%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Constant folding optimisation for Core
%% Propagate atomic values and fold in values of safe calls to
%% constant arguments. Also detect and remove literals which are
%% ignored in a 'seq'. Could handle lets better by chasing down
%% complex 'arg' expressions and finding values.
%%
%% Try to optimise case expressions by removing unmatchable or
%% unreachable clauses. Also change explicit tuple arg into multiple
%% values and extend clause patterns. We must be careful here not to
%% generate cases which we know to be safe but later stages will not
%% recognise as such, e.g. the following is NOT acceptable:
%%
%% case 'b' of
%% <'b'> -> ...
%% end
%%
%% Variable folding is complicated by variable shadowing, for example
%% in:
%% 'foo'/1 =
%% fun (X) ->
%% let <A> = X
%% in let <X> = Y
%% in ... <use A>
%% If we were to simply substitute X for A then we would be using the
%% wrong X. Our solution is to rename variables that are the values
%% of substitutions. We could rename all shadowing variables but do
%% the minimum. We would then get:
%% 'foo'/1 =
%% fun (X) ->
%% let <A> = X
%% in let <X1> = Y
%% in ... <use A>
%% which is optimised to:
%% 'foo'/1 =
%% fun (X) ->
%% let <X1> = Y
%% in ... <use X>
%%
%% This is done by carefully shadowing variables and substituting
%% values. See details when defining functions.
%%
%% It would be possible to extend to replace repeated evaluation of
%% "simple" expressions by the value (variable) of the first call.
%% For example, after a "let Z = X+1" then X+1 would be replaced by Z
%% where X is valid. The Sub uses the full Core expression as key.
%% It would complicate handling of patterns as we would have to remove
%% all values where the key contains pattern variables.
-module(sys_core_fold).
-export([module/2,format_error/1]).
-import(lists, [map/2,foldl/3,foldr/3,mapfoldl/3,all/2,any/2,
reverse/1,reverse/2,member/2,nth/2,flatten/1]).
-import(cerl, [ann_c_cons/3,ann_c_tuple/2]).
-include("core_parse.hrl").
%%-define(DEBUG, 1).
-ifdef(DEBUG).
-define(ASSERT(E),
case E of
true -> ok;
false ->
io:format("~p, line ~p: assertion failed\n", [?MODULE,?LINE]),
exit(assertion_failed)
end).
-else.
-define(ASSERT(E), ignore).
-endif.
%% Variable value info.
-record(sub, {v=[], %Variable substitutions
s=[], %Variables in scope
t=[], %Types
in_guard=false}). %In guard or not.
-spec module(cerl:c_module(), [compile:option()]) ->
{'ok', cerl:c_module(), [_]}.
module(#c_module{defs=Ds0}=Mod, Opts) ->
put(bin_opt_info, member(bin_opt_info, Opts)),
put(no_inline_list_funcs, not member(inline_list_funcs, Opts)),
case get(new_var_num) of
undefined -> put(new_var_num, 0);
_ -> ok
end,
init_warnings(),
Ds1 = [function_1(D) || D <- Ds0],
erase(no_inline_list_funcs),
erase(bin_opt_info),
{ok,Mod#c_module{defs=Ds1},get_warnings()}.
function_1({#c_var{name={F,Arity}}=Name,B0}) ->
try
B = expr(B0, value, sub_new()), %This must be a fun!
{Name,B}
catch
Class:Error ->
Stack = erlang:get_stacktrace(),
io:fwrite("Function: ~w/~w\n", [F,Arity]),
erlang:raise(Class, Error, Stack)
end.
%% body(Expr, Sub) -> Expr.
%% body(Expr, Context, Sub) -> Expr.
%% No special handling of anything except values.
body(Body, Sub) ->
body(Body, value, Sub).
body(#c_values{anno=A,es=Es0}, Ctxt, Sub) ->
Es1 = expr_list(Es0, Ctxt, Sub),
#c_values{anno=A,es=Es1};
body(E, Ctxt, Sub) ->
?ASSERT(verify_scope(E, Sub)),
expr(E, Ctxt, Sub).
%% guard(Expr, Sub) -> Expr.
%% Do guard expression. We optimize it in the same way as
%% expressions in function bodies.
guard(Expr, Sub) ->
?ASSERT(verify_scope(Expr, Sub)),
expr(Expr, value, Sub#sub{in_guard=true}).
%% opt_guard_try(Expr) -> Expr.
%%
opt_guard_try(#c_seq{arg=Arg,body=Body0}=Seq) ->
Body = opt_guard_try(Body0),
case {Arg,Body} of
{#c_call{},#c_literal{val=false}} ->
%% We have sequence consisting of a call (evaluted
%% for a possible exception only), followed by 'false'.
%% Since the sequence is inside a try block that will
%% default to 'false' if any exception occurs, not
%% evalutating the call will not change the behaviour
%% of the guard.
Body;
{_,_} ->
Seq#c_seq{body=Body}
end;
opt_guard_try(#c_case{clauses=Cs}=Term) ->
Term#c_case{clauses=opt_guard_try_list(Cs)};
opt_guard_try(#c_clause{body=B0}=Term) ->
Term#c_clause{body=opt_guard_try(B0)};
opt_guard_try(#c_let{arg=Arg,body=B0}=Term) ->
case opt_guard_try(B0) of
#c_literal{}=B ->
opt_guard_try(#c_seq{arg=Arg,body=B});
B ->
Term#c_let{body=B}
end;
opt_guard_try(Term) -> Term.
opt_guard_try_list([C|Cs]) ->
[opt_guard_try(C)|opt_guard_try_list(Cs)];
opt_guard_try_list([]) -> [].
%% expr(Expr, Sub) -> Expr.
%% expr(Expr, Context, Sub) -> Expr.
expr(Expr, Sub) ->
expr(Expr, value, Sub).
expr(#c_var{}=V, Ctxt, Sub) ->
%% Return void() in effect context to potentially shorten the life time
%% of the variable and potentially generate better code
%% (for instance, if the variable no longer needs to survive a function
%% call, there will be no need to save it in the stack frame).
case Ctxt of
effect -> void();
value -> sub_get_var(V, Sub)
end;
expr(#c_literal{val=Val}=L, Ctxt, _Sub) ->
case Ctxt of
effect ->
case Val of
[] ->
%% Keep as [] - might give slightly better code.
L;
_ when is_atom(Val) ->
%% For cleanliness replace with void().
void();
_ ->
%% Warn and replace with void().
add_warning(L, useless_building),
void()
end;
value -> L
end;
expr(#c_cons{anno=Anno,hd=H0,tl=T0}=Cons, Ctxt, Sub) ->
H1 = expr(H0, Ctxt, Sub),
T1 = expr(T0, Ctxt, Sub),
case Ctxt of
effect ->
add_warning(Cons, useless_building),
expr(make_effect_seq([H1,T1], Sub), Ctxt, Sub);
value ->
ann_c_cons(Anno, H1, T1)
end;
expr(#c_tuple{anno=Anno,es=Es0}=Tuple, Ctxt, Sub) ->
Es = expr_list(Es0, Ctxt, Sub),
case Ctxt of
effect ->
add_warning(Tuple, useless_building),
expr(make_effect_seq(Es, Sub), Ctxt, Sub);
value ->
ann_c_tuple(Anno, Es)
end;
expr(#c_binary{segments=Ss}=Bin0, Ctxt, Sub) ->
%% Warn for useless building, but always build the binary
%% anyway to preserve a possible exception.
case Ctxt of
effect -> add_warning(Bin0, useless_building);
value -> ok
end,
Bin1 = Bin0#c_binary{segments=bitstr_list(Ss, Sub)},
Bin = bin_un_utf(Bin1),
eval_binary(Bin);
expr(#c_fun{}=Fun, effect, _) ->
%% A fun is created, but not used. Warn, and replace with the void value.
add_warning(Fun, useless_building),
void();
expr(#c_fun{vars=Vs0,body=B0}=Fun, Ctxt0, Sub0) ->
{Vs1,Sub1} = pattern_list(Vs0, Sub0),
Ctxt = case Ctxt0 of
{letrec,Ctxt1} -> Ctxt1;
value -> value
end,
B1 = body(B0, Ctxt, Sub1),
Fun#c_fun{vars=Vs1,body=B1};
expr(#c_seq{arg=Arg0,body=B0}=Seq0, Ctxt, Sub) ->
%% Optimise away pure literal arg as its value is ignored.
B1 = body(B0, Ctxt, Sub),
Arg = body(Arg0, effect, Sub),
case will_fail(Arg) of
true ->
Arg;
false ->
%% Arg cannot be "values" here - only a single value
%% make sense here.
case is_safe_simple(Arg, Sub) of
true -> B1;
false -> Seq0#c_seq{arg=Arg,body=B1}
end
end;
expr(#c_let{}=Let, Ctxt, Sub) ->
case simplify_let(Let, Sub) of
impossible ->
%% The argument for the let is "simple", i.e. has no
%% complex structures such as let or seq that can be entered.
?ASSERT(verify_scope(Let, Sub)),
opt_simple_let(Let, Ctxt, Sub);
Expr ->
%% The let body was successfully moved into the let argument.
%% Now recursively re-process the new expression.
expr(Expr, Ctxt, sub_new_preserve_types(Sub))
end;
expr(#c_letrec{defs=Fs0,body=B0}=Letrec, Ctxt, Sub) ->
Fs1 = map(fun ({Name,Fb}) ->
{Name,expr(Fb, {letrec,Ctxt}, Sub)}
end, Fs0),
B1 = body(B0, value, Sub),
Letrec#c_letrec{defs=Fs1,body=B1};
expr(#c_case{}=Case0, Ctxt, Sub) ->
case opt_bool_case(Case0) of
#c_case{arg=Arg0,clauses=Cs0}=Case1 ->
Arg1 = body(Arg0, value, Sub),
{Arg2,Cs1} = case_opt(Arg1, Cs0),
Cs2 = clauses(Arg2, Cs1, Case1, Ctxt, Sub),
Case = eval_case(Case1#c_case{arg=Arg2,clauses=Cs2}, Sub),
bsm_an(Case);
Other ->
expr(Other, Ctxt, Sub)
end;
expr(#c_receive{clauses=Cs0,timeout=T0,action=A0}=Recv, Ctxt, Sub) ->
Cs1 = clauses(#c_var{name='_'}, Cs0, Recv, Ctxt, Sub), %This is all we know
T1 = expr(T0, value, Sub),
A1 = body(A0, Ctxt, Sub),
Recv#c_receive{clauses=Cs1,timeout=T1,action=A1};
expr(#c_apply{op=Op0,args=As0}=App, _, Sub) ->
Op1 = expr(Op0, value, Sub),
As1 = expr_list(As0, value, Sub),
App#c_apply{op=Op1,args=As1};
expr(#c_call{module=M0,name=N0}=Call0, Ctxt, Sub) ->
M1 = expr(M0, value, Sub),
N1 = expr(N0, value, Sub),
Call = Call0#c_call{module=M1,name=N1},
case useless_call(Ctxt, Call) of
no -> call(Call, M1, N1, Sub);
{yes,Seq} -> expr(Seq, Ctxt, Sub)
end;
expr(#c_primop{args=As0}=Prim, _, Sub) ->
As1 = expr_list(As0, value, Sub),
Prim#c_primop{args=As1};
expr(#c_catch{body=B0}=Catch, _, Sub) ->
%% We can remove catch if the value is simple
B1 = body(B0, value, Sub),
case is_safe_simple(B1, Sub) of
true -> B1;
false -> Catch#c_catch{body=B1}
end;
expr(#c_try{arg=E0,vars=[#c_var{name=X}],body=#c_var{name=X},
handler=#c_literal{val=false}=False}=Try, _, Sub) ->
%% Since guard may call expr/2, we must do some optimization of
%% the kind of try's that occur in guards.
E1 = body(E0, value, Sub),
case will_fail(E1) of
false ->
%% Remove any calls that are evaluated for effect only.
E2 = opt_guard_try(E1),
%% We can remove try/catch if the expression is an
%% expression that cannot fail.
case is_safe_bool_expr(E2, Sub) orelse is_safe_simple(E2, Sub) of
true -> E2;
false -> Try#c_try{arg=E2}
end;
true ->
%% Expression will always fail.
False
end;
expr(#c_try{anno=A,arg=E0,vars=Vs0,body=B0,evars=Evs0,handler=H0}=Try, _, Sub0) ->
%% Here is the general try/catch construct outside of guards.
%% We can remove try if the value is simple and replace it with a let.
E1 = body(E0, value, Sub0),
{Vs1,Sub1} = pattern_list(Vs0, Sub0),
B1 = body(B0, value, Sub1),
case is_safe_simple(E1, Sub0) of
true ->
expr(#c_let{anno=A,vars=Vs1,arg=E1,body=B1}, value, Sub0);
false ->
{Evs1,Sub2} = pattern_list(Evs0, Sub0),
H1 = body(H0, value, Sub2),
Try#c_try{arg=E1,vars=Vs1,body=B1,evars=Evs1,handler=H1}
end.
expr_list(Es, Ctxt, Sub) ->
[expr(E, Ctxt, Sub) || E <- Es].
bitstr_list(Es, Sub) ->
[bitstr(E, Sub) || E <- Es].
bitstr(#c_bitstr{val=Val,size=Size}=BinSeg, Sub) ->
BinSeg#c_bitstr{val=expr(Val, Sub),size=expr(Size, value, Sub)}.
%% is_safe_simple(Expr, Sub) -> true | false.
%% A safe simple cannot fail with badarg and is safe to use
%% in a guard.
%%
%% Currently, we don't attempt to check binaries because they
%% are difficult to check.
is_safe_simple(#c_var{}, _) -> true;
is_safe_simple(#c_cons{hd=H,tl=T}, Sub) ->
is_safe_simple(H, Sub) andalso is_safe_simple(T, Sub);
is_safe_simple(#c_tuple{es=Es}, Sub) -> is_safe_simple_list(Es, Sub);
is_safe_simple(#c_literal{}, _) -> true;
is_safe_simple(#c_call{module=#c_literal{val=erlang},
name=#c_literal{val=Name},
args=Args}, Sub) when is_atom(Name) ->
NumArgs = length(Args),
case erl_internal:bool_op(Name, NumArgs) of
true ->
%% Boolean operators are safe if the arguments are boolean.
all(fun(#c_var{name=V}) -> is_boolean_type(V, Sub);
(#c_literal{val=Lit}) -> is_boolean(Lit);
(_) -> false
end, Args);
false ->
%% We need a rather complicated test to ensure that
%% we only allow safe calls that are allowed in a guard.
%% (Note that is_function/2 is a type test, but is not safe.)
erl_bifs:is_safe(erlang, Name, NumArgs) andalso
(erl_internal:comp_op(Name, NumArgs) orelse
erl_internal:new_type_test(Name, NumArgs))
end;
is_safe_simple(_, _) -> false.
is_safe_simple_list(Es, Sub) -> all(fun(E) -> is_safe_simple(E, Sub) end, Es).
%% will_fail(Expr) -> true|false.
%% Determine whether the expression will fail with an exception.
%% Return true if the expression always will fail with an exception,
%% i.e. never return normally.
will_fail(#c_let{arg=A,body=B}) ->
will_fail(A) orelse will_fail(B);
will_fail(#c_call{module=#c_literal{val=Mod},name=#c_literal{val=Name},args=Args}) ->
erl_bifs:is_exit_bif(Mod, Name, length(Args));
will_fail(#c_primop{name=#c_literal{val=match_fail},args=[_]}) -> true;
will_fail(_) -> false.
%% bin_un_utf(#c_binary{}) -> #c_binary{}
%% Convert any literal UTF-8/16/32 literals to byte-sized
%% integer fields.
bin_un_utf(#c_binary{anno=Anno,segments=Ss}=Bin) ->
Bin#c_binary{segments=bin_un_utf_1(Ss, Anno)}.
bin_un_utf_1([#c_bitstr{val=#c_literal{},type=#c_literal{val=utf8}}=H|T],
Anno) ->
bin_un_utf_eval(H, Anno) ++ bin_un_utf_1(T, Anno);
bin_un_utf_1([#c_bitstr{val=#c_literal{},type=#c_literal{val=utf16}}=H|T],
Anno) ->
bin_un_utf_eval(H, Anno) ++ bin_un_utf_1(T, Anno);
bin_un_utf_1([#c_bitstr{val=#c_literal{},type=#c_literal{val=utf32}}=H|T],
Anno) ->
bin_un_utf_eval(H, Anno) ++ bin_un_utf_1(T, Anno);
bin_un_utf_1([H|T], Anno) ->
[H|bin_un_utf_1(T, Anno)];
bin_un_utf_1([], _) -> [].
bin_un_utf_eval(Bitstr, Anno) ->
Segments = [Bitstr],
case eval_binary(#c_binary{anno=Anno,segments=Segments}) of
#c_literal{anno=Anno,val=Bytes} when is_binary(Bytes) ->
[#c_bitstr{anno=Anno,
val=#c_literal{anno=Anno,val=B},
size=#c_literal{anno=Anno,val=8},
unit=#c_literal{anno=Anno,val=1},
type=#c_literal{anno=Anno,val=integer},
flags=#c_literal{anno=Anno,val=[unsigned,big]}} ||
B <- binary_to_list(Bytes)];
_ ->
Segments
end.
%% eval_binary(#c_binary{}) -> #c_binary{} | #c_literal{}
%% Evaluate a binary at compile time if possible to create
%% a binary literal.
eval_binary(#c_binary{anno=Anno,segments=Ss}=Bin) ->
try
#c_literal{anno=Anno,val=eval_binary_1(Ss, <<>>)}
catch
throw:impossible ->
Bin;
throw:{badarg,Warning} ->
add_warning(Bin, Warning),
#c_call{module=#c_literal{val=erlang},
name=#c_literal{val=error},
args=[#c_literal{val=badarg}]}
end.
eval_binary_1([#c_bitstr{val=#c_literal{val=Val},size=#c_literal{val=Sz},
unit=#c_literal{val=Unit},type=#c_literal{val=Type},
flags=#c_literal{val=Flags}}|Ss], Acc0) ->
Endian = case member(big, Flags) of
true ->
big;
false ->
case member(little, Flags) of
true -> little;
false -> throw(impossible) %Native endian.
end
end,
%% Make sure that the size is reasonable.
case Type of
binary when is_bitstring(Val) ->
if
Sz =:= all ->
ok;
Sz*Unit =< bit_size(Val) ->
ok;
true ->
%% Field size is greater than the actual binary - will fail.
throw({badarg,embedded_binary_size})
end;
integer when is_integer(Val) ->
%% Estimate the number of bits needed to to hold the integer
%% literal. Check whether the field size is reasonable in
%% proportion to the number of bits needed.
if
Sz*Unit =< 256 ->
%% Don't be cheap - always accept fields up to this size.
ok;
true ->
case count_bits(Val) of
BitsNeeded when 2*BitsNeeded >= Sz*Unit ->
ok;
_ ->
%% More than about half of the field size will be
%% filled out with zeroes - not acceptable.
throw(impossible)
end
end;
float when is_float(Val) ->
%% Bad float size.
case Sz*Unit of
32 -> ok;
64 -> ok;
_ -> throw(impossible)
end;
utf8 -> ok;
utf16 -> ok;
utf32 -> ok;
_ ->
throw(impossible)
end,
%% Evaluate the field.
try eval_binary_2(Acc0, Val, Sz, Unit, Type, Endian) of
Acc -> eval_binary_1(Ss, Acc)
catch
error:_ ->
throw(impossible)
end;
eval_binary_1([], Acc) -> Acc;
eval_binary_1(_, _) -> throw(impossible).
eval_binary_2(Acc, Val, Size, Unit, integer, little) ->
<<Acc/bitstring,Val:(Size*Unit)/little>>;
eval_binary_2(Acc, Val, Size, Unit, integer, big) ->
<<Acc/bitstring,Val:(Size*Unit)/big>>;
eval_binary_2(Acc, Val, _Size, _Unit, utf8, _) ->
try
<<Acc/bitstring,Val/utf8>>
catch
error:_ ->
throw({badarg,bad_unicode})
end;
eval_binary_2(Acc, Val, _Size, _Unit, utf16, big) ->
try
<<Acc/bitstring,Val/big-utf16>>
catch
error:_ ->
throw({badarg,bad_unicode})
end;
eval_binary_2(Acc, Val, _Size, _Unit, utf16, little) ->
try
<<Acc/bitstring,Val/little-utf16>>
catch
error:_ ->
throw({badarg,bad_unicode})
end;
eval_binary_2(Acc, Val, _Size, _Unit, utf32, big) ->
try
<<Acc/bitstring,Val/big-utf32>>
catch
error:_ ->
throw({badarg,bad_unicode})
end;
eval_binary_2(Acc, Val, _Size, _Unit, utf32, little) ->
try
<<Acc/bitstring,Val/little-utf32>>
catch
error:_ ->
throw({badarg,bad_unicode})
end;
eval_binary_2(Acc, Val, Size, Unit, float, little) ->
<<Acc/bitstring,Val:(Size*Unit)/little-float>>;
eval_binary_2(Acc, Val, Size, Unit, float, big) ->
<<Acc/bitstring,Val:(Size*Unit)/big-float>>;
eval_binary_2(Acc, Val, all, Unit, binary, _) ->
case bit_size(Val) of
Size when Size rem Unit =:= 0 ->
<<Acc/bitstring,Val:Size/bitstring>>;
Size ->
throw({badarg,{embedded_unit,Unit,Size}})
end;
eval_binary_2(Acc, Val, Size, Unit, binary, _) ->
<<Acc/bitstring,Val:(Size*Unit)/bitstring>>.
%% Count the number of bits approximately needed to store Int.
%% (We don't need an exact result for this purpose.)
count_bits(Int) ->
count_bits_1(abs(Int), 64).
count_bits_1(0, Bits) -> Bits;
count_bits_1(Int, Bits) -> count_bits_1(Int bsr 64, Bits+64).
%% useless_call(Context, #c_call{}) -> no | {yes,Expr}
%% Check whether the function is called only for effect,
%% and if the function either has no effect whatsoever or
%% the only effect is an exception. Generate appropriate
%% warnings. If the call is "useless" (has no effect),
%% a rewritten expression consisting of a sequence of
%% the arguments only is returned.
useless_call(effect, #c_call{module=#c_literal{val=Mod},
name=#c_literal{val=Name},
args=Args}=Call) ->
A = length(Args),
case erl_bifs:is_safe(Mod, Name, A) of
false ->
case erl_bifs:is_pure(Mod, Name, A) of
true -> add_warning(Call, result_ignored);
false -> ok
end,
no;
true ->
add_warning(Call, {no_effect,{Mod,Name,A}}),
{yes,make_effect_seq(Args, sub_new())}
end;
useless_call(_, _) -> no.
%% make_effect_seq([Expr], Sub) -> #c_seq{}|void()
%% Convert a list of epressions evaluated in effect context to a chain of
%% #c_seq{}. The body in the innermost #c_seq{} will be void().
%% Anything that will not have any effect will be thrown away.
make_effect_seq([H|T], Sub) ->
case is_safe_simple(H, Sub) of
true -> make_effect_seq(T, Sub);
false -> #c_seq{arg=H,body=make_effect_seq(T, Sub)}
end;
make_effect_seq([], _) -> void().
%% Handling remote calls. The module/name fields have been processed.
call(#c_call{args=As}=Call, #c_literal{val=M}=M0, #c_literal{val=N}=N0, Sub) ->
case get(no_inline_list_funcs) of
true ->
call_0(Call, M0, N0, As, Sub);
false ->
call_1(Call, M, N, As, Sub)
end;
call(#c_call{args=As}=Call, M, N, Sub) ->
call_0(Call, M, N, As, Sub).
call_0(Call, M, N, As0, Sub) ->
As1 = expr_list(As0, value, Sub),
fold_call(Call#c_call{args=As1}, M, N, As1, Sub).
%% We inline some very common higher order list operations.
%% We use the same evaluation order as the library function.
call_1(_Call, lists, all, [Arg1,Arg2], Sub) ->
Loop = #c_var{name={'lists^all',1}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
Err1 = #c_tuple{es=[#c_literal{val='case_clause'}, X]},
CC1 = #c_clause{pats=[#c_literal{val=true}], guard=#c_literal{val=true},
body=#c_apply{op=Loop, args=[Xs]}},
CC2 = #c_clause{pats=[#c_literal{val=false}], guard=#c_literal{val=true},
body=#c_literal{val=false}},
CC3 = #c_clause{pats=[X], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err1]}},
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
body=#c_case{arg=#c_apply{op=F, args=[X]},
clauses = [CC1, CC2, CC3]}},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
body=#c_literal{val=true}},
Err2 = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err2]}},
Fun = #c_fun{vars=[Xs],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
body=#c_letrec{defs=[{Loop,Fun}],
body=#c_apply{op=Loop, args=[L]}}},
Sub);
call_1(_Call, lists, any, [Arg1,Arg2], Sub) ->
Loop = #c_var{name={'lists^any',1}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
Err1 = #c_tuple{es=[#c_literal{val='case_clause'}, X]},
CC1 = #c_clause{pats=[#c_literal{val=true}], guard=#c_literal{val=true},
body=#c_literal{val=true}},
CC2 = #c_clause{pats=[#c_literal{val=false}], guard=#c_literal{val=true},
body=#c_apply{op=Loop, args=[Xs]}},
CC3 = #c_clause{pats=[X], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err1]}},
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
body=#c_case{arg=#c_apply{op=F, args=[X]},
clauses = [CC1, CC2, CC3]}},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
body=#c_literal{val=false}},
Err2 = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err2]}},
Fun = #c_fun{vars=[Xs],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
body=#c_letrec{defs=[{Loop,Fun}],
body=#c_apply{op=Loop, args=[L]}}},
Sub);
call_1(_Call, lists, foreach, [Arg1,Arg2], Sub) ->
Loop = #c_var{name={'lists^foreach',1}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
body=#c_seq{arg=#c_apply{op=F, args=[X]},
body=#c_apply{op=Loop, args=[Xs]}}},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
body=#c_literal{val=ok}},
Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err]}},
Fun = #c_fun{vars=[Xs],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
body=#c_letrec{defs=[{Loop,Fun}],
body=#c_apply{op=Loop, args=[L]}}},
Sub);
call_1(_Call, lists, map, [Arg1,Arg2], Sub) ->
Loop = #c_var{name={'lists^map',1}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
H = #c_var{name='H'},
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
body=#c_let{vars=[H], arg=#c_apply{op=F, args=[X]},
body=#c_cons{hd=H,
tl=#c_apply{op=Loop,
args=[Xs]}}}},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
body=#c_literal{val=[]}},
Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err]}},
Fun = #c_fun{vars=[Xs],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
body=#c_letrec{defs=[{Loop,Fun}],
body=#c_apply{op=Loop, args=[L]}}},
Sub);
call_1(_Call, lists, flatmap, [Arg1,Arg2], Sub) ->
Loop = #c_var{name={'lists^flatmap',1}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
H = #c_var{name='H'},
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
body=#c_let{vars=[H],
arg=#c_apply{op=F, args=[X]},
body=#c_call{module=#c_literal{val=erlang},
name=#c_literal{val='++'},
args=[H,
#c_apply{op=Loop,
args=[Xs]}]}}},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
body=#c_literal{val=[]}},
Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err]}},
Fun = #c_fun{vars=[Xs],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
body=#c_letrec{defs=[{Loop,Fun}],
body=#c_apply{op=Loop, args=[L]}}},
Sub);
call_1(_Call, lists, filter, [Arg1,Arg2], Sub) ->
Loop = #c_var{name={'lists^filter',1}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
B = #c_var{name='B'},
Err1 = #c_tuple{es=[#c_literal{val='case_clause'}, X]},
CC1 = #c_clause{pats=[#c_literal{val=true}], guard=#c_literal{val=true},
body=#c_cons{hd=X, tl=Xs}},
CC2 = #c_clause{pats=[#c_literal{val=false}], guard=#c_literal{val=true},
body=Xs},
CC3 = #c_clause{pats=[X], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err1]}},
Case = #c_case{arg=B, clauses = [CC1, CC2, CC3]},
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
body=#c_let{vars=[B],
arg=#c_apply{op=F, args=[X]},
body=#c_let{vars=[Xs],
arg=#c_apply{op=Loop,
args=[Xs]},
body=Case}}},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
body=#c_literal{val=[]}},
Err2 = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err2]}},
Fun = #c_fun{vars=[Xs],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, L], arg=#c_values{es=[Arg1, Arg2]},
body=#c_letrec{defs=[{Loop,Fun}],
body=#c_apply{op=Loop, args=[L]}}},
Sub);
call_1(_Call, lists, foldl, [Arg1,Arg2,Arg3], Sub) ->
Loop = #c_var{name={'lists^foldl',2}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
A = #c_var{name='A'},
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
body=#c_apply{op=Loop,
args=[Xs, #c_apply{op=F, args=[X, A]}]}},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true}, body=A},
Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err]}},
Fun = #c_fun{vars=[Xs, A],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, A, L], arg=#c_values{es=[Arg1, Arg2, Arg3]},
body=#c_letrec{defs=[{Loop,Fun}],
body=#c_apply{op=Loop, args=[L, A]}}},
Sub);
call_1(_Call, lists, foldr, [Arg1,Arg2,Arg3], Sub) ->
Loop = #c_var{name={'lists^foldr',2}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
A = #c_var{name='A'},
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
body=#c_apply{op=F, args=[X, #c_apply{op=Loop,
args=[Xs, A]}]}},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true}, body=A},
Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err]}},
Fun = #c_fun{vars=[Xs, A],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, A, L], arg=#c_values{es=[Arg1, Arg2, Arg3]},
body=#c_letrec{defs=[{Loop,Fun}],
body=#c_apply{op=Loop, args=[L, A]}}},
Sub);
call_1(_Call, lists, mapfoldl, [Arg1,Arg2,Arg3], Sub) ->
Loop = #c_var{name={'lists^mapfoldl',2}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
Avar = #c_var{name='A'},
Match =
fun (A, P, E) ->
C1 = #c_clause{pats=[P], guard=#c_literal{val=true}, body=E},
Err = #c_tuple{es=[#c_literal{val='badmatch'}, X]},
C2 = #c_clause{pats=[X], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err]}},
#c_case{arg=A, clauses=[C1, C2]}
end,
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
body=Match(#c_apply{op=F, args=[X, Avar]},
#c_tuple{es=[X, Avar]},
%%% Tuple passing version
Match(#c_apply{op=Loop, args=[Xs, Avar]},
#c_tuple{es=[Xs, Avar]},
#c_tuple{es=[#c_cons{hd=X, tl=Xs}, Avar]})
%%% Multiple-value version
%%% #c_let{vars=[Xs,A],
%%% %% The tuple here will be optimised
%%% %% away later; no worries.
%%% arg=#c_apply{op=Loop, args=[Xs, A]},
%%% body=#c_values{es=[#c_cons{hd=X, tl=Xs},
%%% A]}}
)},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
%%% Tuple passing version
body=#c_tuple{es=[#c_literal{val=[]}, Avar]}},
%%% Multiple-value version
%%% body=#c_values{es=[#c_literal{val=[]}, A]}},
Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err]}},
Fun = #c_fun{vars=[Xs, Avar],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, Avar, L], arg=#c_values{es=[Arg1, Arg2, Arg3]},
body=#c_letrec{defs=[{Loop,Fun}],
%%% Tuple passing version
body=#c_apply{op=Loop, args=[L, Avar]}}},
%%% Multiple-value version
%%% body=#c_let{vars=[Xs, A],
%%% arg=#c_apply{op=Loop,
%%% args=[L, A]},
%%% body=#c_tuple{es=[Xs, A]}}}},
Sub);
call_1(_Call, lists, mapfoldr, [Arg1,Arg2,Arg3], Sub) ->
Loop = #c_var{name={'lists^mapfoldr',2}},
F = #c_var{name='F'},
Xs = #c_var{name='Xs'},
X = #c_var{name='X'},
Avar = #c_var{name='A'},
Match =
fun (A, P, E) ->
C1 = #c_clause{pats=[P], guard=#c_literal{val=true}, body=E},
Err = #c_tuple{es=[#c_literal{val='badmatch'}, X]},
C2 = #c_clause{pats=[X], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err]}},
#c_case{arg=A, clauses=[C1, C2]}
end,
C1 = #c_clause{pats=[#c_cons{hd=X, tl=Xs}], guard=#c_literal{val=true},
%%% Tuple passing version
body=Match(#c_apply{op=Loop, args=[Xs, Avar]},
#c_tuple{es=[Xs, Avar]},
Match(#c_apply{op=F, args=[X, Avar]},
#c_tuple{es=[X, Avar]},
#c_tuple{es=[#c_cons{hd=X, tl=Xs}, Avar]}))
%%% Multiple-value version
%%% body=#c_let{vars=[Xs,A],
%%% %% The tuple will be optimised away
%%% arg=#c_apply{op=Loop, args=[Xs, A]},
%%% body=Match(#c_apply{op=F, args=[X, A]},
%%% #c_tuple{es=[X, A]},
%%% #c_values{es=[#c_cons{hd=X, tl=Xs},
%%% A]})}
},
C2 = #c_clause{pats=[#c_literal{val=[]}], guard=#c_literal{val=true},
%%% Tuple passing version
body=#c_tuple{es=[#c_literal{val=[]}, Avar]}},
%%% Multiple-value version
%%% body=#c_values{es=[#c_literal{val=[]}, A]}},
Err = #c_tuple{es=[#c_literal{val='function_clause'}, Xs]},
C3 = #c_clause{pats=[Xs], guard=#c_literal{val=true},
body=#c_primop{name=#c_literal{val='match_fail'},
args=[Err]}},
Fun = #c_fun{vars=[Xs, Avar],
body=#c_case{arg=Xs, clauses=[C1, C2, C3]}},
L = #c_var{name='L'},
expr(#c_let{vars=[F, Avar, L], arg=#c_values{es=[Arg1, Arg2, Arg3]},
body=#c_letrec{defs=[{Loop,Fun}],
%%% Tuple passing version
body=#c_apply{op=Loop, args=[L, Avar]}}},
%%% Multiple-value version
%%% body=#c_let{vars=[Xs, A],
%%% arg=#c_apply{op=Loop,
%%% args=[L, A]},
%%% body=#c_tuple{es=[Xs, A]}}}},
Sub);
call_1(#c_call{module=M, name=N}=Call, _, _, As, Sub) ->
call_0(Call, M, N, As, Sub).
%% fold_call(Call, Mod, Name, Args, Sub) -> Expr.
%% Try to safely evaluate the call. Just try to evaluate arguments,
%% do the call and convert return values to literals. If this
%% succeeds then use the new value, otherwise just fail and use
%% original call. Do this at every level.
%%
%% We attempt to evaluate calls to certain BIFs even if the
%% arguments are not literals. For instance, we evaluate length/1
%% if the shape of the list is known, and element/2 and setelement/3
%% if the position is constant and the shape of the tuple is known.
%%
fold_call(Call, #c_literal{val=M}, #c_literal{val=F}, Args, Sub) ->
fold_call_1(Call, M, F, Args, Sub);
fold_call(Call, _M, _N, _Args, _Sub) -> Call.
fold_call_1(Call, erlang, apply, [Mod,Func,Args], _) ->
simplify_apply(Call, Mod, Func, Args);
fold_call_1(Call, Mod, Name, Args, Sub) ->
NumArgs = length(Args),
case erl_bifs:is_pure(Mod, Name, NumArgs) of
false -> Call; %Not pure - keep call.
true -> fold_call_2(Call, Mod, Name, Args, Sub)
end.
fold_call_2(Call, Module, Name, Args0, Sub) ->
try
Args = [core_lib:literal_value(A) || A <- Args0],
try apply(Module, Name, Args) of
Val ->
case cerl:is_literal_term(Val) of
true ->
#c_literal{val=Val};
false ->
%% Successful evaluation, but it was not
%% possible to express the computed value as a literal.
Call
end
catch
error:Reason ->
%% Evaluation of the function failed. Warn and replace
%% the call with a call to erlang:error/1.
eval_failure(Call, Reason)
end
catch
error:_ ->
%% There was at least one non-literal argument.
fold_non_lit_args(Call, Module, Name, Args0, Sub)
end.
%% fold_non_lit_args(Call, Module, Name, Args, Sub) -> Expr.
%% Attempt to evaluate some pure BIF calls with one or more
%% non-literals arguments.
%%
fold_non_lit_args(Call, erlang, is_boolean, [Arg], Sub) ->
eval_is_boolean(Call, Arg, Sub);
fold_non_lit_args(Call, erlang, element, [Arg1,Arg2], Sub) ->
eval_element(Call, Arg1, Arg2, Sub);
fold_non_lit_args(Call, erlang, length, [Arg], _) ->
eval_length(Call, Arg);
fold_non_lit_args(Call, erlang, '++', [Arg1,Arg2], _) ->
eval_append(Call, Arg1, Arg2);
fold_non_lit_args(Call, lists, append, [Arg1,Arg2], _) ->
eval_append(Call, Arg1, Arg2);
fold_non_lit_args(Call, erlang, setelement, [Arg1,Arg2,Arg3], _) ->
eval_setelement(Call, Arg1, Arg2, Arg3);
fold_non_lit_args(Call, erlang, N, Args, Sub) ->
NumArgs = length(Args),
case erl_internal:comp_op(N, NumArgs) of
true ->
eval_rel_op(Call, N, Args, Sub);
false ->
case erl_internal:bool_op(N, NumArgs) of
true ->
eval_bool_op(Call, N, Args, Sub);
false ->
Call
end
end;
fold_non_lit_args(Call, _, _, _, _) -> Call.
%% Evaluate a relational operation using type information.
eval_rel_op(Call, Op, [#c_var{name=V},#c_var{name=V}], _) ->
Bool = erlang:Op(same, same),
#c_literal{anno=core_lib:get_anno(Call),val=Bool};
eval_rel_op(Call, '=:=', [#c_var{name=V}=Var,#c_literal{val=true}], Sub) ->
%% BoolVar =:= true ==> BoolVar
case is_boolean_type(V, Sub) of
true -> Var;
false -> Call
end;
eval_rel_op(Call, '==', Ops, _Sub) ->
case is_exact_eq_ok(Ops) of
true ->
Name = #c_literal{anno=core_lib:get_anno(Call),val='=:='},
Call#c_call{name=Name};
false ->
Call
end;
eval_rel_op(Call, '/=', Ops, _Sub) ->
case is_exact_eq_ok(Ops) of
true ->
Name = #c_literal{anno=core_lib:get_anno(Call),val='=/='},
Call#c_call{name=Name};
false ->
Call
end;
eval_rel_op(Call, _, _, _) -> Call.
is_exact_eq_ok([#c_literal{val=Lit}|_]) ->
is_non_numeric(Lit);
is_exact_eq_ok([_|T]) ->
is_exact_eq_ok(T);
is_exact_eq_ok([]) -> false.
is_non_numeric([H|T]) ->
is_non_numeric(H) andalso is_non_numeric(T);
is_non_numeric(Tuple) when is_tuple(Tuple) ->
is_non_numeric_tuple(Tuple, tuple_size(Tuple));
is_non_numeric(Num) when is_number(Num) ->
false;
is_non_numeric(_) -> true.
is_non_numeric_tuple(Tuple, El) when El >= 1 ->
is_non_numeric(element(El, Tuple)) andalso
is_non_numeric_tuple(Tuple, El-1);
is_non_numeric_tuple(_Tuple, 0) -> true.
%% Evaluate a bool op using type information. We KNOW that
%% there must be at least one non-literal argument (i.e.
%% there is no need to handle the case that all argments
%% are literal).
eval_bool_op(Call, 'and', [#c_literal{val=true},#c_var{name=V}=Res], Sub) ->
case is_boolean_type(V, Sub) of
true -> Res;
false-> Call
end;
eval_bool_op(Call, 'and', [#c_var{name=V}=Res,#c_literal{val=true}], Sub) ->
case is_boolean_type(V, Sub) of
true -> Res;
false-> Call
end;
eval_bool_op(Call, 'and', [#c_literal{val=false}=Res,#c_var{name=V}], Sub) ->
case is_boolean_type(V, Sub) of
true -> Res;
false-> Call
end;
eval_bool_op(Call, 'and', [#c_var{name=V},#c_literal{val=false}=Res], Sub) ->
case is_boolean_type(V, Sub) of
true -> Res;
false-> Call
end;
eval_bool_op(Call, _, _, _) -> Call.
%% Evaluate is_boolean/1 using type information.
eval_is_boolean(Call, #c_var{name=V}, Sub) ->
case is_boolean_type(V, Sub) of
true -> #c_literal{val=true};
false -> Call
end;
eval_is_boolean(_, #c_cons{}, _) ->
#c_literal{val=false};
eval_is_boolean(_, #c_tuple{}, _) ->
#c_literal{val=false};
eval_is_boolean(Call, _, _) ->
Call.
%% eval_length(Call, List) -> Val.
%% Evaluates the length for the prefix of List which has a known
%% shape.
%%
eval_length(Call, Core) -> eval_length(Call, Core, 0).
eval_length(Call, #c_literal{val=Val}, Len0) ->
try
Len = Len0 + length(Val),
#c_literal{anno=Call#c_call.anno,val=Len}
catch
_:_ ->
eval_failure(Call, badarg)
end;
eval_length(Call, #c_cons{tl=T}, Len) ->
eval_length(Call, T, Len+1);
eval_length(Call, _List, 0) ->
Call; %Could do nothing
eval_length(Call, List, Len) ->
A = Call#c_call.anno,
#c_call{anno=A,
module=#c_literal{anno=A,val=erlang},
name=#c_literal{anno=A,val='+'},
args=[#c_literal{anno=A,val=Len},Call#c_call{args=[List]}]}.
%% eval_append(Call, FirstList, SecondList) -> Val.
%% Evaluates the constant part of '++' expression.
%%
eval_append(Call, #c_literal{val=Cs1}=S1, #c_literal{val=Cs2}) ->
try
S1#c_literal{val=Cs1 ++ Cs2}
catch error:badarg ->
eval_failure(Call, badarg)
end;
eval_append(Call, #c_literal{val=Cs}, List) when length(Cs) =< 4 ->
Anno = Call#c_call.anno,
foldr(fun (C, L) ->
ann_c_cons(Anno, #c_literal{val=C}, L)
end, List, Cs);
eval_append(Call, #c_cons{anno=Anno,hd=H,tl=T}, List) ->
ann_c_cons(Anno, H, eval_append(Call, T, List));
eval_append(Call, X, Y) ->
Call#c_call{args=[X,Y]}. %Rebuild call arguments.
%% eval_element(Call, Pos, Tuple, Types) -> Val.
%% Evaluates element/2 if the position Pos is a literal and
%% the shape of the tuple Tuple is known.
%%
eval_element(Call, #c_literal{val=Pos}, #c_tuple{es=Es}, _Types) when is_integer(Pos) ->
if
1 =< Pos, Pos =< length(Es) ->
lists:nth(Pos, Es);
true ->
eval_failure(Call, badarg)
end;
%% eval_element(Call, #c_literal{val=Pos}, #c_var{name=V}, Types)
%% when is_integer(Pos) ->
%% case orddict:find(V, Types#sub.t) of
%% {ok,#c_tuple{es=Elements}} ->
%% if
%% 1 =< Pos, Pos =< length(Elements) ->
%% lists:nth(Pos, Elements);
%% true ->
%% eval_failure(Call, badarg)
%% end;
%% error ->
%% Call
%% end;
eval_element(Call, Pos, Tuple, _Types) ->
case is_not_integer(Pos) orelse is_not_tuple(Tuple) of
true ->
eval_failure(Call, badarg);
false ->
Call
end.
%% is_not_integer(Core) -> true | false.
%% Returns true if Core is definitely not an integer.
is_not_integer(#c_literal{val=Val}) when not is_integer(Val) -> true;
is_not_integer(#c_tuple{}) -> true;
is_not_integer(#c_cons{}) -> true;
is_not_integer(_) -> false.
%% is_not_tuple(Core) -> true | false.
%% Returns true if Core is definitely not a tuple.
is_not_tuple(#c_literal{val=Val}) when not is_tuple(Val) -> true;
is_not_tuple(#c_cons{}) -> true;
is_not_tuple(_) -> false.
%% eval_setelement(Call, Pos, Tuple, NewVal) -> Core.
%% Evaluates setelement/3 if position Pos is an integer
%% the shape of the tuple Tuple is known.
%%
eval_setelement(Call, Pos, Tuple, NewVal) ->
try
eval_setelement_1(Pos, Tuple, NewVal)
catch
error:_ ->
Call
end.
eval_setelement_1(#c_literal{val=Pos}, #c_tuple{anno=A,es=Es}, NewVal)
when is_integer(Pos) ->
ann_c_tuple(A, eval_setelement_2(Pos, Es, NewVal));
eval_setelement_1(#c_literal{val=Pos}, #c_literal{anno=A,val=Es0}, NewVal)
when is_integer(Pos) ->
Es = [#c_literal{anno=A,val=E} || E <- tuple_to_list(Es0)],
ann_c_tuple(A, eval_setelement_2(Pos, Es, NewVal)).
eval_setelement_2(1, [_|T], NewVal) ->
[NewVal|T];
eval_setelement_2(Pos, [H|T], NewVal) when Pos > 1 ->
[H|eval_setelement_2(Pos-1, T, NewVal)].
%% eval_failure(Call, Reason) -> Core.
%% Warn for a call that will fail and replace the call with
%% a call to erlang:error(Reason).
%%
eval_failure(Call, Reason) ->
add_warning(Call, {eval_failure,Reason}),
#c_call{module=#c_literal{val=erlang},
name=#c_literal{val=error},
args=[#c_literal{val=Reason}]}.
%% simplify_apply(Call0, Mod, Func, Args) -> Call
%% Simplify an apply/3 to a call if the number of arguments
%% are known at compile time.
simplify_apply(Call, Mod, Func, Args) ->
case is_atom_or_var(Mod) andalso is_atom_or_var(Func) of
true -> simplify_apply_1(Args, Call, Mod, Func, []);
false -> Call
end.
simplify_apply_1(#c_literal{val=MoreArgs0}, Call, Mod, Func, Args)
when length(MoreArgs0) >= 0 ->
MoreArgs = [#c_literal{val=Arg} || Arg <- MoreArgs0],
Call#c_call{module=Mod,name=Func,args=reverse(Args, MoreArgs)};
simplify_apply_1(#c_cons{hd=Arg,tl=T}, Call, Mod, Func, Args) ->
simplify_apply_1(T, Call, Mod, Func, [Arg|Args]);
simplify_apply_1(_, Call, _, _, _) -> Call.
is_atom_or_var(#c_literal{val=Atom}) when is_atom(Atom) -> true;
is_atom_or_var(#c_var{}) -> true;
is_atom_or_var(_) -> false.
%% clause(Clause, Cepxr, Context, Sub) -> Clause.
clause(#c_clause{pats=Ps0,guard=G0,body=B0}=Cl, Cexpr, Ctxt, Sub0) ->
{Ps1,Sub1} = pattern_list(Ps0, Sub0),
Sub2 = update_types(Cexpr, Ps1, Sub1),
GSub = case {Cexpr,Ps1} of
{#c_var{name='_'},_} ->
%% In a 'receive', Cexpr is the variable '_', which represents the
%% message being matched. We must NOT do any extra substiutions.
Sub2;
{#c_var{},[#c_var{}=Var]} ->
%% The idea here is to optimize expressions such as
%%
%% case A of A -> ...
%%
%% to get rid of the extra guard test that the compiler
%% added when converting to the Core Erlang representation:
%%
%% case A of NewVar when A =:= NewVar -> ...
%%
%% By replacing NewVar with A everywhere in the guard
%% expression, we get
%%
%% case A of NewVar when A =:= A -> ...
%%
%% which by constant-expression evaluation is reduced to
%%
%% case A of NewVar when true -> ...
%%
sub_set_var(Var, Cexpr, Sub2);
_ ->
Sub2
end,
G1 = guard(G0, GSub),
B1 = body(B0, Ctxt, Sub2),
Cl#c_clause{pats=Ps1,guard=G1,body=B1}.
%% let_substs(LetVars, LetArg, Sub) -> {[Var],[Val],Sub}.
%% Add suitable substitutions to Sub of variables in LetVars. First
%% remove variables in LetVars from Sub, then fix subs. N.B. must
%% work out new subs in parallel and then apply them to subs. Return
%% the unsubstituted variables and values.
let_substs(Vs0, As0, Sub0) ->
{Vs1,Sub1} = pattern_list(Vs0, Sub0),
{Vs2,As1,Ss} = let_substs_1(Vs1, As0, Sub1),
Sub2 = scope_add([V || #c_var{name=V} <- Vs2], Sub1),
{Vs2,As1,
foldl(fun ({V,S}, Sub) -> sub_set_name(V, S, Sub) end, Sub2, Ss)}.
let_substs_1(Vs, #c_values{es=As}, Sub) ->
let_subst_list(Vs, As, Sub);
let_substs_1([V], A, Sub) -> let_subst_list([V], [A], Sub);
let_substs_1(Vs, A, _) -> {Vs,A,[]}.
let_subst_list([V|Vs0], [A|As0], Sub) ->
{Vs1,As1,Ss} = let_subst_list(Vs0, As0, Sub),
case is_subst(A) of
true -> {Vs1,As1,sub_subst_var(V, A, Sub) ++ Ss};
false -> {[V|Vs1],[A|As1],Ss}
end;
let_subst_list([], [], _) -> {[],[],[]}.
%% pattern(Pattern, InSub) -> {Pattern,OutSub}.
%% pattern(Pattern, InSub, OutSub) -> {Pattern,OutSub}.
%% Variables occurring in Pattern will shadow so they must be removed
%% from Sub. If they occur as a value in Sub then we create a new
%% variable and then add a substitution for that.
%%
%% Patterns are complicated by sizes in binaries. These are pure
%% input variables which create no bindings. We, therefore, need to
%% carry around the original substitutions to get the correct
%% handling.
%%pattern(Pat, Sub) -> pattern(Pat, Sub, Sub).
pattern(#c_var{name=V0}=Pat, Isub, Osub) ->
case sub_is_val(Pat, Isub) of
true ->
V1 = make_var_name(),
Pat1 = #c_var{name=V1},
{Pat1,sub_set_var(Pat, Pat1, scope_add([V1], Osub))};
false ->
{Pat,sub_del_var(Pat, scope_add([V0], Osub))}
end;
pattern(#c_literal{}=Pat, _, Osub) -> {Pat,Osub};
pattern(#c_cons{anno=Anno,hd=H0,tl=T0}, Isub, Osub0) ->
{H1,Osub1} = pattern(H0, Isub, Osub0),
{T1,Osub2} = pattern(T0, Isub, Osub1),
{ann_c_cons(Anno, H1, T1),Osub2};
pattern(#c_tuple{anno=Anno,es=Es0}, Isub, Osub0) ->
{Es1,Osub1} = pattern_list(Es0, Isub, Osub0),
{ann_c_tuple(Anno, Es1),Osub1};
pattern(#c_binary{segments=V0}=Pat, Isub, Osub0) ->
{V1,Osub1} = bin_pattern_list(V0, Isub, Osub0),
{Pat#c_binary{segments=V1},Osub1};
pattern(#c_alias{var=V0,pat=P0}=Pat, Isub, Osub0) ->
{V1,Osub1} = pattern(V0, Isub, Osub0),
{P1,Osub2} = pattern(P0, Isub, Osub1),
Osub = update_types(V1, [P1], Osub2),
{Pat#c_alias{var=V1,pat=P1},Osub}.
bin_pattern_list(Ps0, Isub, Osub0) ->
{Ps,{_,Osub}} = mapfoldl(fun bin_pattern/2, {Isub,Osub0}, Ps0),
{Ps,Osub}.
bin_pattern(#c_bitstr{val=E0,size=Size0}=Pat, {Isub0,Osub0}) ->
Size1 = expr(Size0, Isub0),
{E1,Osub} = pattern(E0, Isub0, Osub0),
Isub = case E0 of
#c_var{} -> sub_set_var(E0, E1, Isub0);
_ -> Isub0
end,
{Pat#c_bitstr{val=E1,size=Size1},{Isub,Osub}}.
pattern_list(Ps, Sub) -> pattern_list(Ps, Sub, Sub).
pattern_list(Ps0, Isub, Osub0) ->
mapfoldl(fun (P, Osub) -> pattern(P, Isub, Osub) end, Osub0, Ps0).
%% is_subst(Expr) -> true | false.
%% Test whether an expression is a suitable substitution.
is_subst(#c_var{name={_,_}}) ->
%% Funs must not be duplicated (which will happen if the variable
%% is used more than once), because the funs will not be equal
%% (their "index" fields will be different).
false;
is_subst(#c_var{}) -> true;
is_subst(#c_literal{}) -> true;
is_subst(_) -> false.
%% sub_new() -> #sub{}.
%% sub_get_var(Var, #sub{}) -> Value.
%% sub_set_var(Var, Value, #sub{}) -> #sub{}.
%% sub_set_name(Name, Value, #sub{}) -> #sub{}.
%% sub_del_var(Var, #sub{}) -> #sub{}.
%% sub_subst_var(Var, Value, #sub{}) -> [{Name,Value}].
%% sub_is_val(Var, #sub{}) -> boolean().
%% sub_subst_scope(#sub{}) -> #sub{}
%%
%% We use the variable name as key so as not have problems with
%% annotations. When adding a new substitute we fold substitute
%% chains so we never have to search more than once. Use orddict so
%% we know the format.
%%
%% sub_subst_scope/1 adds dummy substitutions for all variables
%% in the scope in order to force renaming if variables in the
%% scope occurs as pattern variables.
sub_new() -> #sub{v=orddict:new(),s=gb_trees:empty(),t=[]}.
sub_new(#sub{}=Sub) ->
Sub#sub{v=orddict:new(),t=[]}.
sub_new_preserve_types(#sub{}=Sub) ->
Sub#sub{v=orddict:new()}.
sub_get_var(#c_var{name=V}=Var, #sub{v=S}) ->
case orddict:find(V, S) of
{ok,Val} -> Val;
error -> Var
end.
sub_set_var(#c_var{name=V}, Val, Sub) ->
sub_set_name(V, Val, Sub).
sub_set_name(V, Val, #sub{v=S,s=Scope,t=Tdb0}=Sub) ->
Tdb1 = kill_types(V, Tdb0),
Tdb = copy_type(V, Val, Tdb1),
Sub#sub{v=orddict:store(V, Val, S),s=gb_sets:add(V, Scope),t=Tdb}.
sub_del_var(#c_var{name=V}, #sub{v=S,t=Tdb}=Sub) ->
Sub#sub{v=orddict:erase(V, S),t=kill_types(V, Tdb)}.
sub_subst_var(#c_var{name=V}, Val, #sub{v=S0}) ->
%% Fold chained substitutions.
[{V,Val}] ++ [ {K,Val} || {K,#c_var{name=V1}} <- S0, V1 =:= V].
sub_subst_scope(#sub{v=S0,s=Scope}=Sub) ->
S = [{-1,#c_var{name=Sv}} || Sv <- gb_sets:to_list(Scope)]++S0,
Sub#sub{v=S}.
sub_is_val(#c_var{name=V}, #sub{v=S}) ->
v_is_value(V, S).
v_is_value(Var, Sub) ->
any(fun ({_,#c_var{name=Val}}) when Val =:= Var -> true;
(_) -> false
end, Sub).
%% clauses(E, [Clause], TopLevel, Context, Sub) -> [Clause].
%% Trim the clauses by removing all clauses AFTER the first one which
%% is guaranteed to match. Also remove all trivially false clauses.
clauses(E, Cs0, TopLevel, Ctxt, Sub) ->
Cs = clauses_1(E, Cs0, Ctxt, Sub),
%% Here we want to warn if no clauses whatsoever will ever
%% match, because that is probably a mistake.
case all(fun is_compiler_generated/1, Cs) andalso
any(fun(C) -> not is_compiler_generated(C) end, Cs0) of
true ->
%% The original list of clauses did contain at least one
%% user-specified clause, but none of them will match.
%% That is probably a mistake.
add_warning(TopLevel, no_clause_match);
false ->
%% Either there were user-specified clauses left in
%% the transformed clauses, or else none of the original
%% clauses were user-specified to begin with (as in 'andalso').
ok
end,
Cs.
clauses_1(E, [C0|Cs], Ctxt, Sub) ->
#c_clause{pats=Ps,guard=G} = C1 = clause(C0, E, Ctxt, Sub),
%%ok = io:fwrite("~w: ~p~n", [?LINE,{E,Ps}]),
case {will_match(E, Ps),will_succeed(G)} of
{yes,yes} ->
Line = get_line(core_lib:get_anno(C1)),
case core_lib:is_literal(E) of
false ->
shadow_warning(Cs, Line);
true ->
%% If the case expression is a literal,
%% it is probably OK that some clauses don't match.
%% It is a probably some sort of debug macro.
ok
end,
[C1]; %Skip the rest
{no,_Suc} ->
clauses_1(E, Cs, Ctxt, Sub); %Skip this clause
{_Mat,no} ->
add_warning(C1, nomatch_guard),
clauses_1(E, Cs, Ctxt, Sub); %Skip this clause
{_Mat,_Suc} ->
[C1|clauses_1(E, Cs, Ctxt, Sub)]
end;
clauses_1(_, [], _, _) -> [].
shadow_warning([C|Cs], none) ->
add_warning(C, nomatch_shadow),
shadow_warning(Cs, none);
shadow_warning([C|Cs], Line) ->
add_warning(C, {nomatch_shadow, Line}),
shadow_warning(Cs, Line);
shadow_warning([], _) -> ok.
%% will_succeed(Guard) -> yes | maybe | no.
%% Test if we know whether a guard will succeed/fail or just don't
%% know. Be VERY conservative!
will_succeed(#c_literal{val=true}) -> yes;
will_succeed(#c_literal{val=false}) -> no;
will_succeed(_Guard) -> maybe.
%% will_match(Expr, [Pattern]) -> yes | maybe | no.
%% Test if we know whether a match will succeed/fail or just don't
%% know. Be conservative.
will_match(#c_values{es=Es}, Ps) ->
will_match_list(Es, Ps, yes);
will_match(E, [P]) ->
will_match_1(E, P).
will_match_1(_E, #c_var{}) -> yes; %Will always match
will_match_1(E, #c_alias{pat=P}) -> %Pattern decides
will_match_1(E, P);
will_match_1(#c_var{}, _P) -> maybe;
will_match_1(#c_tuple{es=Es}, #c_tuple{es=Ps}) ->
will_match_list(Es, Ps, yes);
will_match_1(#c_literal{val=Lit}, P) ->
will_match_lit(Lit, P);
will_match_1(_, _) -> maybe.
will_match_list([E|Es], [P|Ps], M) ->
case will_match_1(E, P) of
yes -> will_match_list(Es, Ps, M);
maybe -> will_match_list(Es, Ps, maybe);
no -> no
end;
will_match_list([], [], M) -> M.
will_match_lit(Cons, #c_cons{hd=Hp,tl=Tp}) ->
case Cons of
[H|T] ->
case will_match_lit(H, Hp) of
yes -> will_match_lit(T, Tp);
Other -> Other
end;
_ ->
no
end;
will_match_lit(Tuple, #c_tuple{es=Es}) ->
case is_tuple(Tuple) andalso tuple_size(Tuple) =:= length(Es) of
true -> will_match_lit_list(tuple_to_list(Tuple), Es);
false -> no
end;
will_match_lit(Bin, #c_binary{}) ->
case is_bitstring(Bin) of
true -> maybe;
false -> no
end;
will_match_lit(_, #c_var{}) ->
yes;
will_match_lit(Lit, #c_alias{pat=P}) ->
will_match_lit(Lit, P);
will_match_lit(Lit1, #c_literal{val=Lit2}) ->
case Lit1 =:= Lit2 of
true -> yes;
false -> no
end.
will_match_lit_list([H|T], [P|Ps]) ->
case will_match_lit(H, P) of
yes -> will_match_lit_list(T, Ps);
Other -> Other
end;
will_match_lit_list([], []) -> yes.
%% opt_bool_case(CoreExpr) - CoreExpr'.
%% Do various optimizations to case statement that has a
%% boolean case expression.
%%
%% We start with some simple optimizations and normalization
%% to facilitate later optimizations.
%%
%% If the case expression can only return a boolean
%% (or fail), we can remove any clause that cannot
%% possibly match 'true' or 'false'. Also, any clause
%% following both 'true' and 'false' clause can
%% be removed. If successful, we will end up this:
%%
%% case BoolExpr of case BoolExpr of
%% true -> false ->
%% ...; ...;
%% false -> OR true ->
%% ... ...
%% end. end.
%%
%% We give up if there are clauses with guards, or if there
%% is a variable clause that matches anything.
%%
opt_bool_case(#c_case{arg=Arg}=Case0) ->
case is_bool_expr(Arg) of
false ->
Case0;
true ->
try opt_bool_clauses(Case0) of
Case ->
opt_bool_not(Case)
catch
impossible ->
Case0
end
end;
opt_bool_case(Core) -> Core.
opt_bool_clauses(#c_case{clauses=Cs}=Case) ->
Case#c_case{clauses=opt_bool_clauses(Cs, false, false)}.
opt_bool_clauses(Cs, true, true) ->
%% We have now seen clauses that match both true and false.
%% Any remaining clauses cannot possibly match.
case Cs of
[_|_] ->
shadow_warning(Cs, none),
[];
[] ->
[]
end;
opt_bool_clauses([#c_clause{pats=[#c_literal{val=Lit}],
guard=#c_literal{val=true},
body=B}=C0|Cs], SeenT, SeenF) ->
case is_boolean(Lit) of
false ->
%% Not a boolean - this clause can't match.
add_warning(C0, nomatch_clause_type),
opt_bool_clauses(Cs, SeenT, SeenF);
true ->
%% This clause will match.
C = C0#c_clause{body=opt_bool_case(B)},
case Lit of
false -> [C|opt_bool_clauses(Cs, SeenT, true)];
true -> [C|opt_bool_clauses(Cs, true, SeenF)]
end
end;
opt_bool_clauses([#c_clause{pats=Ps,guard=#c_literal{val=true}}=C|Cs], SeenT, SeenF) ->
case Ps of
[#c_var{}] ->
%% Will match a boolean.
throw(impossible);
[#c_alias{}] ->
%% Might match a boolean.
throw(impossible);
_ ->
%% The clause cannot possible match a boolean.
%% We can remove it.
add_warning(C, nomatch_clause_type),
opt_bool_clauses(Cs, SeenT, SeenF)
end;
opt_bool_clauses([_|_], _, _) ->
%% A clause with a guard. Give up.
throw(impossible).
%% We intentionally do not have a clause that match an empty
%% list. An empty list would indicate that the clauses do not
%% match all possible values for the case expression, which
%% means that the Core Erlang program is illegal. We prefer to
%% crash on such illegal input, rather than producing code that will
%% fail mysteriously at run time.
%% opt_bool_not(Case) -> CoreExpr.
%% Try to eliminate one or more calls to 'not' at the top level
%% of the case expression.
%%
%% We KNOW that the case expression is guaranteed to return
%% a boolean and that there are exactly two clauses: one that
%% matches 'true' and one that matches 'false'.
%%
%% case not Expr of case Expr of
%% true -> false ->
%% ...; ...;
%% false -> ==> true ->
%% ... ...;
%% end. NewVar ->
%% erlang:error(badarg)
%% end.
%%
%% We add the extra match-all clause at the end only if Expr is
%% not guaranteed to evaluate to a boolean.
opt_bool_not(#c_case{arg=Arg,clauses=Cs0}=Case0) ->
case Arg of
#c_call{module=#c_literal{val=erlang},
name=#c_literal{val='not'},
args=[Expr]} ->
Cs = opt_bool_not(Expr, Cs0),
Case = Case0#c_case{arg=Expr,clauses=Cs},
opt_bool_not(Case);
_ ->
opt_bool_case_redundant(Case0)
end.
opt_bool_not(Expr, Cs) ->
Tail = case is_bool_expr(Expr) of
false ->
[#c_clause{anno=[compiler_generated],
pats=[#c_var{name=cor_variable}],
guard=#c_literal{val=true},
body=#c_call{module=#c_literal{val=erlang},
name=#c_literal{val=error},
args=[#c_literal{val=badarg}]}}];
true -> []
end,
[opt_bool_not_invert(C) || C <- Cs] ++ Tail.
opt_bool_not_invert(#c_clause{pats=[#c_literal{val=Bool}]}=C) ->
C#c_clause{pats=[#c_literal{val=not Bool}]}.
%% opt_bool_case_redundant(Core) -> Core'.
%% If the sole purpose of the case is to verify that the case
%% expression is indeed boolean, we do not need the case
%% (since we have already verified that the case expression is
%% boolean).
%%
%% case BoolExpr of
%% true -> true ==> BoolExpr
%% false -> false
%% end.
%%
opt_bool_case_redundant(#c_case{arg=Arg,clauses=Cs}=Case) ->
case all(fun opt_bool_case_redundant_1/1, Cs) of
true -> Arg;
false -> opt_bool_case_guard(Case)
end.
opt_bool_case_redundant_1(#c_clause{pats=[#c_literal{val=B}],
body=#c_literal{val=B}}) ->
true;
opt_bool_case_redundant_1(_) -> false.
%% opt_bool_case_guard(Case) -> Case'.
%% Move a boolean case expression into the guard if we are sure that
%% it cannot fail.
%%
%% case SafeBoolExpr of case <> of
%% true -> TrueClause; ==> <> when SafeBoolExpr -> TrueClause;
%% false -> FalseClause <> when true -> FalseClause
%% end. end.
%%
%% Generally, evaluting a boolean expression in a guard should
%% be faster than evaulating it in the body.
%%
opt_bool_case_guard(#c_case{arg=#c_literal{}}=Case) ->
%% It is not necessary to move a literal case expression into the
%% guard, because it will be handled quite well in other
%% optimizations, and moving the literal into the guard will
%% cause some extra warnings, for instance for this code
%%
%% case true of
%% true -> ...;
%% false -> ...
%% end.
%%
Case;
opt_bool_case_guard(#c_case{arg=Arg,clauses=Cs0}=Case) ->
case is_safe_bool_expr(Arg, sub_new()) of
false ->
Case;
true ->
Cs = opt_bool_case_guard(Arg, Cs0),
Case#c_case{arg=#c_values{anno=core_lib:get_anno(Arg),es=[]},
clauses=Cs}
end.
opt_bool_case_guard(Arg, [#c_clause{pats=[#c_literal{val=true}]}=Tc,Fc]) ->
[Tc#c_clause{pats=[],guard=Arg},Fc#c_clause{pats=[]}];
opt_bool_case_guard(Arg, [#c_clause{pats=[#c_literal{val=false}]}=Fc,Tc]) ->
[Tc#c_clause{pats=[],guard=Arg},Fc#c_clause{pats=[]}].
%% eval_case(Case) -> #c_case{} | #c_let{}.
%% If possible, evaluate a case at compile time. We know that the
%% last clause is guaranteed to match so if there is only one clause
%% with a pattern containing only variables then rewrite to a let.
eval_case(#c_case{arg=#c_var{name=V},
clauses=[#c_clause{pats=[P],guard=G,body=B}|_]}=Case,
#sub{t=Tdb}=Sub) ->
case orddict:find(V, Tdb) of
{ok,Type} ->
case {will_match_type(P, Type),will_succeed(G)} of
{yes,yes} ->
{Ps,Es} = remove_non_vars(P, Type),
expr(#c_let{vars=Ps,arg=#c_values{es=Es},body=B},
sub_new(Sub));
{_,_} ->
eval_case_1(Case, Sub)
end;
error -> eval_case_1(Case, Sub)
end;
eval_case(Case, Sub) -> eval_case_1(Case, Sub).
eval_case_1(#c_case{arg=E,clauses=[#c_clause{pats=Ps,body=B}]}=Case, Sub) ->
case is_var_pat(Ps) of
true -> expr(#c_let{vars=Ps,arg=E,body=B}, sub_new(Sub));
false -> eval_case_2(E, Ps, B, Case)
end;
eval_case_1(Case, _) -> Case.
eval_case_2(E, [P], B, Case) ->
%% Recall that there is only one clause and that it is guaranteed to match.
%% If E and P are literals, they must be the same literal and the body
%% can be used directly as there are no variables that need to be bound.
%% Otherwise, P could be an alias meaning that two or more variables
%% would be bound to E. We don't bother to optimize that case as it
%% is rather uncommon.
case core_lib:is_literal(E) andalso core_lib:is_literal(P) of
false -> Case;
true -> B
end;
eval_case_2(_, _, _, Case) -> Case.
is_var_pat(Ps) ->
all(fun (#c_var{}) -> true;
(_Pat) -> false
end, Ps).
will_match_type(#c_tuple{es=Es}, #c_tuple{es=Ps}) ->
will_match_list_type(Es, Ps);
will_match_type(#c_literal{val=Atom}, #c_literal{val=Atom}) -> yes;
will_match_type(#c_var{}, #c_var{}) -> yes;
will_match_type(#c_var{}, #c_alias{}) -> yes;
will_match_type(_, _) -> no.
will_match_list_type([E|Es], [P|Ps]) ->
case will_match_type(E, P) of
yes -> will_match_list_type(Es, Ps);
no -> no
end;
will_match_list_type([], []) -> yes;
will_match_list_type(_, _) -> no. %Different length
remove_non_vars(Ps0, Es0) ->
{Ps,Es} = remove_non_vars(Ps0, Es0, [], []),
{reverse(Ps),reverse(Es)}.
remove_non_vars(#c_tuple{es=Ps}, #c_tuple{es=Es}, Pacc, Eacc) ->
remove_non_vars_list(Ps, Es, Pacc, Eacc);
remove_non_vars(#c_var{}=Var, #c_alias{var=Evar}, Pacc, Eacc) ->
{[Var|Pacc],[Evar|Eacc]};
remove_non_vars(#c_var{}=Var, #c_var{}=Evar, Pacc, Eacc) ->
{[Var|Pacc],[Evar|Eacc]};
remove_non_vars(P, E, Pacc, Eacc) ->
true = core_lib:is_literal(P) andalso core_lib:is_literal(E), %Assertion.
{Pacc,Eacc}.
remove_non_vars_list([P|Ps], [E|Es], Pacc0, Eacc0) ->
{Pacc,Eacc} = remove_non_vars(P, E, Pacc0, Eacc0),
remove_non_vars_list(Ps, Es, Pacc, Eacc);
remove_non_vars_list([], [], Pacc, Eacc) ->
{Pacc,Eacc}.
%% case_opt(CaseArg, [Clause]) -> {CaseArg,[Clause]}.
%% Try and optimise case by avoid building a tuple in
%% the case expression. Instead of building a tuple
%% in the case expression, combine the elements into
%% multiple "values". If a clause refers to the tuple
%% in the case expression (that was not built), introduce
%% a let into the guard and/or body to build the tuple.
%%
%% case {Expr1,Expr2} of case <Expr1,Expr2> of
%% {P1,P2} -> ... <P1,P2> -> ...
%% . ==> .
%% . .
%% . .
%% Var -> <Var1,Var2> ->
%% ... Var ... let <Var> = {Var1,Var2}
%% in ... Var ...
%% . .
%% . .
%% . .
%% end. end.
%%
case_opt(#c_tuple{anno=A,es=Es}, Cs0) ->
Cs1 = case_opt_cs(Cs0, length(Es)),
{core_lib:set_anno(core_lib:make_values(Es), A),Cs1};
case_opt(Arg, Cs) -> {Arg,Cs}.
case_opt_cs([#c_clause{pats=Ps0,guard=G,body=B}=C|Cs], Arity) ->
case case_tuple_pat(Ps0, Arity) of
{ok,Ps1,Avs} ->
Flet = fun ({V,Pat}, Body) -> letify(V, Pat, Body) end,
[C#c_clause{pats=Ps1,
guard=foldl(Flet, G, Avs),
body=foldl(Flet, B, Avs)}|case_opt_cs(Cs, Arity)];
error -> %Can't match
add_warning(C, nomatch_clause_type),
case_opt_cs(Cs, Arity)
end;
case_opt_cs([], _) -> [].
%% case_tuple_pat([Pattern], Arity) -> {ok,[Pattern],[{AliasVar,Pat}]} | error.
case_tuple_pat([#c_tuple{es=Ps}], Arity) when length(Ps) =:= Arity ->
{ok,Ps,[]};
case_tuple_pat([#c_literal{val=T}], Arity) when tuple_size(T) =:= Arity ->
Ps = [#c_literal{val=E} || E <- tuple_to_list(T)],
{ok,Ps,[]};
case_tuple_pat([#c_var{anno=A}=V], Arity) ->
Vars = make_vars(A, 1, Arity),
{ok,Vars,[{V,#c_tuple{es=Vars}}]};
case_tuple_pat([#c_alias{var=V,pat=P}], Arity) ->
case case_tuple_pat([P], Arity) of
{ok,Ps,Avs} -> {ok,Ps,[{V,#c_tuple{es=unalias_pat_list(Ps)}}|Avs]};
error -> error
end;
case_tuple_pat(_, _) -> error.
%% unalias_pat(Pattern) -> Pattern.
%% Remove all the aliases in a pattern but using the alias variables
%% instead of the values. We KNOW they will be bound.
unalias_pat(#c_alias{var=V}) -> V;
unalias_pat(#c_cons{anno=Anno,hd=H0,tl=T0}) ->
H1 = unalias_pat(H0),
T1 = unalias_pat(T0),
ann_c_cons(Anno, H1, T1);
unalias_pat(#c_tuple{anno=Anno,es=Ps}) ->
ann_c_tuple(Anno, unalias_pat_list(Ps));
unalias_pat(Atomic) -> Atomic.
unalias_pat_list(Ps) -> [unalias_pat(P) || P <- Ps].
make_vars(A, I, Max) when I =< Max ->
[make_var(A)|make_vars(A, I+1, Max)];
make_vars(_, _, _) -> [].
make_var(A) ->
#c_var{anno=A,name=make_var_name()}.
make_var_name() ->
N = get(new_var_num),
put(new_var_num, N+1),
list_to_atom("fol"++integer_to_list(N)).
letify(#c_var{name=Vname}=Var, Val, Body) ->
case core_lib:is_var_used(Vname, Body) of
true ->
A = element(2, Body),
#c_let{anno=A,vars=[Var],arg=Val,body=Body};
false -> Body
end.
%% opt_case_in_let(LetExpr) -> LetExpr'
opt_case_in_let(#c_let{vars=Vs,arg=Arg,body=B}=Let) ->
opt_case_in_let_0(Vs, Arg, B, Let).
opt_case_in_let_0([#c_var{name=V}], Arg,
#c_case{arg=#c_var{name=V},clauses=Cs}=Case, Let) ->
case opt_case_in_let_1(V, Arg, Cs) of
impossible ->
case is_simple_case_arg(Arg) andalso
not core_lib:is_var_used(V, Case#c_case{arg=#c_literal{val=nil}}) of
true ->
opt_bool_case(Case#c_case{arg=Arg});
false ->
Let
end;
Expr -> Expr
end;
opt_case_in_let_0(_, _, _, Let) -> Let.
opt_case_in_let_1(V, Arg, Cs) ->
try
opt_case_in_let_2(V, Arg, Cs)
catch
_:_ -> impossible
end.
opt_case_in_let_2(V, Arg0,
[#c_clause{pats=[#c_tuple{es=Es}],
guard=#c_literal{val=true},body=B}|_]) ->
%% In {V1,V2,...} = case E of P -> ... {Val1,Val2,...}; ... end.
%% avoid building tuples, by converting tuples to multiple values.
%% (The optimisation is not done if the built tuple is used or returned.)
true = all(fun (#c_var{}) -> true;
(_) -> false end, Es), %Only variables in tuple
false = core_lib:is_var_used(V, B), %Built tuple must not be used.
Arg1 = tuple_to_values(Arg0, length(Es)), %Might fail.
#c_let{vars=Es,arg=Arg1,body=B};
opt_case_in_let_2(_, Arg, Cs) ->
%% simplify_bool_case(Case0) -> Case
%% Remove unecessary cases like
%%
%% case BoolExpr of
%% true -> true;
%% false -> false;
%% ....
%% end
%%
%% where BoolExpr is an expression that can only return true
%% or false (or throw an exception).
true = is_bool_case(Cs) andalso is_bool_expr(Arg),
Arg.
is_bool_case([A,B|_]) ->
(is_bool_clause(true, A) andalso is_bool_clause(false, B))
orelse (is_bool_clause(false, A) andalso is_bool_clause(true, B)).
is_bool_clause(Bool, #c_clause{pats=[#c_literal{val=Bool}],
guard=#c_literal{val=true},
body=#c_literal{val=Bool}}) ->
true;
is_bool_clause(_, _) -> false.
%% is_simple_case_arg(Expr) -> true|false
%% Determine whether the Expr is simple enough to be worth
%% substituting into a case argument. (Common substitutions
%% of variables and literals are assumed to have been already
%% handled by the caller.)
is_simple_case_arg(#c_cons{}) -> true;
is_simple_case_arg(#c_tuple{}) -> true;
is_simple_case_arg(#c_call{}) -> true;
is_simple_case_arg(#c_apply{}) -> true;
is_simple_case_arg(_) -> false.
%% is_bool_expr(Core) -> true|false
%% Check whether the Core expression is guaranteed to return
%% a boolean IF IT RETURNS AT ALL.
%%
is_bool_expr(Core) ->
is_bool_expr(Core, sub_new()).
%% is_bool_expr(Core, Sub) -> true|false
%% Check whether the Core expression is guaranteed to return
%% a boolean IF IT RETURNS AT ALL. Uses type information
%% to be able to identify more expressions as booleans.
%%
is_bool_expr(#c_call{module=#c_literal{val=erlang},
name=#c_literal{val=Name},args=Args}=Call, _) ->
NumArgs = length(Args),
erl_internal:comp_op(Name, NumArgs) orelse
erl_internal:new_type_test(Name, NumArgs) orelse
erl_internal:bool_op(Name, NumArgs) orelse
will_fail(Call);
is_bool_expr(#c_try{arg=E,vars=[#c_var{name=X}],body=#c_var{name=X},
handler=#c_literal{val=false}}, Sub) ->
is_bool_expr(E, Sub);
is_bool_expr(#c_case{clauses=Cs}, Sub) ->
is_bool_expr_list(Cs, Sub);
is_bool_expr(#c_clause{body=B}, Sub) ->
is_bool_expr(B, Sub);
is_bool_expr(#c_let{vars=[V],arg=Arg,body=B}, Sub0) ->
Sub = case is_bool_expr(Arg, Sub0) of
true -> update_types(V, [#c_literal{val=true}], Sub0);
false -> Sub0
end,
is_bool_expr(B, Sub);
is_bool_expr(#c_let{body=B}, Sub) ->
%% Binding of multiple variables.
is_bool_expr(B, Sub);
is_bool_expr(#c_literal{val=Bool}, _) when is_boolean(Bool) ->
true;
is_bool_expr(#c_var{name=V}, Sub) ->
is_boolean_type(V, Sub);
is_bool_expr(_, _) -> false.
is_bool_expr_list([C|Cs], Sub) ->
is_bool_expr(C, Sub) andalso is_bool_expr_list(Cs, Sub);
is_bool_expr_list([], _) -> true.
%% is_safe_bool_expr(Core) -> true|false
%% Check whether the Core expression ALWAYS returns a boolean
%% (i.e. it cannot fail). Also make sure that the expression
%% is suitable for a guard (no calls to non-guard BIFs, local
%% functions, or is_record/2).
%%
is_safe_bool_expr(Core, Sub) ->
is_safe_bool_expr_1(Core, Sub, gb_sets:empty()).
is_safe_bool_expr_1(#c_call{module=#c_literal{val=erlang},
name=#c_literal{val=is_record},
args=[_,_]},
_Sub, _BoolVars) ->
%% The is_record/2 BIF is NOT allowed in guards.
%%
%% NOTE: Calls like is_record(Expr, LiteralTag), where LiteralTag
%% is a literal atom referring to a defined record, have already
%% been rewritten to is_record(Expr, LiteralTag, TupleSize).
false;
is_safe_bool_expr_1(#c_call{module=#c_literal{val=erlang},
name=#c_literal{val=Name},args=Args},
Sub, BoolVars) ->
NumArgs = length(Args),
case (erl_internal:comp_op(Name, NumArgs) orelse
erl_internal:new_type_test(Name, NumArgs)) andalso
is_safe_simple_list(Args, Sub) of
true ->
true;
false ->
%% Boolean operators are safe if all arguments are boolean.
erl_internal:bool_op(Name, NumArgs) andalso
is_safe_bool_expr_list(Args, Sub, BoolVars)
end;
is_safe_bool_expr_1(#c_let{vars=Vars,arg=Arg,body=B}, Sub, BoolVars) ->
case is_safe_simple(Arg, Sub) of
true ->
case {is_safe_bool_expr_1(Arg, Sub, BoolVars),Vars} of
{true,[#c_var{name=V}]} ->
is_safe_bool_expr_1(B, Sub, gb_sets:add(V, BoolVars));
{false,_} ->
is_safe_bool_expr_1(B, Sub, BoolVars)
end;
false -> false
end;
is_safe_bool_expr_1(#c_literal{val=Val}, _Sub, _) ->
is_boolean(Val);
is_safe_bool_expr_1(#c_var{name=V}, _Sub, BoolVars) ->
gb_sets:is_element(V, BoolVars);
is_safe_bool_expr_1(_, _, _) -> false.
is_safe_bool_expr_list([C|Cs], Sub, BoolVars) ->
case is_safe_bool_expr_1(C, Sub, BoolVars) of
true -> is_safe_bool_expr_list(Cs, Sub, BoolVars);
false -> false
end;
is_safe_bool_expr_list([], _, _) -> true.
%% tuple_to_values(Expr, TupleArity) -> Expr'
%% Convert tuples in return position of arity TupleArity to values.
%% Throws an exception for constructs that are not handled.
tuple_to_values(#c_tuple{es=Es}, Arity) when length(Es) =:= Arity ->
core_lib:make_values(Es);
tuple_to_values(#c_literal{val=Tuple}=Lit, Arity) when tuple_size(Tuple) =:= Arity ->
Es = [Lit#c_literal{val=E} || E <- tuple_to_list(Tuple)],
core_lib:make_values(Es);
tuple_to_values(#c_case{clauses=Cs0}=Case, Arity) ->
Cs1 = [tuple_to_values(E, Arity) || E <- Cs0],
Case#c_case{clauses=Cs1};
tuple_to_values(#c_seq{body=B0}=Seq, Arity) ->
Seq#c_seq{body=tuple_to_values(B0, Arity)};
tuple_to_values(#c_let{body=B0}=Let, Arity) ->
Let#c_let{body=tuple_to_values(B0, Arity)};
tuple_to_values(#c_receive{clauses=Cs0,timeout=Timeout,action=A0}=Rec, Arity) ->
Cs = [tuple_to_values(E, Arity) || E <- Cs0],
A = case Timeout of
#c_literal{val=infinity} -> A0;
_ -> tuple_to_values(A0, Arity)
end,
Rec#c_receive{clauses=Cs,action=A};
tuple_to_values(#c_clause{body=B0}=Clause, Arity) ->
B = tuple_to_values(B0, Arity),
Clause#c_clause{body=B};
tuple_to_values(Expr, _) ->
case will_fail(Expr) of
true -> Expr;
false -> erlang:error({not_handled,Expr})
end.
%% simplify_let(Let, Sub) -> Expr | impossible
%% If the argument part of an let contains a complex expression, such
%% as a let or a sequence, move the original let body into the complex
%% expression.
simplify_let(#c_let{arg=Arg0}=Let0, Sub) ->
Arg = opt_bool_case(Arg0),
Let = Let0#c_let{arg=Arg},
move_let_into_expr(Let, Arg, Sub).
move_let_into_expr(#c_let{vars=InnerVs0,body=InnerBody0}=Inner,
#c_let{vars=OuterVs0,arg=Arg0,body=OuterBody0}=Outer, Sub0) ->
%%
%% let <InnerVars> = let <OuterVars> = <Arg>
%% in <OuterBody>
%% in <InnerBody>
%%
%% ==>
%%
%% let <OuterVars> = <Arg>
%% in let <InnerVars> = <OuterBody>
%% in <InnerBody>
%%
Arg = body(Arg0, Sub0),
ScopeSub0 = sub_subst_scope(Sub0#sub{t=[]}),
{OuterVs,ScopeSub} = pattern_list(OuterVs0, ScopeSub0),
OuterBody = body(OuterBody0, ScopeSub),
{InnerVs,Sub} = pattern_list(InnerVs0, Sub0),
InnerBody = body(InnerBody0, Sub),
Outer#c_let{vars=OuterVs,arg=Arg,
body=Inner#c_let{vars=InnerVs,arg=OuterBody,body=InnerBody}};
move_let_into_expr(#c_let{vars=Lvs0,body=Lbody0}=Let,
#c_case{arg=Cexpr0,clauses=[Ca0,Cb0|Cs]}=Case, Sub0) ->
%% Test if there are no more clauses than Ca0 and Cb0, or if
%% Cb0 is guaranteed to match.
TwoClauses = Cs =:= [] orelse
case Cb0 of
#c_clause{pats=[#c_var{}],guard=#c_literal{val=true}} -> true;
_ -> false
end,
case {TwoClauses,is_failing_clause(Ca0),is_failing_clause(Cb0)} of
{true,false,true} ->
%% let <Lvars> = case <Case-expr> of
%% <Cvars> -> <Clause-body>;
%% <OtherCvars> -> erlang:error(...)
%% end
%% in <Let-body>
%%
%% ==>
%%
%% case <Case-expr> of
%% <Cvars> ->
%% let <Lvars> = <Clause-body>
%% in <Let-body>;
%% <OtherCvars> -> erlang:error(...)
%% end
Cexpr = body(Cexpr0, Sub0),
CaVars0 = Ca0#c_clause.pats,
G0 = Ca0#c_clause.guard,
B0 = Ca0#c_clause.body,
ScopeSub0 = sub_subst_scope(Sub0#sub{t=[]}),
{CaVars,ScopeSub} = pattern_list(CaVars0, ScopeSub0),
G = guard(G0, ScopeSub),
B1 = body(B0, ScopeSub),
{Lvs,B2,Sub1} = let_substs(Lvs0, B1, Sub0),
Sub2 = Sub1#sub{s=gb_sets:union(ScopeSub#sub.s,
Sub1#sub.s)},
Lbody = body(Lbody0, Sub2),
B = Let#c_let{vars=Lvs,arg=core_lib:make_values(B2),body=Lbody},
Ca = Ca0#c_clause{pats=CaVars,guard=G,body=B},
Cb = clause(Cb0, Cexpr, value, Sub0),
Case#c_case{arg=Cexpr,clauses=[Ca,Cb]};
{_,_,_} -> impossible
end;
move_let_into_expr(_Let, _Expr, _Sub) -> impossible.
is_failing_clause(#c_clause{body=B}) ->
will_fail(B).
scope_add(Vs, #sub{s=Scope0}=Sub) ->
Scope = foldl(fun(V, S) when is_integer(V); is_atom(V) ->
gb_sets:add(V, S)
end, Scope0, Vs),
Sub#sub{s=Scope}.
%% opt_simple_let(#c_let{}, Context, Sub) -> CoreTerm
%% Optimize a let construct that does not contain any lets in
%% in its argument.
opt_simple_let(#c_let{arg=Arg0}=Let, Ctxt, Sub0) ->
Arg = body(Arg0, value, Sub0), %This is a body
case will_fail(Arg) of
true -> Arg;
false -> opt_simple_let_1(Let, Arg, Ctxt, Sub0)
end.
opt_simple_let_1(#c_let{vars=Vs0,body=B0}=Let, Arg0, Ctxt, Sub0) ->
%% Optimise let and add new substitutions.
{Vs,Args,Sub1} = let_substs(Vs0, Arg0, Sub0),
BodySub = case {Vs,Args} of
{[V],[A]} ->
case is_bool_expr(A, Sub0) of
true ->
update_types(V, [#c_literal{val=true}], Sub1);
false ->
Sub1
end;
{_,_} -> Sub1
end,
B = body(B0, Ctxt, BodySub),
Arg = core_lib:make_values(Args),
opt_simple_let_2(Let, Vs, Arg, B, Ctxt, Sub1).
opt_simple_let_2(Let0, Vs0, Arg0, Body0, effect, Sub) ->
case {Vs0,Arg0,Body0} of
{[],#c_values{es=[]},Body} ->
%% No variables left (because of substitutions).
Body;
{[_|_],Arg,#c_literal{}} ->
%% The body is a literal. That means that we can ignore
%% it and that the return value is Arg revisited in
%% effect context.
body(Arg, effect, sub_new_preserve_types(Sub));
{Vs,Arg,Body} ->
%% Since we are in effect context, there is a chance
%% that the body no longer references the variables.
%% In that case we can construct a sequence and visit
%% that in effect context:
%% let <Var> = Arg in BodyWithoutVar ==> seq Arg BodyWithoutVar
case is_any_var_used(Vs, Body) of
false ->
expr(#c_seq{arg=Arg,body=Body}, effect, sub_new_preserve_types(Sub));
true ->
Let = Let0#c_let{vars=Vs,arg=Arg,body=Body},
opt_case_in_let_arg(opt_case_in_let(Let), effect, Sub)
end
end;
opt_simple_let_2(Let, Vs0, Arg0, Body, value, Sub) ->
case {Vs0,Arg0,Body} of
{[#c_var{name=N1}],Arg,#c_var{name=N2}} ->
case N1 =:= N2 of
true ->
%% let <Var> = Arg in <Var> ==> Arg
Arg;
false ->
%% let <Var> = Arg in <OtherVar> ==> seq Arg OtherVar
expr(#c_seq{arg=Arg,body=Body}, value, sub_new_preserve_types(Sub))
end;
{[],#c_values{es=[]},_} ->
%% No variables left.
Body;
{_,Arg,#c_literal{}} ->
%% The variable is not used in the body. The argument
%% can be evaluated in effect context to simplify it.
expr(#c_seq{arg=Arg,body=Body}, value, sub_new_preserve_types(Sub));
{Vs,Arg,Body} ->
opt_case_in_let_arg(
opt_case_in_let(Let#c_let{vars=Vs,arg=Arg,body=Body}),
value, Sub)
end.
%% In guards only, rewrite a case in a let argument like
%%
%% let <Var> = case <> of
%% <> when AnyGuard -> Literal1;
%% <> when AnyGuard -> Literal2
%% end
%% in LetBody
%%
%% to
%%
%% case <> of
%% <> when AnyGuard ->
%% let <Var> = Literal1 in LetBody
%% <> when 'true' ->
%% let <Var> = Literal2 in LetBody
%% end
%%
%% In the worst case, the size of the code could increase.
%% In practice, though, substituting the literals into
%% LetBody and doing constant folding will decrease the code
%% size. (Doing this transformation outside of guards could
%% lead to a substantational increase in code size.)
%%
opt_case_in_let_arg(#c_let{arg=#c_case{}=Case}=Let, Ctxt,
#sub{in_guard=true}=Sub) ->
opt_case_in_let_arg_1(Let, Case, Ctxt, Sub);
opt_case_in_let_arg(Let, _, _) -> Let.
opt_case_in_let_arg_1(Let0, #c_case{arg=#c_values{es=[]},
clauses=Cs}=Case0, Ctxt, Sub) ->
Let = mark_compiler_generated(Let0),
case Cs of
[#c_clause{body=#c_literal{}=BodyA}=Ca0,
#c_clause{body=#c_literal{}=BodyB}=Cb0] ->
Ca = Ca0#c_clause{body=Let#c_let{arg=BodyA}},
Cb = Cb0#c_clause{body=Let#c_let{arg=BodyB}},
Case = Case0#c_case{clauses=[Ca,Cb]},
expr(Case, Ctxt, sub_new_preserve_types(Sub));
_ -> Let
end;
opt_case_in_let_arg_1(Let, _, _, _) -> Let.
is_any_var_used([#c_var{name=V}|Vs], Expr) ->
case core_lib:is_var_used(V, Expr) of
false -> is_any_var_used(Vs, Expr);
true -> true
end;
is_any_var_used([], _) -> false.
is_boolean_type(V, #sub{t=Tdb}) ->
case orddict:find(V, Tdb) of
{ok,bool} -> true;
_ -> false
end.
%% update_types(Expr, Pattern, Sub) -> Sub'
%% Update the type database.
update_types(Expr, Pat, #sub{t=Tdb0}=Sub) ->
Tdb = update_types_1(Expr, Pat, Tdb0),
Sub#sub{t=Tdb}.
update_types_1(#c_var{name=V,anno=Anno}, Pat, Types) ->
case member(reuse_for_context, Anno) of
true ->
%% If a variable has been marked for reuse of binary context,
%% optimizations based on type information are unsafe.
kill_types(V, Types);
false ->
update_types_2(V, Pat, Types)
end;
update_types_1(_, _, Types) -> Types.
update_types_2(V, [#c_tuple{}=P], Types) ->
orddict:store(V, P, Types);
update_types_2(V, [#c_literal{val=Bool}], Types) when is_boolean(Bool) ->
orddict:store(V, bool, Types);
update_types_2(_, _, Types) -> Types.
%% kill_types(V, Tdb) -> Tdb'
%% Kill any entries that references the variable,
%% either in the key or in the value.
kill_types(V, [{V,_}|Tdb]) ->
kill_types(V, Tdb);
kill_types(V, [{_,#c_tuple{}=Tuple}=Entry|Tdb]) ->
case core_lib:is_var_used(V, Tuple) of
false -> [Entry|kill_types(V, Tdb)];
true -> kill_types(V, Tdb)
end;
kill_types(V, [{_,Atom}=Entry|Tdb]) when is_atom(Atom) ->
[Entry|kill_types(V, Tdb)];
kill_types(_, []) -> [].
%% copy_type(DestVar, SrcVar, Tdb) -> Tdb'
%% If the SrcVar has a type, assign it to DestVar.
%%
copy_type(V, #c_var{name=Src}, Tdb) ->
case orddict:find(Src, Tdb) of
{ok,Type} -> orddict:store(V, Type, Tdb);
error -> Tdb
end;
copy_type(_, _, Tdb) -> Tdb.
%% The atom `ok', is widely used in Erlang for "void" values.
void() -> #c_literal{val=ok}.
%%%
%%% Annotate bit syntax matching to faciliate optimization in further passes.
%%%
bsm_an(#c_case{arg=#c_var{}=V}=Case) ->
bsm_an_1([V], Case);
bsm_an(#c_case{arg=#c_values{es=Es}}=Case) ->
bsm_an_1(Es, Case);
bsm_an(Other) -> Other.
bsm_an_1(Vs, #c_case{clauses=Cs}=Case) ->
case bsm_leftmost(Cs) of
none -> Case;
Pos -> bsm_an_2(Vs, Cs, Case, Pos)
end.
bsm_an_2(Vs, Cs, Case, Pos) ->
case bsm_nonempty(Cs, Pos) of
true -> bsm_an_3(Vs, Cs, Case, Pos);
false -> Case
end.
bsm_an_3(Vs, Cs, Case, Pos) ->
try
bsm_ensure_no_partition(Cs, Pos),
bsm_do_an(Vs, Pos, Cs, Case)
catch
throw:{problem,Where,What} ->
add_bin_opt_info(Where, What),
Case
end.
bsm_do_an(Vs0, Pos, Cs0, Case) ->
case nth(Pos, Vs0) of
#c_var{name=Vname}=V0 ->
Cs = bsm_do_an_var(Vname, Pos, Cs0, []),
V = bsm_annotate_for_reuse(V0),
Bef = lists:sublist(Vs0, Pos-1),
Aft = lists:nthtail(Pos, Vs0),
case Bef ++ [V|Aft] of
[_] ->
Case#c_case{arg=V,clauses=Cs};
Vs ->
Case#c_case{arg=#c_values{es=Vs},clauses=Cs}
end;
_ ->
Case
end.
bsm_do_an_var(V, S, [#c_clause{pats=Ps,guard=G,body=B0}=C0|Cs], Acc) ->
case nth(S, Ps) of
#c_var{name=VarName} ->
case core_lib:is_var_used(V, G) of
true -> bsm_problem(C0, orig_bin_var_used_in_guard);
false -> ok
end,
case core_lib:is_var_used(VarName, G) of
true -> bsm_problem(C0, bin_var_used_in_guard);
false -> ok
end,
B1 = bsm_maybe_ctx_to_binary(VarName, B0),
B = bsm_maybe_ctx_to_binary(V, B1),
C = C0#c_clause{body=B},
bsm_do_an_var(V, S, Cs, [C|Acc]);
#c_alias{}=P ->
case bsm_could_match_binary(P) of
false ->
bsm_do_an_var(V, S, Cs, [C0|Acc]);
true ->
bsm_problem(C0, bin_opt_alias)
end;
P ->
case bsm_could_match_binary(P) andalso bsm_is_var_used(V, G, B0) of
false ->
bsm_do_an_var(V, S, Cs, [C0|Acc]);
true ->
bsm_problem(C0, bin_var_used)
end
end;
bsm_do_an_var(_, _, [], Acc) -> reverse(Acc).
bsm_annotate_for_reuse(#c_var{anno=Anno}=Var) ->
case member(reuse_for_context, Anno) of
false -> Var#c_var{anno=[reuse_for_context|Anno]};
true -> Var
end.
bsm_is_var_used(V, G, B) ->
core_lib:is_var_used(V, G) orelse core_lib:is_var_used(V, B).
bsm_maybe_ctx_to_binary(V, B) ->
case core_lib:is_var_used(V, B) andalso not previous_ctx_to_binary(V, B) of
false ->
B;
true ->
#c_seq{arg=#c_primop{name=#c_literal{val=bs_context_to_binary},
args=[#c_var{name=V}]},
body=B}
end.
previous_ctx_to_binary(V, #c_seq{arg=#c_primop{name=Name,args=As}}) ->
case {Name,As} of
{#c_literal{val=bs_context_to_binary},[#c_var{name=V}]} ->
true;
{_,_} ->
false
end;
previous_ctx_to_binary(_, _) -> false.
%% bsm_leftmost(Cs) -> none | ArgumentNumber
%% Find the leftmost argument that does binary matching. Return
%% the number of the argument (1-N).
bsm_leftmost(Cs) ->
bsm_leftmost_1(Cs, none).
bsm_leftmost_1([#c_clause{pats=Ps}|Cs], Pos) ->
bsm_leftmost_2(Ps, Cs, 1, Pos);
bsm_leftmost_1([], Pos) -> Pos.
bsm_leftmost_2(_, Cs, Pos, Pos) ->
bsm_leftmost_1(Cs, Pos);
bsm_leftmost_2([#c_binary{}|_], Cs, N, _) ->
bsm_leftmost_1(Cs, N);
bsm_leftmost_2([_|Ps], Cs, N, Pos) ->
bsm_leftmost_2(Ps, Cs, N+1, Pos);
bsm_leftmost_2([], Cs, _, Pos) ->
bsm_leftmost_1(Cs, Pos).
%% bsm_notempty(Cs, Pos) -> true|false
%% Check if at least one of the clauses matches a non-empty
%% binary in the given argumet position.
%%
bsm_nonempty([#c_clause{pats=Ps}|Cs], Pos) ->
case nth(Pos, Ps) of
#c_binary{segments=[_|_]} ->
true;
_ ->
bsm_nonempty(Cs, Pos)
end;
bsm_nonempty([], _ ) -> false.
%% bsm_ensure_no_partition(Cs, Pos) -> ok (exception if problem)
%% We must make sure that binary matching is not partitioned between
%% variables like this:
%% foo(<<...>>) -> ...
%% foo(Var) when ... -> ...
%% foo(<<...>>) ->
%% If there is such partition, we are not allowed to reuse the binary variable
%% for the match context. Also, arguments to the left of the argument that
%% is matched against a binary, are only allowed to be simple variables, not
%% used in guards. The reason is that we must know that the binary is only
%% matched in one place.
bsm_ensure_no_partition(Cs, Pos) ->
bsm_ensure_no_partition_1(Cs, Pos, before).
%% Loop through each clause.
bsm_ensure_no_partition_1([#c_clause{pats=Ps,guard=G}|Cs], Pos, State0) ->
State = bsm_ensure_no_partition_2(Ps, Pos, G, simple_vars, State0),
bsm_ensure_no_partition_1(Cs, Pos, State);
bsm_ensure_no_partition_1([], _, _) -> ok.
%% Loop through each pattern for this clause.
bsm_ensure_no_partition_2([#c_binary{}=Where|_], 1, _, Vstate, State) ->
case State of
before when Vstate =:= simple_vars -> within;
before -> bsm_problem(Where, Vstate);
within when Vstate =:= simple_vars -> within;
within -> bsm_problem(Where, Vstate);
'after' -> bsm_problem(Where, bin_partition)
end;
bsm_ensure_no_partition_2([#c_alias{}=Alias|_], 1, N, Vstate, State) ->
%% Retrieve the real pattern that the alias refers to and check that.
P = bsm_real_pattern(Alias),
bsm_ensure_no_partition_2([P], 1, N, Vstate, State);
bsm_ensure_no_partition_2([_|_], 1, _, _Vstate, before=State) ->
%% No binary matching yet - therefore no partition.
State;
bsm_ensure_no_partition_2([P|_], 1, _, Vstate, State) ->
case bsm_could_match_binary(P) of
false ->
%% If clauses can be freely arranged (Vstate =:= simple_vars),
%% a clause that cannot match a binary will not partition the clause.
%% Example:
%%
%% a(Var, <<>>) -> ...
%% a(Var, []) -> ...
%% a(Var, <<B>>) -> ...
%%
%% But if the clauses can't be freely rearranged, as in
%%
%% b(Var, <<>>) -> ...
%% b(1, 2) -> ...
%%
%% we do have a problem.
%%
case Vstate of
simple_vars -> State;
_ -> bsm_problem(P, Vstate)
end;
true ->
%% The pattern P *may* match a binary, so we must update the state.
%% (P must be a variable.)
case State of
within -> 'after';
'after' -> 'after'
end
end;
bsm_ensure_no_partition_2([#c_var{name=V}|Ps], N, G, Vstate, S) ->
case core_lib:is_var_used(V, G) of
false ->
bsm_ensure_no_partition_2(Ps, N-1, G, Vstate, S);
true ->
bsm_ensure_no_partition_2(Ps, N-1, G, bin_left_var_used_in_guard, S)
end;
bsm_ensure_no_partition_2([_|Ps], N, G, _, S) ->
bsm_ensure_no_partition_2(Ps, N-1, G, bin_argument_order, S).
bsm_could_match_binary(#c_alias{pat=P}) -> bsm_could_match_binary(P);
bsm_could_match_binary(#c_cons{}) -> false;
bsm_could_match_binary(#c_tuple{}) -> false;
bsm_could_match_binary(#c_literal{val=Lit}) -> is_bitstring(Lit);
bsm_could_match_binary(_) -> true.
bsm_real_pattern(#c_alias{pat=P}) -> bsm_real_pattern(P);
bsm_real_pattern(P) -> P.
bsm_problem(Where, What) ->
throw({problem,Where,What}).
%%%
%%% Handling of warnings.
%%%
mark_compiler_generated(Term) ->
cerl_trees:map(fun mark_compiler_generated_1/1, Term).
mark_compiler_generated_1(#c_call{anno=Anno}=Term) ->
Term#c_call{anno=[compiler_generated|Anno--[compiler_generated]]};
mark_compiler_generated_1(Term) -> Term.
init_warnings() ->
put({?MODULE,warnings}, []).
add_bin_opt_info(Core, Term) ->
case get(bin_opt_info) of
true -> add_warning(Core, Term);
false -> ok
end.
add_warning(Core, Term) ->
Anno = core_lib:get_anno(Core),
case lists:member(compiler_generated, Anno) of
true -> ok;
false ->
case get_line(Anno) of
Line when Line >= 0 -> %Must be positive.
File = get_file(Anno),
Key = {?MODULE,warnings},
case get(Key) of
[{File,[{Line,?MODULE,Term}]}|_] ->
ok; %We already have
%an identical warning.
Ws ->
put(Key, [{File,[{Line,?MODULE,Term}]}|Ws])
end;
_ -> ok %Compiler-generated code.
end
end.
get_line([Line|_]) when is_integer(Line) -> Line;
get_line([_|T]) -> get_line(T);
get_line([]) -> none.
get_file([{file,File}|_]) -> File;
get_file([_|T]) -> get_file(T);
get_file([]) -> "no_file". % should not happen
is_compiler_generated(Core) ->
Anno = core_lib:get_anno(Core),
case lists:member(compiler_generated, Anno) of
true -> true;
false ->
case get_line(Anno) of
Line when Line >= 0 -> false;
_ -> true
end
end.
get_warnings() ->
ordsets:from_list((erase({?MODULE,warnings}))).
-type error() :: 'bad_unicode' | 'bin_argument_order'
| 'bin_left_var_used_in_guard' | 'bin_opt_alias'
| 'bin_partition' | 'bin_var_used' | 'bin_var_used_in_guard'
| 'embedded_binary_size' | 'nomatch_clause_type'
| 'nomatch_guard' | 'nomatch_shadow' | 'no_clause_match'
| 'orig_bin_var_used_in_guard' | 'result_ignored'
| 'useless_building'
| {'eval_failure', term()}
| {'no_effect', {'erlang',atom(),arity()}}
| {'nomatch_shadow', integer()}
| {'embedded_unit', _, _}.
-spec format_error(error()) -> nonempty_string().
format_error({eval_failure,Reason}) ->
flatten(io_lib:format("this expression will fail with a '~p' exception", [Reason]));
format_error(embedded_binary_size) ->
"binary construction will fail with a 'badarg' exception "
"(field size for binary/bitstring greater than actual size)";
format_error({embedded_unit,Unit,Size}) ->
M = io_lib:format("binary construction will fail with a 'badarg' exception "
"(size ~p cannot be evenly divided by unit ~p)", [Size,Unit]),
flatten(M);
format_error(bad_unicode) ->
"binary construction will fail with a 'badarg' exception "
"(invalid Unicode code point in a utf8/utf16/utf32 segment)";
format_error({nomatch_shadow,Line}) ->
M = io_lib:format("this clause cannot match because a previous clause at line ~p "
"always matches", [Line]),
flatten(M);
format_error(nomatch_shadow) ->
"this clause cannot match because a previous clause always matches";
format_error(nomatch_guard) ->
"the guard for this clause evaluates to 'false'";
format_error(no_clause_match) ->
"no clause will ever match";
format_error(nomatch_clause_type) ->
"this clause cannot match because of different types/sizes";
format_error({no_effect,{erlang,F,A}}) ->
{Fmt,Args} = case erl_internal:comp_op(F, A) of
true ->
{"use of operator ~p has no effect",[F]};
false ->
case erl_internal:bif(F, A) of
false ->
{"the call to erlang:~p/~p has no effect",[F,A]};
true ->
{"the call to ~p/~p has no effect",[F,A]}
end
end,
flatten(io_lib:format(Fmt, Args));
format_error(result_ignored) ->
"the result of the expression is ignored";
format_error(useless_building) ->
"a term is constructed, but never used";
format_error(bin_opt_alias) ->
"INFO: the '=' operator will prevent delayed sub binary optimization";
format_error(bin_partition) ->
"INFO: non-consecutive clauses that match binaries "
"will prevent delayed sub binary optimization";
format_error(bin_left_var_used_in_guard) ->
"INFO: a variable to the left of the binary pattern is used in a guard; "
"will prevent delayed sub binary optimization";
format_error(bin_argument_order) ->
"INFO: matching anything else but a plain variable to the left of "
"binary pattern will prevent delayed sub binary optimization; "
"SUGGEST changing argument order";
format_error(bin_var_used) ->
"INFO: using a matched out sub binary will prevent "
"delayed sub binary optimization";
format_error(orig_bin_var_used_in_guard) ->
"INFO: using the original binary variable in a guard will prevent "
"delayed sub binary optimization";
format_error(bin_var_used_in_guard) ->
"INFO: using a matched out sub binary in a guard will prevent "
"delayed sub binary optimization".
-ifdef(DEBUG).
%% In order for simplify_let/2 to work correctly, the list of
%% in-scope variables must always be a superset of the free variables
%% in the current expression (otherwise we might fail to rename a variable
%% when needed and get a name capture bug).
verify_scope(E, #sub{s=Scope}) ->
Free0 = cerl_trees:free_variables(E),
Free = [V || V <- Free0, not is_tuple(V)], %Ignore function names.
case ordsets:is_subset(Free, gb_sets:to_list(Scope)) of
true -> true;
false ->
io:format("~p\n", [E]),
io:format("~p\n", [Free]),
io:format("~p\n", [gb_sets:to_list(Scope)]),
false
end.
-endif.