs, none).

bsm_leftmost_1([#c_clause{pats=Ps}|Cs], Pos) ->
    bsm_leftmost_2(Ps, Cs, 1, Pos);
bsm_leftmost_1([], Pos) -> Pos.

bsm_leftmost_2(_, Cs, Pos, Pos) ->
    bsm_leftmost_1(Cs, Pos);
bsm_leftmost_2([#c_binary{}|_], Cs, N, _) ->
    bsm_leftmost_1(Cs, N);
bsm_leftmost_2([_|Ps], Cs, N, Pos) ->
    bsm_leftmost_2(Ps, Cs, N+1, Pos);
bsm_leftmost_2([], Cs, _, Pos) ->
    bsm_leftmost_1(Cs, Pos).

%% bsm_nonempty(Cs, Pos) -> true|false
%%  Check if at least one of the clauses matches a non-empty
%%  binary in the given argument position.
%%
bsm_nonempty([#c_clause{pats=Ps}|Cs], Pos) ->
    case nth(Pos, Ps) of
	#c_binary{segments=[_|_]} ->
	    true;
	_ ->
	    bsm_nonempty(Cs, Pos)
    end;
bsm_nonempty([], _ ) -> false.

%% bsm_ensure_no_partition(Cs, Pos) -> ok     (exception if problem)
%%  We must make sure that binary matching is not partitioned between
%%  variables like this:
%%             foo(<<...>>) -> ...
%%             foo(Var) when ... -> ...
%%             foo(<<...>>) ->
%%  If there is such partition, we are not allowed to reuse the binary variable
%%  for the match context. Also, arguments to the left of the argument that
%%  is matched against a binary, are only allowed to be simple variables, not
%%  used in guards. The reason is that we must know that the binary is only
%%  matched in one place.

bsm_ensure_no_partition(Cs, Pos) ->
    bsm_ensure_no_partition_1(Cs, Pos, before).

%% Loop through each clause.
bsm_ensure_no_partition_1([#c_clause{pats=Ps,guard=G}|Cs], Pos, State0) ->
    State = bsm_ensure_no_partition_2(Ps, Pos, G, simple_vars, State0),
    bsm_ensure_no_partition_1(Cs, Pos, State);
bsm_ensure_no_partition_1([], _, _) -> ok.

%% Loop through each pattern for this clause.
bsm_ensure_no_partition_2([#c_binary{}=Where|_], 1, _, Vstate, State) ->
    case State of
	before when Vstate =:= simple_vars -> within;
	before -> bsm_problem(Where, Vstate);
	within when Vstate =:= simple_vars -> within;
	within -> bsm_problem(Where, Vstate);
	'after' -> bsm_problem(Where, bin_partition)
    end;
bsm_ensure_no_partition_2([#c_alias{}=Alias|_], 1, N, Vstate, State) ->
    %% Retrieve the real pattern that the alias refers to and check that.
    P = bsm_real_pattern(Alias),
    bsm_ensure_no_partition_2([P], 1, N, Vstate, State);
bsm_ensure_no_partition_2([_|_], 1, _, _Vstate, before=State) ->
    %% No binary matching yet - therefore no partition.
    State;
bsm_ensure_no_partition_2([P|_], 1, _, Vstate, State) ->
    case bsm_could_match_binary(P) of
	false ->
	    %% If clauses can be freely arranged (Vstate =:= simple_vars),
	    %% a clause that cannot match a binary will not partition the clause.
	    %% Example:
	    %%
	    %% a(Var, <<>>) -> ...
	    %% a(Var, []) -> ...
	    %% a(Var, <<B>>) -> ...
	    %%
	    %% But if the clauses can't be freely rearranged, as in
	    %%
	    %% b(Var, <<X>>) -> ...
	    %% b(1, 2) -> ...
	    %%
	    %% we do have a problem.
	    %%
	    case Vstate of
		simple_vars -> State;
		_ -> bsm_problem(P, Vstate)
	    end;
	true ->
	    %% The pattern P *may* match a binary, so we must update the state.
	    %% (P must be a variable.)
	    case State of
		within -> 'after';
		'after' -> 'after'
	    end
    end;
bsm_ensure_no_partition_2([#c_var{name=V}|Ps], N, G, Vstate, S) ->
    case core_lib:is_var_used(V, G) of
	false ->
	    bsm_ensure_no_partition_2(Ps, N-1, G, Vstate, S);
	true ->
	    bsm_ensure_no_partition_2(Ps, N-1, G, bin_left_var_used_in_guard, S)
    end;
bsm_ensure_no_partition_2([_|Ps], N, G, _, S) ->
    bsm_ensure_no_partition_2(Ps, N-1, G, bin_argument_order, S).

bsm_could_match_binary(#c_alias{pat=P}) -> bsm_could_match_binary(P);
bsm_could_match_binary(#c_cons{}) -> false;
bsm_could_match_binary(#c_tuple{}) -> false;
bsm_could_match_binary(#c_literal{val=Lit}) -> is_bitstring(Lit);
bsm_could_match_binary(_) -> true.

bsm_real_pattern(#c_alias{pat=P}) -> bsm_real_pattern(P);
bsm_real_pattern(P) -> P.

bsm_problem(Where, What) ->
    throw({problem,Where,What}).

%%%
%%% Handling of warnings.
%%%

mark_compiler_generated(Term) ->
    cerl_trees:map(fun mark_compiler_generated_1/1, Term).

mark_compiler_generated_1(#c_call{anno=Anno}=Term) ->
    Term#c_call{anno=[compiler_generated|Anno--[compiler_generated]]};
mark_compiler_generated_1(Term) -> Term.

init_warnings() ->
    put({?MODULE,warnings}, []).

add_bin_opt_info(Core, Term) ->
    case get(bin_opt_info) of
	true -> add_warning(Core, Term);
	false -> ok
    end.

add_warning(Core, Term) ->
    case is_compiler_generated(Core) of
	true ->
	    ok;
	false ->
	    Anno = core_lib:get_anno(Core),
	    Line = get_line(Anno),
	    File = get_file(Anno),
	    Key = {?MODULE,warnings},
	    case get(Key) of
		[{File,[{Line,?MODULE,Term}]}|_] ->
		    ok;				%We already have
						%an identical warning.
		Ws ->
		    put(Key, [{File,[{Line,?MODULE,Term}]}|Ws])
	    end
    end.

get_line([Line|_]) when is_integer(Line) -> Line;
get_line([_|T]) -> get_line(T);
get_line([]) -> none.

get_file([{file,File}|_]) -> File;
get_file([_|T]) -> get_file(T);
get_file([]) -> "no_file". % should not happen

is_compiler_generated(Core) ->
    Anno = core_lib:get_anno(Core),
    member(compiler_generated, Anno).

get_warnings() ->
    ordsets:from_list((erase({?MODULE,warnings}))).

-type error() :: 'bad_unicode' | 'bin_argument_order'
	       | 'bin_left_var_used_in_guard' | 'bin_opt_alias'
	       | 'bin_partition' | 'bin_var_used' | 'bin_var_used_in_guard'
	       | 'embedded_binary_size' | 'nomatch_clause_type'
	       | 'nomatch_guard' | 'nomatch_shadow' | 'no_clause_match'
	       | 'orig_bin_var_used_in_guard' | 'result_ignored'
	       | 'useless_building'
	       | {'eval_failure', term()}
	       | {'no_effect', {'erlang',atom(),arity()}}
	       | {'nomatch_shadow', integer()}
	       | {'embedded_unit', _, _}.

-spec format_error(error()) -> nonempty_string().

format_error({eval_failure,Reason}) ->
    flatten(io_lib:format("this expression will fail with a '~p' exception", [Reason]));
format_error(embedded_binary_size) ->
    "binary construction will fail with a 'badarg' exception "
	"(field size for binary/bitstring greater than actual size)";
format_error({embedded_unit,Unit,Size}) ->
    M = io_lib:format("binary construction will fail with a 'badarg' exception "
		      "(size ~p cannot be evenly divided by unit ~p)", [Size,Unit]),
    flatten(M);
format_error(bad_unicode) ->
    "binary construction will fail with a 'badarg' exception "
	"(invalid Unicode code point in a utf8/utf16/utf32 segment)";
format_error({nomatch_shadow,Line}) ->
    M = io_lib:format("this clause cannot match because a previous clause at line ~p "
		      "always matches", [Line]),
    flatten(M);
format_error(nomatch_shadow) ->
    "this clause cannot match because a previous clause always matches";
format_error(nomatch_guard) ->
    "the guard for this clause evaluates to 'false'";
format_error(no_clause_match) ->
    "no clause will ever match";
format_error(nomatch_clause_type) ->
    "this clause cannot match because of different types/sizes";
format_error({no_effect,{erlang,F,A}}) ->
    {Fmt,Args} = case erl_internal:comp_op(F, A) of
		     true ->
			 {"use of operator ~p has no effect",[F]};
		     false ->
			 case erl_internal:bif(F, A) of
			     false ->
				 {"the call to erlang:~p/~p has no effect",[F,A]};
			     true ->
				 {"the call to ~p/~p has no effect",[F,A]}
			 end
		 end,
    flatten(io_lib:format(Fmt, Args));
format_error(result_ignored) ->
    "the result of the expression is ignored "
	"(suppress the warning by assigning the expression to the _ variable)";
format_error(useless_building) ->
    "a term is constructed, but never used";
format_error(bin_opt_alias) ->
    "INFO: the '=' operator will prevent delayed sub binary optimization";
format_error(bin_partition) ->
    "INFO: non-consecutive clauses that match binaries "
	"will prevent delayed sub binary optimization";
format_error(bin_left_var_used_in_guard) ->
    "INFO: a variable to the left of the binary pattern is used in a guard; "
	"will prevent delayed sub binary optimization";
format_error(bin_argument_order) ->
    "INFO: matching anything else but a plain variable to the left of "
	"binary pattern will prevent delayed sub binary optimization; "
	"SUGGEST changing argument order";
format_error(bin_var_used) ->
    "INFO: using a matched out sub binary will prevent "
	"delayed sub binary optimization";
format_error(orig_bin_var_used_in_guard) ->
    "INFO: using the original binary variable in a guard will prevent "
	"delayed sub binary optimization";
format_error(bin_var_used_in_guard) ->
    "INFO: using a matched out sub binary in a guard will prevent "
	"delayed sub binary optimization".

-ifdef(DEBUG).
%% In order for simplify_let/2 to work correctly, the list of
%% in-scope variables must always be a superset of the free variables
%% in the current expression (otherwise we might fail to rename a variable
%% when needed and get a name capture bug).

verify_scope(E, #sub{s=Scope}) ->
    Free0 = cerl_trees:free_variables(E),
    Free = [V || V <- Free0, not is_tuple(V)],	%Ignore function names.
    case ordsets:is_subset(Free, gb_sets:to_list(Scope)) of
	true -> true;
	false ->
	    io:format("~p\n", [E]),
	    io:format("~p\n", [Free]),
	    io:format("~p\n", [gb_sets:to_list(Scope)]),
	    false
    end.
-endif.