aboutsummaryrefslogblamecommitdiffstats
path: root/lib/compiler/src/v3_kernel.erl
blob: 4b5d7d919c61b94a182fc415b1373adb5058f6b7 (plain) (tree)
1
2
3
4
5
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

                   
  
                                                        
  










                                                                           
  

































































                                                                      
                                                                      
                                                                             
                                                                           
                           
 


                           

























                                                                      
                                                                        
                                                              
                                                               
                                                          




                                                                   
                                                                         

                                                               
                  
                                                 


                                                                       
                                                              



                                   
                                       




                                 
                                     
                                   
                                        
                                   
                                               

                             
                                                  
                                      
       
                                                                                  










                                                                              

 























                                                                      

                                     

                          




















































































































































































































































































































































































































































































                                                                                       













































                                                                                      


                                                         
                                                              





                                                                        

                                                 













                                           










                                                                      
                                                
                                    





                                                
                                                                     


                                            
                                                                   
                                 






























































                                                                               
                                                  















































                                                                                    
                                                               
















                                                                                
                                                      

                                                 


                                                               





















                                                                               






                                                                         
                                                      





                                                            
                                                              







                                               
                                                      







                                                               
                                             
                             
                    
                                             
                             
            






                                                                           
                                                                
        
 
                     
                                                           
 
                               
                                         

                                                          
 
                                         





                                                                              

                                                                            


                                                          
                                  


































                                                                         
 

                                                      
 
















                                                
 
                                                 





                                             
 
 











































































                                                                                  

                             


                                             
                                      


























                                                                  


























                                                                     
                                                



                                          
                                                                   

                                        
                                                                









                                                          
                                                   
                                                               
                                               













                                                               
                                            


                                                                

                                                                   
                                                                 









                                                          
 

















                                                                             

                            









                                                                 
                                      



































                                                                      
















                                                     






















                                                                     
                                                                   



















                                                
                                                                













































                                                                      










































































                                                                            

                                                 









                                                                  




                                              




                                     
                                  
                                            

































































                                                                            














                                                                

                                                                
































































                                                                                                
 

                       


































                                                                    












                                                                      
                                                                
















                                                                           














































                                                                             
                              













                                                                                 




                                                            


















                                                                           
                                     

                                                             
                                                      



























































                                                                                                     






                                                               







                                                                                   


                                                                        
                                                               
 
                             

                                                                    

                                            
 
                         

                                                                     

                                        
 























                                                                                       























                                                                            
                                          
                                           
                         

                                           
                       
                                     















                                                                         

                                                                            


                                                
















































                                                                            
                                           























                                                                      
                          

                                  



                                  
                  




                                   

                                                    





                                                            
                
                                 




                                                                        
        
 


























                                                                      

                           
                                                                     
                

                                                              















                                                                
        




































                                                                                  













                                                                  


                                                       
 
                                                            



                                                             





                                                                 






























                                                                               

                            

                                                                    
                















                                                                       
                                                                 





                                                                    

                                                                   











                                                                         



















                                                                                
                                                        




                                                                           
                
                                        

                                
                    

                                                            



                                                                  

                                                               
                    
                                       
                               


                                                   
                                            
                                                                   
                                      
































                                                                          




                                      

        



                                                  














                                                              




                                                     































                                                                          

                                                                    


























                                                                             


                                    

                                  
                                     
                                    













                                                                   
                     


                                     

















                                        


                          



                                     






                                                            





                                                           




                                      














                                                                                      

                                                                      
                                                               


                                                 
                                                  
                                                 
                          




                                                  
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Transform Core Erlang to Kernel Erlang

%% Kernel erlang is like Core Erlang with a few significant
%% differences:
%%
%% 1. It is flat!  There are no nested calls or sub-blocks.
%%
%% 2. All variables are unique in a function.  There is no scoping, or
%% rather the scope is the whole function.
%%
%% 3. Pattern matching (in cases and receives) has been compiled.
%%
%% 4. The annotations contain variable usages.  Seeing we have to work
%% this out anyway for funs we might as well pass it on for free to
%% later passes.
%%
%% 5. All remote-calls are to statically named m:f/a. Meta-calls are
%% passed via erlang:apply/3.
%%
%% The translation is done in two passes:
%%
%% 1. Basic translation, translate variable/function names, flatten
%% completely, pattern matching compilation.
%%
%% 2. Fun-lifting (lambda-lifting), variable usage annotation and
%% last-call handling.
%%
%% All new Kexprs are created in the first pass, they are just
%% annotated in the second.
%%
%% Functions and BIFs
%%
%% Functions are "call"ed or "enter"ed if it is a last call, their
%% return values may be ignored.  BIFs are things which are known to
%% be internal by the compiler and can only be called, their return
%% values cannot be ignored.
%%
%% Letrec's are handled rather naively.  All the functions in one
%% letrec are handled as one block to find the free variables.  While
%% this is not optimal it reflects how letrec's often are used.  We
%% don't have to worry about variable shadowing and nested letrec's as
%% this is handled in the variable/function name translation.  There
%% is a little bit of trickery to ensure letrec transformations fit
%% into the scheme of things.
%%
%% To ensure unique variable names we use a variable substitution
%% table and keep the set of all defined variables.  The nested
%% scoping of Core means that we must also nest the substitution
%% tables, but the defined set must be passed through to match the
%% flat structure of Kernel and to make sure variables with the same
%% name from different scopes get different substitutions.
%%
%% We also use these substitutions to handle the variable renaming
%% necessary in pattern matching compilation.
%%
%% The pattern matching compilation assumes that the values of
%% different types don't overlap.  This means that as there is no
%% character type yet in the machine all characters must be converted
%% to integers!

-module(v3_kernel).

-export([module/2,format_error/1]).

-import(lists, [map/2,foldl/3,foldr/3,mapfoldl/3,splitwith/2,member/2,
		keymember/3,keyfind/3,partition/2,droplast/1,last/1,sort/1]).
-import(ordsets, [add_element/2,del_element/2,union/2,union/1,subtract/2]).
-import(cerl, [c_tuple/1]).

-include("core_parse.hrl").
-include("v3_kernel.hrl").

%% These are not defined in v3_kernel.hrl.
get_kanno(Kthing) -> element(2, Kthing).
set_kanno(Kthing, Anno) -> setelement(2, Kthing, Anno).
copy_anno(Kdst, Ksrc) ->
    Anno = get_kanno(Ksrc),
    set_kanno(Kdst, Anno).

%% Internal kernel expressions and help functions.
%% N.B. the annotation field is ALWAYS the first field!

-record(ivalues, {anno=[],args}).
-record(ifun, {anno=[],vars,body}).
-record(iset, {anno=[],vars,arg,body}).
-record(iletrec, {anno=[],defs}).
-record(ialias, {anno=[],vars,pat}).
-record(iclause, {anno=[],isub,osub,pats,guard,body}).
-record(ireceive_accept, {anno=[],arg}).
-record(ireceive_next, {anno=[],arg}).

-type warning() :: term().	% XXX: REFINE

%% State record for kernel translator.
-record(kern, {func,				%Current host function
	       ff,				%Current function
	       vcount=0,			%Variable counter
	       fcount=0,			%Fun counter
               ds=cerl_sets:new() :: cerl_sets:set(), %Defined variables
	       funs=[],				%Fun functions
	       free=#{},			%Free variables
	       ws=[]   :: [warning()],		%Warnings.
	       guard_refc=0}).			%> 0 means in guard

-spec module(cerl:c_module(), [compile:option()]) ->
	{'ok', #k_mdef{}, [warning()]}.

module(#c_module{anno=A,name=M,exports=Es,attrs=As,defs=Fs}, _Options) ->
    Kas = attributes(As),
    Kes = map(fun (#c_var{name={_,_}=Fname}) -> Fname end, Es),
    St0 = #kern{},
    {Kfs,St} = mapfoldl(fun function/2, St0, Fs),
    {ok,#k_mdef{anno=A,name=M#c_literal.val,exports=Kes,attributes=Kas,
		body=Kfs ++ St#kern.funs},lists:sort(St#kern.ws)}.

attributes([{#c_literal{val=Name},#c_literal{val=Val}}|As]) ->
    case include_attribute(Name) of
	false ->
	    attributes(As);
	true ->
	    [{Name,Val}|attributes(As)]
    end;
attributes([]) -> [].

include_attribute(type) -> false;
include_attribute(spec) -> false;
include_attribute(callback) -> false;
include_attribute(opaque) -> false;
include_attribute(export_type) -> false;
include_attribute(record) -> false;
include_attribute(optional_callbacks) -> false;
include_attribute(_) -> true.

function({#c_var{name={F,Arity}=FA},Body}, St0) ->
    %%io:format("~w/~w~n", [F,Arity]),
    try
	St1 = St0#kern{func=FA,ff=undefined,vcount=0,fcount=0,ds=cerl_sets:new()},
	{#ifun{anno=Ab,vars=Kvs,body=B0},[],St2} = expr(Body, new_sub(), St1),
	{B1,_,St3} = ubody(B0, return, St2),
	%%B1 = B0, St3 = St2,				%Null second pass
	{#k_fdef{anno=#k{us=[],ns=[],a=Ab},
		 func=F,arity=Arity,vars=Kvs,body=B1},St3}
    catch
	Class:Error ->
	    Stack = erlang:get_stacktrace(),
	    io:fwrite("Function: ~w/~w\n", [F,Arity]),
	    erlang:raise(Class, Error, Stack)
    end.


%% body(Cexpr, Sub, State) -> {Kexpr,[PreKepxr],State}.
%%  Do the main sequence of a body.  A body ends in an atomic value or
%%  values.  Must check if vector first so do expr.

body(#c_values{anno=A,es=Ces}, Sub, St0) ->
    %% Do this here even if only in bodies.
    {Kes,Pe,St1} = atomic_list(Ces, Sub, St0),
    %%{Kes,Pe,St1} = expr_list(Ces, Sub, St0),
    {#ivalues{anno=A,args=Kes},Pe,St1};
body(#ireceive_next{anno=A}, _, St) ->
    {#k_receive_next{anno=A},[],St};
body(Ce, Sub, St0) ->
    expr(Ce, Sub, St0).

%% guard(Cexpr, Sub, State) -> {Kexpr,State}.
%%  We handle guards almost as bodies. The only special thing we
%%  must do is to make the final Kexpr a #k_test{}.
%%  Also, we wrap the entire guard in a try/catch which is
%%  not strictly needed, but makes sure that every 'bif' instruction
%%  will get a proper failure label.

guard(G0, Sub, St0) ->
    {G1,St1} = wrap_guard(G0, St0),
    {Ge0,Pre,St2} = expr(G1, Sub, St1),
    {Ge1,St3} = gexpr_test(Ge0, St2),
    {Ge,St} = guard_opt(Ge1, St3),
    {pre_seq(Pre, Ge),St}.

%% guard_opt(Kexpr, State) -> {Kexpr,State}.
%%  Optimize the Kexpr for the guard.  Instead of evaluating a boolean
%%  expression comparing it to 'true' in a final #k_test{},
%%  replace BIF calls with #k_test{} in the expression.
%%
%%  As an example, take the guard:
%%
%%     when is_integer(V0), is_atom(V1) ->
%%
%%  The unoptimized Kexpr translated to pseudo BEAM assembly
%%  code would look like:
%%
%%     bif is_integer V0 => Bool0
%%     bif is_atom V1    => Bool1
%%     bif and Bool0 Bool1 => Bool
%%     test Bool =:= true else goto Fail
%%     ...
%%   Fail:
%%     ...
%%
%%  The optimized code would look like:
%%
%%     test is_integer V0 else goto Fail
%%     test is_atom V1    else goto Fail
%%     ...
%%   Fail:
%%     ...
%%
%%  An 'or' operation is only slightly more complicated:
%%
%%     test is_integer V0 else goto NotFailedYet
%%     goto Success
%%
%%   NotFailedYet:
%%     test is_atom V1 else goto Fail
%%
%%   Success:
%%     ...
%%   Fail:
%%     ...

guard_opt(G, St0) ->
    {Root,Forest0,St1} = make_forest(G, St0),
    {Exprs,Forest,St} = rewrite_bool(Root, Forest0, false, St1),
    E = forest_pre_seq(Exprs, Forest),
    {G#k_try{arg=E},St}.

%% rewrite_bool(Kexpr, Forest, Inv, St) -> {[Kexpr],Forest,St}.
%%  Rewrite Kexpr to use #k_test{} operations instead of comparison
%%  and type test BIFs.
%%
%%  If Kexpr is a #k_test{} operation, the call will always
%%  succeed. Otherwise, a 'not_possible' exception will be
%%  thrown if Kexpr cannot be rewritten.

rewrite_bool(#k_test{op=#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val='=:='}},
		args=[#k_var{}=V,#k_atom{val=true}]}=Test, Forest0, Inv, St0) ->
    try rewrite_bool_var(V, Forest0, Inv, St0) of
	{_,_,_}=Res ->
	    Res
    catch
	throw:not_possible ->
	    {[Test],Forest0,St0}
    end;
rewrite_bool(#k_test{op=#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val='=:='}},
		args=[#k_var{}=V,#k_atom{val=false}]}=Test, Forest0, Inv, St0) ->
    try rewrite_bool_var(V, Forest0, not Inv, St0) of
	{_,_,_}=Res ->
	    Res
    catch
	throw:not_possible ->
	    {[Test],Forest0,St0}
    end;
rewrite_bool(#k_test{op=#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val='=:='}},
		args=[#k_atom{val=V1},#k_atom{val=V2}]}, Forest0, false, St0) ->
    case V1 =:= V2 of
	true ->
	    {[make_test(is_boolean, [#k_atom{val=true}])],Forest0,St0};
	false ->
	    {[make_failing_test()],Forest0,St0}
    end;
rewrite_bool(#k_test{}=Test, Forest, false, St) ->
    {[Test],Forest,St};
rewrite_bool(#k_try{vars=[#k_var{name=X}],body=#k_var{name=X},
			    handler=#k_atom{val=false},ret=[]}=Prot,
		     Forest0, Inv, St0) ->
    {Root,Forest1,St1} = make_forest(Prot, Forest0, St0),
    {Exprs,Forest2,St} = rewrite_bool(Root, Forest1, Inv, St1),
    InnerForest = maps:without(maps:keys(Forest0), Forest2),
    Forest = maps:without(maps:keys(InnerForest), Forest2),
    E = forest_pre_seq(Exprs, InnerForest),
    {[Prot#k_try{arg=E}],Forest,St};
rewrite_bool(#k_match{body=Body,ret=[]}, Forest, Inv, St) ->
    rewrite_match(Body, Forest, Inv, St);
rewrite_bool(Other, Forest, Inv, St) ->
    case extract_bif(Other) of
	{Name,Args} ->
	    rewrite_bif(Name, Args, Forest, Inv, St);
	error ->
	    throw(not_possible)
    end.

%% rewrite_bool_var(Var, Forest, Inv, St) -> {[Kexpr],Forest,St}.
%%  Rewrite the boolean expression whose key in Forest is
%%  given by Var. Throw a 'not_possible' expression if something
%%  prevents the rewriting.

rewrite_bool_var(Arg, Forest0, Inv, St) ->
    {Expr,Forest} = forest_take_expr(Arg, Forest0),
    rewrite_bool(Expr, Forest, Inv, St).

%% rewrite_bool_args([Kexpr], Forest, Inv, St) -> {[[Kexpr]],Forest,St}.
%%  Rewrite each Kexpr in the list. The input Kexpr should be variables
%%  or boolean values. Throw a 'not_possible' expression if something
%%  prevents the rewriting.
%%
%%  This function is suitable for handling the arguments for both
%%  'and' and 'or'.

rewrite_bool_args([#k_atom{val=B}=A|Vs], Forest0, false=Inv, St0) when is_boolean(B) ->
    {Tail,Forest1,St1} = rewrite_bool_args(Vs, Forest0, Inv, St0),
    Bif = make_bif('=:=', [A,#k_atom{val=true}]),
    {Exprs,Forest,St} = rewrite_bool(Bif, Forest1, Inv, St1),
    {[Exprs|Tail],Forest,St};
rewrite_bool_args([#k_var{}=Var|Vs], Forest0, false=Inv, St0) ->
    {Tail,Forest1,St1} = rewrite_bool_args(Vs, Forest0, Inv, St0),
    {Exprs,Forest,St} =
	case is_bool_expr(Var, Forest0) of
	    true ->
		rewrite_bool_var(Var, Forest1, Inv, St1);
	    false ->
		Bif = make_bif('=:=', [Var,#k_atom{val=true}]),
		rewrite_bool(Bif, Forest1, Inv, St1)
	end,
    {[Exprs|Tail],Forest,St};
rewrite_bool_args([_|_], _Forest, _Inv, _St) ->
    throw(not_possible);
rewrite_bool_args([], Forest, _Inv, St) ->
    {[],Forest,St}.

%% rewrite_bif(Name, [Kexpr], Forest, Inv, St) -> {[Kexpr],Forest,St}.
%%  Rewrite a BIF. Throw a 'not_possible' expression if something
%%  prevents the rewriting.

rewrite_bif('or', Args, Forest, true, St) ->
    rewrite_not_args('and', Args, Forest, St);
rewrite_bif('and', Args, Forest, true, St) ->
    rewrite_not_args('or', Args, Forest, St);
rewrite_bif('and', [#k_atom{val=Val},Arg], Forest0, Inv, St0) ->
    false = Inv,				%Assertion.
    case Val of
	true ->
	    %% The result only depends on Arg.
	    rewrite_bool_var(Arg, Forest0, Inv, St0);
	_ ->
	    %% Will fail. There is no need to evalute the expression
	    %% represented by Arg. Take it out from the forest and
	    %% discard the expression.
	    Failing = make_failing_test(),
	    try rewrite_bool_var(Arg, Forest0, Inv, St0) of
		{_,Forest,St} ->
		    {[Failing],Forest,St}
	    catch
		throw:not_possible ->
		    try forest_take_expr(Arg, Forest0) of
			{_,Forest} ->
			    {[Failing],Forest,St0}
		    catch
			throw:not_possible ->
			    %% Arg is probably a variable bound in an
			    %% outer scope.
			    {[Failing],Forest0,St0}
		    end
	    end
    end;
rewrite_bif('and', [Arg,#k_atom{}=Atom], Forest, Inv, St) ->
    false = Inv,				%Assertion.
    rewrite_bif('and', [Atom,Arg], Forest, Inv, St);
rewrite_bif('and', Args, Forest0, Inv, St0) ->
    false = Inv,				%Assertion.
    {[Es1,Es2],Forest,St} = rewrite_bool_args(Args, Forest0, Inv, St0),
    {Es1 ++ Es2,Forest,St};
rewrite_bif('or', Args, Forest0, Inv, St0) ->
    false = Inv,				%Assertion.
    {[First,Then],Forest,St} = rewrite_bool_args(Args, Forest0, Inv, St0),
    Alt = make_alt(First, Then),
    {[Alt],Forest,St};
rewrite_bif('xor', [_,_], _Forest, _Inv, _St) ->
    %% Rewriting 'xor' is not practical. Fortunately, 'xor' is
    %% almost never used in practice.
    throw(not_possible);
rewrite_bif('not', [Arg], Forest0, Inv, St) ->
    {Expr,Forest} = forest_take_expr(Arg, Forest0),
    rewrite_bool(Expr, Forest, not Inv, St);
rewrite_bif(Op, Args, Forest, Inv, St) ->
    case is_test(Op, Args) of
	true ->
	    rewrite_bool(make_test(Op, Args, Inv), Forest, false, St);
	false ->
	    throw(not_possible)
    end.

rewrite_not_args(Op, [A0,B0], Forest0, St0) ->
    {A,Forest1,St1} = rewrite_not_args_1(A0, Forest0, St0),
    {B,Forest2,St2} = rewrite_not_args_1(B0, Forest1, St1),
    rewrite_bif(Op, [A,B], Forest2, false, St2).

rewrite_not_args_1(Arg, Forest, St) ->
    Not = make_bif('not', [Arg]),
    forest_add_expr(Not, Forest, St).

%% rewrite_match(Kvar, TypeClause, Forest, Inv, St) ->
%%       {[Kexpr],Forest,St}.
%%  Try to rewrite a #k_match{} originating from an 'andalso' or an 'orelse'.

rewrite_match(#k_alt{first=First,then=Then}, Forest, Inv, St) ->
    case {First,Then} of
	{#k_select{var=#k_var{name=V}=Var,types=[TypeClause]},#k_var{name=V}} ->
	    rewrite_match_1(Var, TypeClause, Forest, Inv, St);
	{_,_} ->
	    throw(not_possible)
    end.

rewrite_match_1(Var, #k_type_clause{values=Cs0}, Forest0, Inv, St0) ->
    Cs = sort([{Val,B} || #k_val_clause{val=#k_atom{val=Val},body=B} <- Cs0]),
    case Cs of
	[{false,False},{true,True}] ->
	    rewrite_match_2(Var, False, True, Forest0, Inv, St0);
	_ ->
	    throw(not_possible)
    end.

rewrite_match_2(Var, False, #k_atom{val=true}, Forest0, Inv, St0) ->
    %% Originates from an 'orelse'.
    case False of
	#k_atom{val=NotBool} when not is_boolean(NotBool) ->
	    rewrite_bool(Var, Forest0, Inv, St0);
	_ ->
	    {CodeVar,Forest1,St1} = add_protected_expr(False, Forest0, St0),
	    rewrite_bif('or', [Var,CodeVar], Forest1, Inv, St1)
    end;
rewrite_match_2(Var, #k_atom{val=false}, True, Forest0, Inv, St0) ->
    %% Originates from an 'andalso'.
    {CodeVar,Forest1,St1} = add_protected_expr(True, Forest0, St0),
    rewrite_bif('and', [Var,CodeVar], Forest1, Inv, St1);
rewrite_match_2(_V, _, _, _Forest, _Inv, _St) ->
    throw(not_possible).

%% is_bool_expr(#k_var{}, Forest) -> true|false.
%%  Return true if the variable refers to a boolean expression
%%  that does not need an explicit '=:= true' test.

is_bool_expr(V, Forest) ->
    case forest_peek_expr(V, Forest) of
	error ->
	    %% Defined outside of the guard. We can't know.
	    false;
	Expr ->
	    case extract_bif(Expr) of
		{Name,Args} ->
		    is_test(Name, Args) orelse
			erl_internal:bool_op(Name, length(Args));
		error ->
		    %% Not a BIF. Should be possible to rewrite
		    %% to a boolean. Definitely does not need
		    %% a '=:= true' test.
		    true
	    end
    end.

make_bif(Op, Args) ->
    #k_bif{op=#k_remote{mod=#k_atom{val=erlang},
			name=#k_atom{val=Op},
			arity=length(Args)},
	   args=Args}.

extract_bif(#k_bif{op=#k_remote{mod=#k_atom{val=erlang},
				 name=#k_atom{val=Name}},
		    args=Args}) ->
    {Name,Args};
extract_bif(_) ->
    error.

%% make_alt(First, Then) -> KMatch.
%%  Make a #k_alt{} within a #k_match{} to implement
%%  'or' or 'orelse'.

make_alt(First0, Then0) ->
    First1 = pre_seq(droplast(First0), last(First0)),
    Then1 = pre_seq(droplast(Then0), last(Then0)),
    First2 = make_protected(First1),
    Then2 = make_protected(Then1),
    Body = #k_atom{val=ignored},
    First3 = #k_guard_clause{guard=First2,body=Body},
    Then3 = #k_guard_clause{guard=Then2,body=Body},
    First = #k_guard{clauses=[First3]},
    Then = #k_guard{clauses=[Then3]},
    Alt = #k_alt{first=First,then=Then},
    #k_match{vars=[],body=Alt}.

add_protected_expr(#k_atom{}=Atom, Forest, St) ->
    {Atom,Forest,St};
add_protected_expr(#k_var{}=Var, Forest, St) ->
    {Var,Forest,St};
add_protected_expr(E0, Forest, St) ->
    E = make_protected(E0),
    forest_add_expr(E, Forest, St).

make_protected(#k_try{}=Try) ->
    Try;
make_protected(B) ->
    #k_try{arg=B,vars=[#k_var{name=''}],body=#k_var{name=''},
	   handler=#k_atom{val=false}}.

make_failing_test() ->
    make_test(is_boolean, [#k_atom{val=fail}]).

make_test(Op, Args) ->
    make_test(Op, Args, false).

make_test(Op, Args, Inv) ->
    Remote = #k_remote{mod=#k_atom{val=erlang},
		       name=#k_atom{val=Op},
		       arity=length(Args)},
    #k_test{op=Remote,args=Args,inverted=Inv}.

is_test(Op, Args) ->
    A = length(Args),
    erl_internal:new_type_test(Op, A) orelse erl_internal:comp_op(Op, A).

%% make_forest(Kexpr, St) -> {RootKexpr,Forest,St}.
%%  Build a forest out of Kexpr. RootKexpr is the final expression
%%  nested inside Kexpr.

make_forest(G, St) ->
    make_forest_1(G, #{}, 0, St).

%% make_forest(Kexpr, St) -> {RootKexpr,Forest,St}.
%%  Add to Forest from Kexpr. RootKexpr is the final expression
%%  nested inside Kexpr.

make_forest(G, Forest0, St) ->
    N = forest_next_index(Forest0),
    make_forest_1(G, Forest0, N, St).

make_forest_1(#k_try{arg=B}, Forest, I, St) ->
    make_forest_1(B, Forest, I, St);
make_forest_1(#iset{vars=[]}=Iset0, Forest, I, St0) ->
    {UnrefVar,St} = new_var(St0),
    Iset = Iset0#iset{vars=[UnrefVar]},
    make_forest_1(Iset, Forest, I, St);
make_forest_1(#iset{vars=[#k_var{name=V}],arg=Arg,body=B}, Forest0, I, St) ->
    Forest = Forest0#{V => {I,Arg}, {untaken,V} => true},
    make_forest_1(B, Forest, I+1, St);
make_forest_1(Innermost, Forest, _I, St) ->
    {Innermost,Forest,St}.

%% forest_take_expr(Kexpr, Forest) -> {Expr,Forest}.
%%  If Kexpr is a variable, take out the expression corresponding
%%  to variable in Forest. Expressions that have been taken out
%%  of the forest will not be included the Kexpr returned
%%  by forest_pre_seq/2.
%%
%%  Throw a 'not_possible' exception if Kexpr is not a variable or
%%  if the name of the variable is not a key in Forest.

forest_take_expr(#k_var{name=V}, Forest0) ->
    %% v3_core currently always generates guard expressions that can
    %% be represented as a tree.  Other code generators (such as LFE)
    %% could generate guard expressions that can only be represented
    %% as a DAG (i.e. some nodes are referenced more than once). To
    %% handle DAGs, we must never remove a node from the forest, but
    %% just remove the {untaken,V} marker. That will effectively convert
    %% the DAG to a tree by duplicating the shared nodes and their
    %% descendants.

    case maps:find(V, Forest0) of
	{ok,{_,Expr}} ->
	    Forest = maps:remove({untaken,V}, Forest0),
	    {Expr,Forest};
	error ->
	    throw(not_possible)
    end;
forest_take_expr(_, _) ->
    throw(not_possible).

%% forest_peek_expr(Kvar, Forest) -> Kexpr | error.
%%  Return the expression corresponding to Kvar in Forest or
%%  return 'error' if there is a corresponding expression.

forest_peek_expr(#k_var{name=V}, Forest0) ->
    case maps:find(V, Forest0) of
	{ok,{_,Expr}} -> Expr;
	error -> error
    end.

%% forest_add_expr(Kexpr, Forest, St) -> {Kvar,Forest,St}.
%%  Add a new expression to Forest.

forest_add_expr(Expr, Forest0, St0) ->
    {#k_var{name=V}=Var,St} = new_var(St0),
    N = forest_next_index(Forest0),
    Forest = Forest0#{V => {N,Expr}},
    {Var,Forest,St}.

forest_next_index(Forest) ->
    1 + lists:max([N || {N,_} <- maps:values(Forest),
			is_integer(N)] ++ [0]).

%% forest_pre_seq([Kexpr], Forest) -> Kexpr.
%%  Package the list of Kexprs into a nested Kexpr, prepending all
%%  expressions in Forest that have not been taken out using
%%  forest_take_expr/2.

forest_pre_seq(Exprs, Forest) ->
    Es0 = [#k_var{name=V} || {untaken,V} <- maps:keys(Forest)],
    Es = Es0 ++ Exprs,
    Vs = extract_all_vars(Es, Forest, []),
    Pre0 = sort([{maps:get(V, Forest),V} || V <- Vs]),
    Pre = [#iset{vars=[#k_var{name=V}],arg=A} ||
	      {{_,A},V} <- Pre0],
    pre_seq(Pre++droplast(Exprs), last(Exprs)).

extract_all_vars(Es, Forest, Acc0) ->
    case extract_var_list(Es) of
	[] ->
	    Acc0;
	[_|_]=Vs0 ->
	    Vs = [V || V <- Vs0, maps:is_key(V, Forest)],
	    NewVs = ordsets:subtract(Vs, Acc0),
	    NewEs = [begin
		      {_,E} = maps:get(V, Forest),
		      E
		  end || V <- NewVs],
	    Acc = union(NewVs, Acc0),
	    extract_all_vars(NewEs, Forest, Acc)
    end.

extract_vars(#iset{arg=A,body=B}) ->
    union(extract_vars(A), extract_vars(B));
extract_vars(#k_bif{args=Args}) ->
    ordsets:from_list(lit_list_vars(Args));
extract_vars(#k_call{}) ->
    [];
extract_vars(#k_test{args=Args}) ->
    ordsets:from_list(lit_list_vars(Args));
extract_vars(#k_match{body=Body}) ->
    extract_vars(Body);
extract_vars(#k_alt{first=First,then=Then}) ->
    union(extract_vars(First), extract_vars(Then));
extract_vars(#k_guard{clauses=Cs}) ->
    extract_var_list(Cs);
extract_vars(#k_guard_clause{guard=G}) ->
    extract_vars(G);
extract_vars(#k_select{var=Var,types=Types}) ->
    union(ordsets:from_list(lit_vars(Var)),
	  extract_var_list(Types));
extract_vars(#k_type_clause{values=Values}) ->
    extract_var_list(Values);
extract_vars(#k_val_clause{body=Body}) ->
    extract_vars(Body);
extract_vars(#k_try{arg=Arg}) ->
    extract_vars(Arg);
extract_vars(Lit) ->
    ordsets:from_list(lit_vars(Lit)).

extract_var_list(L) ->
    union([extract_vars(E) || E <- L]).

%% Wrap the entire guard in a try/catch if needed.

wrap_guard(#c_try{}=Try, St) -> {Try,St};
wrap_guard(Core, St0) ->
    {VarName,St} = new_var_name(St0),
    Var = #c_var{name=VarName},
    Try = #c_try{arg=Core,vars=[Var],body=Var,evars=[],handler=#c_literal{val=false}},
    {Try,St}.
    
%% gexpr_test(Kexpr, State) -> {Kexpr,State}.
%%  Builds the final boolean test from the last Kexpr in a guard test.
%%  Must enter try blocks and isets and find the last Kexpr in them.
%%  This must end in a recognised BEAM test!

gexpr_test(#k_bif{anno=A,op=#k_remote{mod=#k_atom{val=erlang},
				      name=#k_atom{val=F},arity=Ar}=Op,
		  args=Kargs}=Ke, St) ->
    %% Either convert to test if ok, or add test.
    %% At this stage, erlang:float/1 is not a type test. (It should
    %% have been converted to erlang:is_float/1.)
    case erl_internal:new_type_test(F, Ar) orelse
	erl_internal:comp_op(F, Ar) of
	true -> {#k_test{anno=A,op=Op,args=Kargs},St};
	false -> gexpr_test_add(Ke, St)		%Add equality test
    end;
gexpr_test(#k_try{arg=B0,vars=[#k_var{name=X}],body=#k_var{name=X},
		  handler=#k_atom{val=false}}=Try, St0) ->
    {B,St} = gexpr_test(B0, St0),
    %%ok = io:fwrite("~w: ~p~n", [?LINE,{B0,B}]),
    {Try#k_try{arg=B},St};
gexpr_test(#iset{body=B0}=Iset, St0) ->
    {B1,St1} = gexpr_test(B0, St0),
    {Iset#iset{body=B1},St1};
gexpr_test(Ke, St) -> gexpr_test_add(Ke, St).	%Add equality test

gexpr_test_add(Ke, St0) ->
    Test = #k_remote{mod=#k_atom{val='erlang'},
		     name=#k_atom{val='=:='},
		     arity=2},
    {Ae,Ap,St1} = force_atomic(Ke, St0),
    {pre_seq(Ap, #k_test{anno=get_kanno(Ke),
			 op=Test,args=[Ae,#k_atom{val='true'}]}),St1}.

%% expr(Cexpr, Sub, State) -> {Kexpr,[PreKexpr],State}.
%%  Convert a Core expression, flattening it at the same time.

expr(#c_var{anno=A,name={_Name,Arity}}=Fname, Sub, St) ->
    %% A local in an expression.
    %% For now, these are wrapped into a fun by reverse
    %% eta-conversion, but really, there should be exactly one
    %% such "lambda function" for each escaping local name,
    %% instead of one for each occurrence as done now.
    Vs = [#c_var{name=list_to_atom("V" ++ integer_to_list(V))} ||
	     V <- integers(1, Arity)],
    Fun = #c_fun{anno=A,vars=Vs,body=#c_apply{anno=A,op=Fname,args=Vs}},
    expr(Fun, Sub, St);
expr(#c_var{anno=A,name=V}, Sub, St) ->
    {#k_var{anno=A,name=get_vsub(V, Sub)},[],St};
expr(#c_literal{anno=A,val=V}, _Sub, St) ->
    Klit = case V of
	       [] ->
		   #k_nil{anno=A};
	       V when is_integer(V) ->
		   #k_int{anno=A,val=V};
	       V when is_float(V) ->
		   #k_float{anno=A,val=V};
	       V when is_atom(V) ->
		   #k_atom{anno=A,val=V};
	       _ ->
		   #k_literal{anno=A,val=V}
	   end,
    {Klit,[],St};
expr(#c_cons{anno=A,hd=Ch,tl=Ct}, Sub, St0) ->
    %% Do cons in two steps, first the expressions left to right, then
    %% any remaining literals right to left.
    {Kh0,Hp0,St1} = expr(Ch, Sub, St0),
    {Kt0,Tp0,St2} = expr(Ct, Sub, St1),
    {Kt1,Tp1,St3} = force_atomic(Kt0, St2),
    {Kh1,Hp1,St4} = force_atomic(Kh0, St3),
    {#k_cons{anno=A,hd=Kh1,tl=Kt1},Hp0 ++ Tp0 ++ Tp1 ++ Hp1,St4};
expr(#c_tuple{anno=A,es=Ces}, Sub, St0) ->
    {Kes,Ep,St1} = atomic_list(Ces, Sub, St0),
    {#k_tuple{anno=A,es=Kes},Ep,St1};
expr(#c_map{anno=A,arg=Var,es=Ces}, Sub, St0) ->
    expr_map(A, Var, Ces, Sub, St0);
expr(#c_binary{anno=A,segments=Cv}, Sub, St0) ->
    try atomic_bin(Cv, Sub, St0) of
	{Kv,Ep,St1} ->
	    {#k_binary{anno=A,segs=Kv},Ep,St1}
    catch
	throw:bad_element_size ->
	    St1 = add_warning(get_line(A), bad_segment_size, A, St0),
	    Erl = #c_literal{val=erlang},
	    Name = #c_literal{val=error},
	    Args = [#c_literal{val=badarg}],
	    Error = #c_call{anno=A,module=Erl,name=Name,args=Args},
	    expr(Error, Sub, St1)
    end;
expr(#c_fun{anno=A,vars=Cvs,body=Cb}, Sub0, #kern{ff=OldFF,func=Func}=St0) ->
    FA = case OldFF of
	     undefined ->
		 Func;
	     _ ->
		 case lists:keyfind(id, 1, A) of
		     {id,{_,_,Name}} -> Name;
		     _ ->
			 case lists:keyfind(letrec_name, 1, A) of
			     {letrec_name,Name} -> Name;
			     _ -> unknown_fun
			 end
		 end
	 end,
    {Kvs,Sub1,St1} = pattern_list(Cvs, Sub0, St0#kern{ff=FA}),
    %%ok = io:fwrite("~w: ~p~n", [?LINE,{{Cvs,Sub0,St0},{Kvs,Sub1,St1}}]),
    {Kb,Pb,St2} = body(Cb, Sub1, St1#kern{ff=FA}),
    {#ifun{anno=A,vars=Kvs,body=pre_seq(Pb, Kb)},[],St2#kern{ff=OldFF}};
expr(#c_seq{arg=Ca,body=Cb}, Sub, St0) ->
    {Ka,Pa,St1} = body(Ca, Sub, St0),
    {Kb,Pb,St2} = body(Cb, Sub, St1),
    {Kb,Pa ++ [Ka] ++ Pb,St2};
expr(#c_let{anno=A,vars=Cvs,arg=Ca,body=Cb}, Sub0, St0) ->
    %%ok = io:fwrite("~w: ~p~n", [?LINE,{Cvs,Sub0,St0}]),
    {Ka,Pa,St1} = body(Ca, Sub0, St0),
    {Kps,Sub1,St2} = pattern_list(Cvs, Sub0, St1),
    %%ok = io:fwrite("~w: ~p~n", [?LINE,{Kps,Sub1,St1,St2}]),
    %% Break known multiple values into separate sets.
    Sets = case Ka of
	       #ivalues{args=Kas} ->
		   foldr2(fun (V, Val, Sb) ->
				  [#iset{vars=[V],arg=Val}|Sb] end,
			  [], Kps, Kas);
	       _Other ->
		   [#iset{anno=A,vars=Kps,arg=Ka}]
	   end,
    {Kb,Pb,St3} = body(Cb, Sub1, St2),
    {Kb,Pa ++ Sets ++ Pb,St3};
expr(#c_letrec{anno=A,defs=Cfs,body=Cb}, Sub0, St0) ->
    %% Make new function names and store substitution.
    {Fs0,{Sub1,St1}} =
	mapfoldl(fun ({#c_var{name={F,Ar}},B0}, {Sub,S0}) ->
			 {N,St1} = new_fun_name(atom_to_list(F)
						++ "/" ++
						integer_to_list(Ar),
						S0),
			 B = set_kanno(B0, [{letrec_name,N}]),
			 {{N,B},{set_fsub(F, Ar, N, Sub),St1}}
		 end, {Sub0,St0}, Cfs),
    %% Run translation on functions and body.
    {Fs1,St2} = mapfoldl(fun ({N,Fd0}, S1) ->
				 {Fd1,[],St2} = expr(Fd0, Sub1, S1#kern{ff=N}),
				 Fd = set_kanno(Fd1, A),
				 {{N,Fd},St2}
			 end, St1, Fs0),
    {Kb,Pb,St3} = body(Cb, Sub1, St2#kern{ff=St1#kern.ff}),
    {Kb,[#iletrec{anno=A,defs=Fs1}|Pb],St3};
expr(#c_case{arg=Ca,clauses=Ccs}, Sub, St0) ->
    {Ka,Pa,St1} = body(Ca, Sub, St0),		%This is a body!
    {Kvs,Pv,St2} = match_vars(Ka, St1),		%Must have variables here!
    {Km,St3} = kmatch(Kvs, Ccs, Sub, St2),
    Match = flatten_seq(build_match(Kvs, Km)),
    {last(Match),Pa ++ Pv ++ droplast(Match),St3};
expr(#c_receive{anno=A,clauses=Ccs0,timeout=Ce,action=Ca}, Sub, St0) ->
    {Ke,Pe,St1} = atomic(Ce, Sub, St0),		%Force this to be atomic!
    {Rvar,St2} = new_var(St1),
    %% Need to massage accept clauses and add reject clause before matching.
    Ccs1 = map(fun (#c_clause{anno=Banno,body=B0}=C) ->
		       B1 = #c_seq{arg=#ireceive_accept{anno=A},body=B0},
		       C#c_clause{anno=Banno,body=B1}
	       end, Ccs0),
    {Mpat,St3} = new_var_name(St2),
    Rc = #c_clause{anno=[compiler_generated|A],
		   pats=[#c_var{name=Mpat}],guard=#c_literal{anno=A,val=true},
		   body=#ireceive_next{anno=A}},
    {Km,St4} = kmatch([Rvar], Ccs1 ++ [Rc], Sub, add_var_def(Rvar, St3)),
    {Ka,Pa,St5} = body(Ca, Sub, St4),
    {#k_receive{anno=A,var=Rvar,body=Km,timeout=Ke,action=pre_seq(Pa, Ka)},
     Pe,St5};
expr(#c_apply{anno=A,op=Cop,args=Cargs}, Sub, St) ->
    c_apply(A, Cop, Cargs, Sub, St);
expr(#c_call{anno=A,module=#c_literal{val=erlang},name=#c_literal{val=is_record},
	     args=[_,Tag,Sz]=Args0}, Sub, St0) ->
    {Args,Ap,St} = atomic_list(Args0, Sub, St0),
    Remote = #k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=is_record},arity=3},
    case {Tag,Sz} of
	{#c_literal{val=Atom},#c_literal{val=Int}}
	when is_atom(Atom), is_integer(Int) ->
	    %% Tag and size are literals. Make it a BIF, which will actually
	    %% be expanded out in a later pass.
	    {#k_bif{anno=A,op=Remote,args=Args},Ap,St};
	{_,_} ->
	    %% (Only in bodies.) Make it into an actual call to the BIF.
	    {#k_call{anno=A,op=Remote,args=Args},Ap,St}
    end;
expr(#c_call{anno=A,module=M0,name=F0,args=Cargs}, Sub, St0) ->
    Ar = length(Cargs),
    {Type,St1} = case call_type(M0, F0, Ar) of
		     error ->
			 %% Invalid call (e.g. M:42/3). Issue a warning,
			 %% and let the generated code use the old explict apply.
			 {old_apply,add_warning(get_line(A), bad_call, A, St0)};
		     Type0 ->
			 {Type0,St0}
		 end,

    case Type of
	old_apply ->
	    Call = #c_call{anno=A,
			   module=#c_literal{val=erlang},
			   name=#c_literal{val=apply},
			   args=[M0,F0,cerl:make_list(Cargs)]},
	    expr(Call, Sub, St1);
	_ ->
	    {[M1,F1|Kargs],Ap,St} = atomic_list([M0,F0|Cargs], Sub, St1),
	    Call = case Type of
		       bif ->
			   #k_bif{anno=A,op=#k_remote{mod=M1,name=F1,arity=Ar},
				  args=Kargs};
		       call ->
			   #k_call{anno=A,op=#k_remote{mod=M1,name=F1,arity=Ar},
				   args=Kargs};
		       apply ->
			   #k_call{anno=A,op=#k_remote{mod=M1,name=F1,arity=Ar},
				   args=Kargs}
		   end,
	    {Call,Ap,St}
    end;
expr(#c_primop{anno=A,name=#c_literal{val=match_fail},args=Cargs0}, Sub, St0) ->
    Cargs = translate_match_fail(Cargs0, Sub, A, St0),
    {Kargs,Ap,St} = atomic_list(Cargs, Sub, St0),
    Ar = length(Cargs),
    Call = #k_call{anno=A,op=#k_remote{mod=#k_atom{val=erlang},
				       name=#k_atom{val=error},
				       arity=Ar},args=Kargs},
    {Call,Ap,St};
expr(#c_primop{anno=A,name=#c_literal{val=N},args=Cargs}, Sub, St0) ->
    {Kargs,Ap,St1} = atomic_list(Cargs, Sub, St0),
    Ar = length(Cargs),
    {#k_bif{anno=A,op=#k_internal{name=N,arity=Ar},args=Kargs},Ap,St1};
expr(#c_try{anno=A,arg=Ca,vars=Cvs,body=Cb,evars=Evs,handler=Ch}, Sub0, St0) ->
    %% The normal try expression. The body and exception handler
    %% variables behave as let variables.
    {Ka,Pa,St1} = body(Ca, Sub0, St0),
    {Kcvs,Sub1,St2} = pattern_list(Cvs, Sub0, St1),
    {Kb,Pb,St3} = body(Cb, Sub1, St2),
    {Kevs,Sub2,St4} = pattern_list(Evs, Sub0, St3),
    {Kh,Ph,St5} = body(Ch, Sub2, St4),
    {#k_try{anno=A,arg=pre_seq(Pa, Ka),
	    vars=Kcvs,body=pre_seq(Pb, Kb),
	    evars=Kevs,handler=pre_seq(Ph, Kh)},[],St5};
expr(#c_catch{anno=A,body=Cb}, Sub, St0) ->
    {Kb,Pb,St1} = body(Cb, Sub, St0),
    {#k_catch{anno=A,body=pre_seq(Pb, Kb)},[],St1};
%% Handle internal expressions.
expr(#ireceive_accept{anno=A}, _Sub, St) -> {#k_receive_accept{anno=A},[],St}.

%% Translate a function_clause exception to a case_clause exception if
%% it has been moved into another function. (A function_clause exception
%% will not work correctly if it is moved into another function, or
%% even if it is invoked not from the top level in the correct function.)
translate_match_fail(Args, Sub, Anno, St) ->
    case Args of
	[#c_tuple{es=[#c_literal{val=function_clause}|As]}] ->
	    translate_match_fail_1(Anno, As, Sub, St);
	[#c_literal{val=Tuple}] when is_tuple(Tuple) ->
	    %% The inliner may have created a literal out of
	    %% the original #c_tuple{}.
	    case tuple_to_list(Tuple) of
		[function_clause|As0] ->
		    As = [#c_literal{val=E} || E <- As0],
		    translate_match_fail_1(Anno, As, Sub, St);
		_ ->
		    Args
	    end;
	_ ->
	    %% Not a function_clause exception.
	    Args
    end.

translate_match_fail_1(Anno, As, Sub, #kern{ff=FF}) ->
    AnnoFunc = case keyfind(function_name, 1, Anno) of
		   false ->
		       none;			%Force rewrite.
		   {function_name,{Name,Arity}} ->
		       {get_fsub(Name, Arity, Sub),Arity}
	       end,
    case {AnnoFunc,FF} of
	{Same,Same} ->
	    %% Still in the correct function.
	    translate_fc(As);
	{{F,_},F} ->
	    %% Still in the correct function.
	    translate_fc(As);
	_ ->
	    %% Wrong function or no function_name annotation.
	    %%
	    %% The inliner has copied the match_fail(function_clause)
	    %% primop from another function (or from another instance of
	    %% the current function). match_fail(function_clause) will
	    %% only work at the top level of the function it was originally
	    %% defined in, so we will need to rewrite it to a case_clause.
	    [c_tuple([#c_literal{val=case_clause},c_tuple(As)])]
    end.

translate_fc(Args) ->
    [#c_literal{val=function_clause},cerl:make_list(Args)].

expr_map(A,Var0,Ces,Sub,St0) ->
    {Var,Mps,St1} = expr(Var0, Sub, St0),
    {Km,Eps,St2} = map_split_pairs(A, Var, Ces, Sub, St1),
    {Km,Eps++Mps,St2}.

map_split_pairs(A, Var, Ces, Sub, St0) ->
    %% 1. Force variables.
    %% 2. Group adjacent pairs with literal keys.
    %% 3. Within each such group, remove multiple assignments to the same key.
    %% 4. Partition each group according to operator ('=>' and ':=').
    Pairs0 = [{Op,K,V} ||
		 #c_map_pair{op=#c_literal{val=Op},key=K,val=V} <- Ces],
    {Pairs,Esp,St1} = foldr(fun
	    ({Op,K0,V0}, {Ops,Espi,Sti0}) when Op =:= assoc; Op =:= exact ->
		{K,Eps1,Sti1} = atomic(K0, Sub, Sti0),
		{V,Eps2,Sti2} = atomic(V0, Sub, Sti1),
		{[{Op,K,V}|Ops],Eps1 ++ Eps2 ++ Espi,Sti2}
	end, {[],[],St0}, Pairs0),
    map_split_pairs_1(A, Var, Pairs, Esp, St1).

map_split_pairs_1(A, Map0, [{Op,Key,Val}|Pairs1]=Pairs0, Esp0, St0) ->
    {Map1,Em,St1} = force_atomic(Map0, St0),
    case Key of
	#k_var{} ->
	    %% Don't combine variable keys with other keys.
	    Kes = [#k_map_pair{key=Key,val=Val}],
	    Map = #k_map{anno=A,op=Op,var=Map1,es=Kes},
	    map_split_pairs_1(A, Map, Pairs1, Esp0 ++ Em, St1);
	_ ->
	    %% Literal key. Split off all literal keys.
	    {L,Pairs} = splitwith(fun({_,#k_var{},_}) -> false;
				     ({_,_,_}) -> true
				  end, Pairs0),
	    {Map,Esp,St2} = map_group_pairs(A, Map1, L, Esp0 ++ Em, St1),
	    map_split_pairs_1(A, Map, Pairs, Esp, St2)
    end;
map_split_pairs_1(_, Map, [], Esp, St0) ->
    {Map,Esp,St0}.

map_group_pairs(A, Var, Pairs0, Esp, St0) ->
    Pairs = map_remove_dup_keys(Pairs0),
    Assoc = [#k_map_pair{key=K,val=V} || {_,{assoc,K,V}} <- Pairs],
    Exact = [#k_map_pair{key=K,val=V} || {_,{exact,K,V}} <- Pairs],
    case {Assoc,Exact} of
	{[_|_],[]} ->
	    {#k_map{anno=A,op=assoc,var=Var,es=Assoc},Esp,St0};
	{[],[_|_]} ->
	    {#k_map{anno=A,op=exact,var=Var,es=Exact},Esp,St0};
	{[_|_],[_|_]} ->
	    Map = #k_map{anno=A,op=assoc,var=Var,es=Assoc},
	    {Mvar,Em,St1} = force_atomic(Map, St0),
	    {#k_map{anno=A,op=exact,var=Mvar,es=Exact},Esp ++ Em,St1}
    end.

map_remove_dup_keys(Es) ->
    dict:to_list(map_remove_dup_keys(Es, dict:new())).

map_remove_dup_keys([{assoc,K0,V}|Es0],Used0) ->
    K = map_key_clean(K0),
    Op = case dict:find(K, Used0) of
	     {ok,{exact,_,_}} -> exact;
	     _                -> assoc
	 end,
    Used1 = dict:store(K, {Op,K0,V}, Used0),
    map_remove_dup_keys(Es0, Used1);
map_remove_dup_keys([{exact,K0,V}|Es0],Used0) ->
    K = map_key_clean(K0),
    Op = case dict:find(K, Used0) of
	     {ok,{assoc,_,_}} -> assoc;
	     _                -> exact
	 end,
    Used1 = dict:store(K, {Op,K0,V}, Used0),
    map_remove_dup_keys(Es0, Used1);
map_remove_dup_keys([], Used) -> Used.

%% Be explicit instead of using set_kanno(K, []).
map_key_clean(#k_var{name=V})    -> {var,V};
map_key_clean(#k_literal{val=V}) -> {lit,V};
map_key_clean(#k_int{val=V})     -> {lit,V};
map_key_clean(#k_float{val=V})   -> {lit,V};
map_key_clean(#k_atom{val=V})    -> {lit,V};
map_key_clean(#k_nil{})          -> {lit,[]}.


%% call_type(Module, Function, Arity) -> call | bif | apply | error.
%%  Classify the call.
call_type(#c_literal{val=M}, #c_literal{val=F}, Ar) when is_atom(M), is_atom(F) ->
    case is_remote_bif(M, F, Ar) of
	false -> call;
	true -> bif
    end;
call_type(#c_var{}, #c_literal{val=A}, _) when is_atom(A) -> apply;
call_type(#c_literal{val=A}, #c_var{}, _) when is_atom(A) -> apply;
call_type(#c_var{}, #c_var{}, _) -> apply;
call_type(_, _, _) -> error.

%% match_vars(Kexpr, State) -> {[Kvar],[PreKexpr],State}.
%%  Force return from body into a list of variables.

match_vars(#ivalues{args=As}, St) ->
    foldr(fun (Ka, {Vs,Vsp,St0}) ->
		  {V,Vp,St1} = force_variable(Ka, St0),
		  {[V|Vs],Vp ++ Vsp,St1}
	  end, {[],[],St}, As);
match_vars(Ka, St0) ->
    {V,Vp,St1} = force_variable(Ka, St0),
    {[V],Vp,St1}.

%% c_apply(A, Op, [Carg], Sub, State) -> {Kexpr,[PreKexpr],State}.
%%  Transform application, detect which are guaranteed to be bifs.

c_apply(A, #c_var{anno=Ra,name={F0,Ar}}, Cargs, Sub, St0) ->
    {Kargs,Ap,St1} = atomic_list(Cargs, Sub, St0),
    F1 = get_fsub(F0, Ar, Sub),			%Has it been rewritten
    {#k_call{anno=A,op=#k_local{anno=Ra,name=F1,arity=Ar},args=Kargs},
     Ap,St1};
c_apply(A, Cop, Cargs, Sub, St0) ->
    {Kop,Op,St1} = variable(Cop, Sub, St0),
    {Kargs,Ap,St2} = atomic_list(Cargs, Sub, St1),
    {#k_call{anno=A,op=Kop,args=Kargs},Op ++ Ap,St2}.

flatten_seq(#iset{anno=A,vars=Vs,arg=Arg,body=B}) ->
    [#iset{anno=A,vars=Vs,arg=Arg}|flatten_seq(B)];
flatten_seq(Ke) -> [Ke].

pre_seq([#iset{anno=A,vars=Vs,arg=Arg,body=B}|Ps], K) ->
    B = undefined,				%Assertion.
    #iset{anno=A,vars=Vs,arg=Arg,body=pre_seq(Ps, K)};
pre_seq([P|Ps], K) ->
    #iset{vars=[],arg=P,body=pre_seq(Ps, K)};
pre_seq([], K) -> K.

%% atomic(Cexpr, Sub, State) -> {Katomic,[PreKexpr],State}.
%%  Convert a Core expression making sure the result is an atomic
%%  literal.

atomic(Ce, Sub, St0) ->
    {Ke,Kp,St1} = expr(Ce, Sub, St0),
    {Ka,Ap,St2} = force_atomic(Ke, St1),
    {Ka,Kp ++ Ap,St2}.

force_atomic(Ke, St0) ->
    case is_atomic(Ke) of
	true -> {Ke,[],St0}; 
	false ->
	    {V,St1} = new_var(St0),
	    {V,[#iset{vars=[V],arg=Ke}],St1}
    end.

% force_atomic_list(Kes, St) ->
%     foldr(fun (Ka, {As,Asp,St0}) ->
% 		  {A,Ap,St1} = force_atomic(Ka, St0),
% 		  {[A|As],Ap ++ Asp,St1}
% 	  end, {[],[],St}, Kes).

atomic_bin([#c_bitstr{anno=A,val=E0,size=S0,unit=U0,type=T,flags=Fs0}|Es0],
	   Sub, St0) ->
    {E,Ap1,St1} = atomic(E0, Sub, St0),
    {S1,Ap2,St2} = atomic(S0, Sub, St1),
    validate_bin_element_size(S1),
    U1 = cerl:concrete(U0),
    Fs1 = cerl:concrete(Fs0),
    {Es,Ap3,St3} = atomic_bin(Es0, Sub, St2),
    {#k_bin_seg{anno=A,size=S1,
		unit=U1,
		type=cerl:concrete(T),
		flags=Fs1,
		seg=E,next=Es},
     Ap1++Ap2++Ap3,St3};
atomic_bin([], _Sub, St) -> {#k_bin_end{},[],St}.

validate_bin_element_size(#k_var{}) -> ok;
validate_bin_element_size(#k_int{val=V}) when V >= 0 -> ok;
validate_bin_element_size(#k_atom{val=all}) -> ok;
validate_bin_element_size(#k_atom{val=undefined}) -> ok;
validate_bin_element_size(_) -> throw(bad_element_size).
    
%% atomic_list([Cexpr], Sub, State) -> {[Kexpr],[PreKexpr],State}.

atomic_list(Ces, Sub, St) ->
    foldr(fun (Ce, {Kes,Esp,St0}) ->
		  {Ke,Ep,St1} = atomic(Ce, Sub, St0),
		  {[Ke|Kes],Ep ++ Esp,St1}
	  end, {[],[],St}, Ces).

%% is_atomic(Kexpr) -> boolean().
%%  Is a Kexpr atomic?  Strings are NOT considered atomic!

is_atomic(#k_literal{}) -> true;
is_atomic(#k_int{}) -> true;
is_atomic(#k_float{}) -> true;
is_atomic(#k_atom{}) -> true;
%%is_atomic(#k_char{}) -> true;			%No characters
is_atomic(#k_nil{}) -> true;
is_atomic(#k_var{}) -> true;
is_atomic(_) -> false.

%% variable(Cexpr, Sub, State) -> {Kvar,[PreKexpr],State}.
%%  Convert a Core expression making sure the result is a variable.

variable(Ce, Sub, St0) ->
    {Ke,Kp,St1} = expr(Ce, Sub, St0),
    {Kv,Vp,St2} = force_variable(Ke, St1),
    {Kv,Kp ++ Vp,St2}.

force_variable(#k_var{}=Ke, St) -> {Ke,[],St};
force_variable(Ke, St0) ->
    {V,St1} = new_var(St0),
    {V,[#iset{vars=[V],arg=Ke}],St1}.

%% pattern(Cpat, Isub, Osub, State) -> {Kpat,Sub,State}.
%%  Convert patterns.  Variables shadow so rename variables that are
%%  already defined.
%%
%%  Patterns are complicated by sizes in binaries.  These are pure
%%  input variables which create no bindings.  We, therefore, need to
%%  carry around the original substitutions to get the correct
%%  handling.

pattern(#c_var{anno=A,name=V}, _Isub, Osub, St0) ->
    case cerl_sets:is_element(V, St0#kern.ds) of
	true ->
	    {New,St1} = new_var_name(St0),
	    {#k_var{anno=A,name=New},
	     set_vsub(V, New, Osub),
	     St1#kern{ds=cerl_sets:add_element(New, St1#kern.ds)}};
	false ->
	    {#k_var{anno=A,name=V},Osub,
	     St0#kern{ds=cerl_sets:add_element(V, St0#kern.ds)}}
    end;
pattern(#c_literal{anno=A,val=Val}, _Isub, Osub, St) ->
    {#k_literal{anno=A,val=Val},Osub,St};
pattern(#c_cons{anno=A,hd=Ch,tl=Ct}, Isub, Osub0, St0) ->
    {Kh,Osub1,St1} = pattern(Ch, Isub, Osub0, St0),
    {Kt,Osub2,St2} = pattern(Ct, Isub, Osub1, St1),
    {#k_cons{anno=A,hd=Kh,tl=Kt},Osub2,St2};
pattern(#c_tuple{anno=A,es=Ces}, Isub, Osub0, St0) ->
    {Kes,Osub1,St1} = pattern_list(Ces, Isub, Osub0, St0),
    {#k_tuple{anno=A,es=Kes},Osub1,St1};
pattern(#c_map{anno=A,es=Ces}, Isub, Osub0, St0) ->
    {Kes,Osub1,St1} = pattern_map_pairs(Ces, Isub, Osub0, St0),
    {#k_map{anno=A,op=exact,es=Kes},Osub1,St1};
pattern(#c_binary{anno=A,segments=Cv}, Isub, Osub0, St0) ->
    {Kv,Osub1,St1} = pattern_bin(Cv, Isub, Osub0, St0),
    {#k_binary{anno=A,segs=Kv},Osub1,St1};
pattern(#c_alias{anno=A,var=Cv,pat=Cp}, Isub, Osub0, St0) ->
    {Cvs,Cpat} = flatten_alias(Cp),
    {Kvs,Osub1,St1} = pattern_list([Cv|Cvs], Isub, Osub0, St0),
    {Kpat,Osub2,St2} = pattern(Cpat, Isub, Osub1, St1),
    {#ialias{anno=A,vars=Kvs,pat=Kpat},Osub2,St2}.

flatten_alias(#c_alias{var=V,pat=P}) ->
    {Vs,Pat} = flatten_alias(P),
    {[V|Vs],Pat};
flatten_alias(Pat) -> {[],Pat}.

pattern_map_pairs(Ces0, Isub, Osub0, St0) ->
    %% pattern the pair keys and values as normal
    {Kes,{Osub1,St1}} = lists:mapfoldl(fun
	    (#c_map_pair{anno=A,key=Ck,val=Cv},{Osubi0,Sti0}) ->
		{Kk,[],Sti1} = expr(Ck, Isub, Sti0),
		{Kv,Osubi2,Sti2} = pattern(Cv, Isub, Osubi0, Sti1),
		{#k_map_pair{anno=A,key=Kk,val=Kv},{Osubi2,Sti2}}
	end, {Osub0, St0}, Ces0),
    %% It is later assumed that these keys are term sorted
    %% so we need to sort them here
    Kes1 = lists:sort(fun
	    (#k_map_pair{key=KkA},#k_map_pair{key=KkB}) ->
		A = map_key_clean(KkA),
		B = map_key_clean(KkB),
		erts_internal:cmp_term(A,B) < 0
	end, Kes),
    {Kes1,Osub1,St1}.

pattern_bin(Es, Isub, Osub0, St0) ->
    {Kbin,{_,Osub},St} = pattern_bin_1(Es, Isub, Osub0, St0),
    {Kbin,Osub,St}.

pattern_bin_1([#c_bitstr{anno=A,val=E0,size=S0,unit=U,type=T,flags=Fs}|Es0], 
	    Isub0, Osub0, St0) ->
    {S1,[],St1} = expr(S0, Isub0, St0),
    S = case S1 of
	    #k_int{} -> S1;
	    #k_var{} -> S1;
	    #k_atom{} -> S1;
	    _ ->
		%% Bad size (coming from an optimization or Core Erlang
		%% source code) - replace it with a known atom because
		%% a literal or bit syntax construction can cause further
		%% problems.
		#k_atom{val=bad_size}
	end,
    U0 = cerl:concrete(U),
    Fs0 = cerl:concrete(Fs),
    %%ok= io:fwrite("~w: ~p~n", [?LINE,{B0,S,U0,Fs0}]),
    {E,Osub1,St2} = pattern(E0, Isub0, Osub0, St1),
    Isub1 = case E0 of
		#c_var{name=V} ->
		    set_vsub(V, E#k_var.name, Isub0);
		_ -> Isub0
	    end,
    {Es,{Isub,Osub},St3} = pattern_bin_1(Es0, Isub1, Osub1, St2),
    {#k_bin_seg{anno=A,size=S,
		unit=U0,
		type=cerl:concrete(T),
		flags=Fs0,
		seg=E,next=Es},
     {Isub,Osub},St3};
pattern_bin_1([], Isub, Osub, St) -> {#k_bin_end{},{Isub,Osub},St}.

%% pattern_list([Cexpr], Sub, State) -> {[Kexpr],Sub,State}.

pattern_list(Ces, Sub, St) ->
    pattern_list(Ces, Sub, Sub, St).

pattern_list(Ces, Isub, Osub, St) ->
    foldr(fun (Ce, {Kes,Osub0,St0}) ->
		  {Ke,Osub1,St1} = pattern(Ce, Isub, Osub0, St0),
		  {[Ke|Kes],Osub1,St1}
	  end, {[],Osub,St}, Ces).

%% new_sub() -> Subs.
%% set_vsub(Name, Sub, Subs) -> Subs.
%% subst_vsub(Name, Sub, Subs) -> Subs.
%% get_vsub(Name, Subs) -> SubName.
%%  Add/get substitute Sub for Name to VarSub.  Use orddict so we know
%%  the format is a list {Name,Sub} pairs.  When adding a new
%%  substitute we fold substitute chains so we never have to search
%%  more than once.

new_sub() -> orddict:new().

get_vsub(V, Vsub) ->
    case orddict:find(V, Vsub) of
	{ok,Val} -> Val;
	error -> V
    end.

set_vsub(V, S, Vsub) ->
    orddict:store(V, S, Vsub).

subst_vsub(Key, New, [{K,Key}|Dict]) ->
    %% Fold chained substitution.
    [{K,New}|subst_vsub(Key, New, Dict)];
subst_vsub(Key, New, [{K,_}|_]=Dict) when Key < K ->
    %% Insert the new substitution here, and continue
    %% look for chained substitutions.
    [{Key,New}|subst_vsub_1(Key, New, Dict)];
subst_vsub(Key, New, [{K,_}=E|Dict]) when Key > K ->
    [E|subst_vsub(Key, New, Dict)];
subst_vsub(Key, New, []) -> [{Key,New}].

subst_vsub_1(V, S, [{K,V}|Dict]) ->
    %% Fold chained substitution.
    [{K,S}|subst_vsub_1(V, S, Dict)];
subst_vsub_1(V, S, [E|Dict]) ->
    [E|subst_vsub_1(V, S, Dict)];
subst_vsub_1(_, _, []) -> [].

get_fsub(F, A, Fsub) ->
    case orddict:find({F,A}, Fsub) of
	{ok,Val} -> Val;
	error -> F
    end.

set_fsub(F, A, S, Fsub) ->
    orddict:store({F,A}, S, Fsub).

new_fun_name(St) ->
    new_fun_name("anonymous", St).

%% new_fun_name(Type, State) -> {FunName,State}.

new_fun_name(Type, #kern{func={F,Arity},fcount=C}=St) ->
    Name = "-" ++ atom_to_list(F) ++ "/" ++ integer_to_list(Arity) ++
	"-" ++ Type ++ "-" ++ integer_to_list(C) ++ "-",
    {list_to_atom(Name),St#kern{fcount=C+1}}.

%% new_var_name(State) -> {VarName,State}.

new_var_name(#kern{vcount=C}=St) ->
    {list_to_atom("@k" ++ integer_to_list(C)),St#kern{vcount=C+1}}.

%% new_var(State) -> {#k_var{},State}.

new_var(St0) ->
    {New,St1} = new_var_name(St0),
    {#k_var{name=New},St1}.

%% new_vars(Count, State) -> {[#k_var{}],State}.
%%  Make Count new variables.

new_vars(N, St) -> new_vars(N, St, []).

new_vars(N, St0, Vs) when N > 0 ->
    {V,St1} = new_var(St0),
    new_vars(N-1, St1, [V|Vs]);
new_vars(0, St, Vs) -> {Vs,St}.

make_vars(Vs) -> [ #k_var{name=V} || V <- Vs ].

add_var_def(V, St) ->
    St#kern{ds=cerl_sets:add_element(V#k_var.name, St#kern.ds)}.

%%add_vars_def(Vs, St) ->
%%    Ds = foldl(fun (#k_var{name=V}, Ds) -> add_element(V, Ds) end,
%%	       St#kern.ds, Vs),
%%    St#kern{ds=Ds}.

%% is_remote_bif(Mod, Name, Arity) -> true | false.
%%  Test if function is really a BIF.

is_remote_bif(erlang, get, 1) -> true;
is_remote_bif(erlang, N, A) ->
    case erl_internal:guard_bif(N, A) of
	true -> true;
	false ->
	    try erl_internal:op_type(N, A) of
		arith -> true;
		bool -> true;
		comp -> true;
		list -> false;
		send -> false
	    catch
		_:_ -> false		% not an op
	    end
    end;
is_remote_bif(_, _, _) -> false.

%% bif_vals(Name, Arity) -> integer().
%% bif_vals(Mod, Name, Arity) -> integer().
%%  Determine how many return values a BIF has.  Provision for BIFs to
%%  return multiple values.  Only used in bodies where a BIF may be
%%  called for effect only.

bif_vals(dsetelement, 3) -> 0;
bif_vals(bs_context_to_binary, 1) -> 0;
bif_vals(_, _) -> 1.

bif_vals(_, _, _) -> 1.

%% foldr2(Fun, Acc, List1, List2) -> Acc.
%%  Fold over two lists.

foldr2(Fun, Acc0, [E1|L1], [E2|L2]) ->
    Acc1 = Fun(E1, E2, Acc0),
    foldr2(Fun, Acc1, L1, L2);
foldr2(_, Acc, [], []) -> Acc.

%% This code implements the algorithm for an optimizing compiler for
%% pattern matching given "The Implementation of Functional
%% Programming Languages" by Simon Peyton Jones. The code is much
%% longer as the meaning of constructors is different from the book.
%%
%% In Erlang many constructors can have different values, e.g. 'atom'
%% or 'integer', whereas in the original algorithm thse would be
%% different constructors. Our view makes it easier in later passes to
%% handle indexing over each type.
%%
%% Patterns are complicated by having alias variables.  The form of a
%% pattern is Pat | {alias,Pat,[AliasVar]}.  This is hidden by access
%% functions to pattern arguments but the code must be aware of it.
%%
%% The compilation proceeds in two steps:
%%
%% 1. The patterns in the clauses to converted to lists of kernel
%% patterns.  The Core clause is now hybrid, this is easier to work
%% with.  Remove clauses with trivially false guards, this simplifies
%% later passes.  Add locally defined vars and variable subs to each
%% clause for later use.
%%
%% 2. The pattern matching is optimised.  Variable substitutions are
%% added to the VarSub structure and new variables are made visible.
%% The guard and body are then converted to Kernel form.

%% kmatch([Var], [Clause], Sub, State) -> {Kexpr,State}.

kmatch(Us, Ccs, Sub, St0) ->
    {Cs,St1} = match_pre(Ccs, Sub, St0),	%Convert clauses
    Def = fail,
%%     Def = #k_call{anno=[compiler_generated],
%% 		  op=#k_remote{mod=#k_atom{val=erlang},
%%  			       name=#k_atom{val=exit},
%%  			       arity=1},
%%  		  args=[#k_atom{val=kernel_match_error}]},
    match(Us, Cs, Def, St1).		%Do the match.

%% match_pre([Cclause], Sub, State) -> {[Clause],State}.
%%  Must be careful not to generate new substitutions here now!
%%  Remove clauses with trivially false guards which will never
%%  succeed.

match_pre(Cs, Sub0, St) ->
    foldr(fun (#c_clause{anno=A,pats=Ps,guard=G,body=B}, {Cs0,St0}) ->
		  {Kps,Osub1,St1} = pattern_list(Ps, Sub0, St0),
		  {[#iclause{anno=A,isub=Sub0,osub=Osub1,
			     pats=Kps,guard=G,body=B}|
		    Cs0],St1}
	  end, {[],St}, Cs).

%% match([Var], [Clause], Default, State) -> {MatchExpr,State}.

match([_U|_Us] = L, Cs, Def, St0) ->
    %%ok = io:format("match ~p~n", [Cs]),
    Pcss = partition(Cs),
    foldr(fun (Pcs, {D,St}) -> match_varcon(L, Pcs, D, St) end,
	  {Def,St0}, Pcss);
match([], Cs, Def, St) ->
    match_guard(Cs, Def, St).

%% match_guard([Clause], Default, State) -> {IfExpr,State}.
%%  Build a guard to handle guards. A guard *ALWAYS* fails if no
%%  clause matches, there will be a surrounding 'alt' to catch the
%%  failure.  Drop redundant cases, i.e. those after a true guard.

match_guard(Cs0, Def0, St0) ->
    {Cs1,Def1,St1} = match_guard_1(Cs0, Def0, St0),
    {build_alt(build_guard(Cs1), Def1),St1}.

match_guard_1([#iclause{anno=A,osub=Osub,guard=G,body=B}|Cs0], Def0, St0) ->
    case is_true_guard(G) of
	true ->
	    %% The true clause body becomes the default.
	    {Kb,Pb,St1} = body(B, Osub, St0),
	    St2 = maybe_add_warning(Cs0, A, St1),
	    St = maybe_add_warning(Def0, A, St2),
	    {[],pre_seq(Pb, Kb),St};
	false ->
	    {Kg,St1} = guard(G, Osub, St0),
	    {Kb,Pb,St2} = body(B, Osub, St1),
	    {Cs1,Def1,St3} = match_guard_1(Cs0, Def0, St2),
	    {[#k_guard_clause{guard=Kg,body=pre_seq(Pb, Kb)}|Cs1],
	     Def1,St3}
    end;
match_guard_1([], Def, St) -> {[],Def,St}. 

maybe_add_warning([C|_], MatchAnno, St) ->
    maybe_add_warning(C, MatchAnno, St);
maybe_add_warning([], _MatchAnno, St) -> St;
maybe_add_warning(fail, _MatchAnno, St) -> St;
maybe_add_warning(Ke, MatchAnno, St) ->
    case is_compiler_generated(Ke) of
	true ->
	    St;
	false ->
	    Anno = get_kanno(Ke),
	    Line = get_line(Anno),
	    MatchLine = get_line(MatchAnno),
	    Warn = case MatchLine of
		       none -> nomatch_shadow;
		       _ -> {nomatch_shadow,MatchLine}
		   end,
	    add_warning(Line, Warn, Anno, St)
    end.
    
get_line([Line|_]) when is_integer(Line) -> Line;
get_line([_|T]) -> get_line(T);
get_line([]) -> none.
    
get_file([{file,File}|_]) -> File;
get_file([_|T]) -> get_file(T);
get_file([]) -> "no_file". % should not happen

%% is_true_guard(Guard) -> boolean().
%%  Test if a guard is trivially true.

is_true_guard(#c_literal{val=true}) -> true;
is_true_guard(_) -> false.

%% partition([Clause]) -> [[Clause]].
%%  Partition a list of clauses into groups which either contain
%%  clauses with a variable first argument, or with a "constructor".

partition([C1|Cs]) ->
    V1 = is_var_clause(C1),
    {More,Rest} = splitwith(fun (C) -> is_var_clause(C) =:= V1 end, Cs),
    [[C1|More]|partition(Rest)];
partition([]) -> [].

%% match_varcon([Var], [Clause], Def, [Var], Sub, State) ->
%%        {MatchExpr,State}.

match_varcon(Us, [C|_]=Cs, Def, St) ->
    case is_var_clause(C) of
	true -> match_var(Us, Cs, Def, St);
	false -> match_con(Us, Cs, Def, St)
    end.

%% match_var([Var], [Clause], Def, State) -> {MatchExpr,State}.
%%  Build a call to "select" from a list of clauses all containing a
%%  variable as the first argument.  We must rename the variable in
%%  each clause to be the match variable as these clause will share
%%  this variable and may have different names for it.  Rename aliases
%%  as well.

match_var([U|Us], Cs0, Def, St) ->
    Cs1 = map(fun (#iclause{isub=Isub0,osub=Osub0,pats=[Arg|As]}=C) ->
		      Vs = [arg_arg(Arg)|arg_alias(Arg)],
 		      Osub1 = foldl(fun (#k_var{name=V}, Acc) ->
 					   subst_vsub(V, U#k_var.name, Acc)
 				   end, Osub0, Vs),
 		      Isub1 = foldl(fun (#k_var{name=V}, Acc) ->
					    subst_vsub(V, U#k_var.name, Acc)
				    end, Isub0, Vs),
		      C#iclause{isub=Isub1,osub=Osub1,pats=As}
	      end, Cs0),
    match(Us, Cs1, Def, St).

%% match_con(Variables, [Clause], Default, State) -> {SelectExpr,State}.
%%  Build call to "select" from a list of clauses all containing a
%%  constructor/constant as first argument.  Group the constructors
%%  according to type, the order is really irrelevant but tries to be
%%  smart.

match_con(Us, [C], Def, St) ->
    %% There is only one clause. We can keep literal tuples and
    %% lists, but we must convert []/integer/float/atom literals
    %% to the proper record (#k_nil{} and so on).
    Cs = [expand_pat_lit_clause(C, false)],
    match_con_1(Us, Cs, Def, St);
match_con(Us, Cs0, Def, St) ->
    %% More than one clause. Remove literals at the top level.
    Cs = [expand_pat_lit_clause(C, true) || C <- Cs0],
    match_con_1(Us, Cs, Def, St).

match_con_1([U|_Us] = L, Cs, Def, St0) ->
    %% Extract clauses for different constructors (types).
    %%ok = io:format("match_con ~p~n", [Cs]),
    Ttcs = select_types([k_binary], Cs) ++ select_bin_con(Cs) ++
	select_types([k_cons,k_tuple,k_map,k_atom,k_float,k_int,
		      k_nil,k_literal], Cs),
    %%ok = io:format("ttcs = ~p~n", [Ttcs]),
    {Scs,St1} =
	mapfoldl(fun ({T,Tcs}, St) ->
			 {[S|_]=Sc,S1} = match_value(L, T, Tcs, fail, St),
			 %%ok = io:format("match_con type2 ~p~n", [T]),
			 Anno = get_kanno(S),
			 {#k_type_clause{anno=Anno,type=T,values=Sc},S1} end,
		 St0, Ttcs),
    {build_alt_1st_no_fail(build_select(U, Scs), Def),St1}.

select_types(Types, Cs) ->
    [{T,Tcs} || T <- Types, begin Tcs = select(T, Cs), Tcs =/= [] end].
    
expand_pat_lit_clause(#iclause{pats=[#ialias{pat=#k_literal{anno=A,val=Val}}=Alias|Ps]}=C, B) ->
    P = case B of
	    true -> expand_pat_lit(Val, A);
	    false -> literal(Val, A)
	end,
    C#iclause{pats=[Alias#ialias{pat=P}|Ps]};
expand_pat_lit_clause(#iclause{pats=[#k_literal{anno=A,val=Val}|Ps]}=C, B) ->
    P = case B of
	    true -> expand_pat_lit(Val, A);
	    false -> literal(Val, A)
	end,
    C#iclause{pats=[P|Ps]};
expand_pat_lit_clause(#iclause{pats=[#k_binary{anno=A,segs=#k_bin_end{}}|Ps]}=C, B) ->
    case B of
	true ->
	    C;
	false ->
	    P = #k_literal{anno=A,val = <<>>},
	    C#iclause{pats=[P|Ps]}
    end;
expand_pat_lit_clause(C, _) -> C.

expand_pat_lit([H|T], A) ->
    #k_cons{anno=A,hd=literal(H, A),tl=literal(T, A)};
expand_pat_lit(Tuple, A) when is_tuple(Tuple) ->
    #k_tuple{anno=A,es=[literal(E, A) || E <- tuple_to_list(Tuple)]};
expand_pat_lit(Lit, A) ->
    literal(Lit, A).

literal([], A) ->
    #k_nil{anno=A};
literal(Val, A) when is_integer(Val) ->
    #k_int{anno=A,val=Val};
literal(Val, A) when is_float(Val) ->
    #k_float{anno=A,val=Val};
literal(Val, A) when is_atom(Val) ->
    #k_atom{anno=A,val=Val};
literal(Val, A) when is_list(Val); is_tuple(Val) ->
    #k_literal{anno=A,val=Val}.

%% select_bin_con([Clause]) -> [{Type,[Clause]}].
%%  Extract clauses for the k_bin_seg constructor.  As k_bin_seg
%%  matching can overlap, the k_bin_seg constructors cannot be
%%  reordered, only grouped.

select_bin_con(Cs0) ->
    Cs1 = lists:filter(fun (C) ->
			       Con = clause_con(C),
			       (Con =:= k_bin_seg) or (Con =:= k_bin_end)
		       end, Cs0),
    select_bin_con_1(Cs1).


select_bin_con_1(Cs) ->
    try
	%% The usual way to match literals is to first extract the
	%% value to a register, and then compare the register to the
	%% literal value. Extracting the value is good if we need
	%% compare it more than once.
	%%
	%% But we would like to combine the extracting and the
	%% comparing into a single instruction if we know that
	%% a binary segment must contain specific integer value
	%% or the matching will fail, like in this example:
	%%
	%% <<42:8,...>> ->
	%% <<42:8,...>> ->
	%% .
	%% .
	%% .
	%% <<42:8,...>> ->
	%% <<>> ->
	%%
	%% The first segment must either contain the integer 42
	%% or the binary must end for the match to succeed.
	%%
	%% The way we do is to replace the generic #k_bin_seg{}
	%% record with a #k_bin_int{} record if all clauses will
	%% select the same literal integer (except for one or more
	%% clauses that will end the binary).

	{BinSegs0,BinEnd} =
	    partition(fun (C) ->
			      clause_con(C) =:= k_bin_seg
		      end, Cs),
	BinSegs = select_bin_int(BinSegs0),
	case BinEnd of
	    [] -> BinSegs;
	    [_|_] -> BinSegs ++ [{k_bin_end,BinEnd}]
	end
    catch
	throw:not_possible ->
	    select_bin_con_2(Cs)
    end.

select_bin_con_2([C1|Cs]) ->
    Con = clause_con(C1),
    {More,Rest} = splitwith(fun (C) -> clause_con(C) =:= Con end, Cs),
    [{Con,[C1|More]}|select_bin_con_2(Rest)];
select_bin_con_2([]) -> [].

%% select_bin_int([Clause]) -> {k_bin_int,[Clause]}
%%  If the first pattern in each clause selects the same integer,
%%  rewrite all clauses to use #k_bin_int{} (which will later be
%%  translated to a bs_match_string/4 instruction).
%%
%%  If it is not possible to do this rewrite, a 'not_possible'
%%  exception is thrown.

select_bin_int([#iclause{pats=[#k_bin_seg{anno=A,type=integer,
 					  size=#k_int{val=Bits0}=Sz,unit=U,
 					  flags=Fl,seg=#k_literal{val=Val},
					  next=N}|Ps]}=C|Cs0])
  when is_integer(Val) ->
    Bits = U * Bits0,
    if
	Bits > 1024 -> throw(not_possible); %Expands the code too much.
	true -> ok
    end,
    select_assert_match_possible(Bits, Val, Fl),
    P = #k_bin_int{anno=A,size=Sz,unit=U,flags=Fl,val=Val,next=N},
    case member(native, Fl) of
	true -> throw(not_possible);
	false -> ok
    end,
    Cs = select_bin_int_1(Cs0, Bits, Fl, Val),
    [{k_bin_int,[C#iclause{pats=[P|Ps]}|Cs]}];
select_bin_int([#iclause{pats=[#k_bin_seg{anno=A,type=utf8,
 					  flags=[unsigned,big]=Fl,
					  seg=#k_literal{val=Val0},
					  next=N}|Ps]}=C|Cs0])
  when is_integer(Val0) ->
    {Val,Bits} = select_utf8(Val0),
    P = #k_bin_int{anno=A,size=#k_int{val=Bits},unit=1,
		   flags=Fl,val=Val,next=N},
    Cs = select_bin_int_1(Cs0, Bits, Fl, Val),
    [{k_bin_int,[C#iclause{pats=[P|Ps]}|Cs]}];
select_bin_int(_) -> throw(not_possible).

select_bin_int_1([#iclause{pats=[#k_bin_seg{anno=A,type=integer,
					    size=#k_int{val=Bits0}=Sz,
					    unit=U,
					    flags=Fl,seg=#k_literal{val=Val},
					    next=N}|Ps]}=C|Cs],
		 Bits, Fl, Val) when is_integer(Val) ->
    if
	Bits0*U =:= Bits -> ok;
	true -> throw(not_possible)
    end,
    P = #k_bin_int{anno=A,size=Sz,unit=U,flags=Fl,val=Val,next=N},
    [C#iclause{pats=[P|Ps]}|select_bin_int_1(Cs, Bits, Fl, Val)];
select_bin_int_1([#iclause{pats=[#k_bin_seg{anno=A,type=utf8,
					    flags=Fl,
					    seg=#k_literal{val=Val0},
					    next=N}|Ps]}=C|Cs],
		 Bits, Fl, Val) when is_integer(Val0) ->
    case select_utf8(Val0) of
	{Val,Bits} -> ok;
	{_,_} -> throw(not_possible)
    end,
    P = #k_bin_int{anno=A,size=#k_int{val=Bits},unit=1,
		   flags=[unsigned,big],val=Val,next=N},
    [C#iclause{pats=[P|Ps]}|select_bin_int_1(Cs, Bits, Fl, Val)];
select_bin_int_1([], _, _, _) -> [];
select_bin_int_1(_, _, _, _) -> throw(not_possible).

select_assert_match_possible(Sz, Val, Fs) ->
    EmptyBindings = erl_eval:new_bindings(),
    MatchFun = match_fun(Val),
    EvalFun = fun({integer,_,S}, B) -> {value,S,B} end,
    Expr = [{bin_element,0,{integer,0,Val},{integer,0,Sz},[{unit,1}|Fs]}],
    {value,Bin,EmptyBindings} = eval_bits:expr_grp(Expr, EmptyBindings, EvalFun),
    try
	{match,_} = eval_bits:match_bits(Expr, Bin,
					 EmptyBindings,
					 EmptyBindings,
					 MatchFun, EvalFun),
	ok  % this is just an assertion (i.e., no return value)
    catch
	throw:nomatch ->
	    throw(not_possible)
    end.

match_fun(Val) ->
    fun(match, {{integer,_,_},NewV,Bs}) when NewV =:= Val ->
	    {match,Bs}
    end.

select_utf8(Val0) ->
    try
	Bin = <<Val0/utf8>>,
	Size = bit_size(Bin),
	<<Val:Size>> = Bin,
	{Val,Size}
    catch
	error:_ ->
	    throw(not_possible)
    end.

%% select(Con, [Clause]) -> [Clause].

select(T, Cs) -> [ C || C <- Cs, clause_con(C) =:= T ].

%% match_value([Var], Con, [Clause], Default, State) -> {SelectExpr,State}.
%%  At this point all the clauses have the same constructor, we must
%%  now separate them according to value.

match_value(Us0, T, Cs0, Def, St0) ->
    {Us1,Cs1,St1} = partition_intersection(T, Us0, Cs0, St0),
    UCss = group_value(T, Us1, Cs1),
    %%ok = io:format("match_value ~p ~p~n", [T, Css]),
    mapfoldl(fun ({Us,Cs}, St) -> match_clause(Us, Cs, Def, St) end, St1, UCss).

%% partition_intersection
%%  Partitions a map into two maps with the most common keys to the first map.
%%      case <M> of
%%          <#{a}>
%%          <#{a,b}>
%%          <#{a,c}>
%%          <#{c}>
%%      end
%%  becomes
%%      case <M,M> of
%%          <#{a}, #{ }>
%%          <#{a}, #{b}>
%%          <#{ }, #{c}>
%%          <#{a}, #{c}>
%%      end
%% The intention is to group as many keys together as possible and thus
%% reduce the number of lookups to that key.
partition_intersection(k_map, [U|_]=Us0, [_,_|_]=Cs0,St0) ->
    Ps = [clause_val(C) || C <- Cs0],
    case find_key_partition(Ps) of
        no_partition ->
            {Us0,Cs0,St0};
        Ks ->
            {Cs1,St1} = mapfoldl(fun(#iclause{pats=[Arg|Args]}=C, Sti) ->
                                         {{Arg1,Arg2},St} = partition_key_intersection(Arg, Ks, Sti),
                                         {C#iclause{pats=[Arg1,Arg2|Args]}, St}
                                 end, St0, Cs0),
            {[U|Us0],Cs1,St1}
    end;
partition_intersection(_, Us, Cs, St) ->
    {Us,Cs,St}.

partition_key_intersection(#k_map{es=Pairs}=Map,Ks,St0) ->
    F = fun(#k_map_pair{key=Key}) -> member(map_key_clean(Key), Ks) end,
    {Ps1,Ps2} = partition(F, Pairs),
    {{Map#k_map{es=Ps1},Map#k_map{es=Ps2}},St0};
partition_key_intersection(#ialias{pat=Map}=Alias,Ks,St0) ->
    %% only alias one of them
    {{Map1,Map2},St1} = partition_key_intersection(Map, Ks, St0),
    {{Map1,Alias#ialias{pat=Map2}},St1}.

% Only check for the complete intersection of keys and not commonality
find_key_partition(Ps) ->
    Sets = [sets:from_list(Ks)||Ks <- Ps],
    Is   = sets:intersection(Sets),
    case sets:to_list(Is) of
        [] -> no_partition;
        KeyIntersection ->
            %% Check if the intersection are all keys in all clauses.
            %% Don't split if they are since this will only
            %% infer extra is_map instructions with no gain.
            All = foldl(fun (Kset, Bool) ->
                                Bool andalso sets:is_subset(Kset, Is)
                        end, true, Sets),
            if All  -> no_partition;
               true -> KeyIntersection
            end
    end.

%% group_value([Clause]) -> [[Clause]].
%%  Group clauses according to value.  Here we know that
%%  1. Some types are singled valued
%%  2. The clauses in bin_segs cannot be reordered only grouped
%%  3. Other types are disjoint and can be reordered

group_value(k_cons, Us, Cs)    -> [{Us,Cs}];               %These are single valued
group_value(k_nil, Us, Cs)     -> [{Us,Cs}];
group_value(k_binary, Us, Cs)  -> [{Us,Cs}];
group_value(k_bin_end, Us, Cs) -> [{Us,Cs}];
group_value(k_bin_seg, Us, Cs) -> group_bin_seg(Us,Cs);
group_value(k_bin_int, Us, Cs) -> [{Us,Cs}];
group_value(k_map, Us, Cs)     -> group_map(Us,Cs);
group_value(_, Us, Cs) ->
    %% group_value(Cs).
    Cd = foldl(fun (C, Gcs0) -> dict:append(clause_val(C), C, Gcs0) end,
	       dict:new(), Cs),
    dict:fold(fun (_, Vcs, Css) -> [{Us,Vcs}|Css] end, [], Cd).

group_bin_seg(Us, [C1|Cs]) ->
    V1 = clause_val(C1),
    {More,Rest} = splitwith(fun (C) -> clause_val(C) == V1 end, Cs),
    [{Us,[C1|More]}|group_bin_seg(Us,Rest)];
group_bin_seg(_, []) -> [].

group_map(Us, [C1|Cs]) ->
    V1 = clause_val(C1),
    {More,Rest} = splitwith(fun (C) -> clause_val(C) =:= V1 end, Cs),
    [{Us,[C1|More]}|group_map(Us,Rest)];
group_map(_, []) -> [].

%% Profiling shows that this quadratic implementation account for a big amount
%% of the execution time if there are many values.
% group_value([C|Cs]) ->
%     V = clause_val(C),
%     Same = [ Cv || Cv <- Cs, clause_val(Cv) == V ], %Same value
%     Rest = [ Cv || Cv <- Cs, clause_val(Cv) /= V ], % and all the rest
%     [[C|Same]|group_value(Rest)];
% group_value([]) -> [].

%% match_clause([Var], [Clause], Default, State) -> {Clause,State}.
%%  At this point all the clauses have the same "value".  Build one
%%  select clause for this value and continue matching.  Rename
%%  aliases as well.

match_clause([U|Us], [C|_]=Cs0, Def, St0) ->
    Anno = get_kanno(C),
    {Match0,Vs,St1} = get_match(get_con(Cs0), St0),
    Match = sub_size_var(Match0, Cs0),
    {Cs1,St2} = new_clauses(Cs0, U, St1),
    {B,St3} = match(Vs ++ Us, Cs1, Def, St2),
    {#k_val_clause{anno=Anno,val=Match,body=B},St3}.

sub_size_var(#k_bin_seg{size=#k_var{name=Name}=Kvar}=BinSeg, [#iclause{isub=Sub}|_]) ->
    BinSeg#k_bin_seg{size=Kvar#k_var{name=get_vsub(Name, Sub)}};
sub_size_var(K, _) -> K.

get_con([C|_]) -> arg_arg(clause_arg(C)).	%Get the constructor

get_match(#k_cons{}, St0) ->
    {[H,T]=L,St1} = new_vars(2, St0),
    {#k_cons{hd=H,tl=T},L,St1};
get_match(#k_binary{}, St0) ->
    {[V]=Mes,St1} = new_vars(1, St0),
    {#k_binary{segs=V},Mes,St1};
get_match(#k_bin_seg{size=#k_atom{val=all},next={k_bin_end,[]}}=Seg, St0) ->
    {[S]=Vars,St1} = new_vars(1, St0),
    {Seg#k_bin_seg{seg=S,next=[]},Vars,St1};
get_match(#k_bin_seg{}=Seg, St0) ->
    {[S,N0],St1} = new_vars(2, St0),
    N = set_kanno(N0, [no_usage]),
    {Seg#k_bin_seg{seg=S,next=N},[S,N],St1};
get_match(#k_bin_int{}=BinInt, St0) ->
    {N0,St1} = new_var(St0),
    N = set_kanno(N0, [no_usage]),
    {BinInt#k_bin_int{next=N},[N],St1};
get_match(#k_tuple{es=Es}, St0) ->
    {Mes,St1} = new_vars(length(Es), St0),
    {#k_tuple{es=Mes},Mes,St1};
get_match(#k_map{op=exact,es=Es0}, St0) ->
    {Mes,St1} = new_vars(length(Es0), St0),
    {Es,_} = mapfoldl(fun
	    (#k_map_pair{}=Pair, [V|Vs]) ->
		{Pair#k_map_pair{val=V},Vs}
	end, Mes, Es0),
    {#k_map{op=exact,es=Es},Mes,St1};
get_match(M, St) ->
    {M,[],St}.

new_clauses(Cs0, U, St) ->
    Cs1 = map(fun (#iclause{isub=Isub0,osub=Osub0,pats=[Arg|As]}=C) ->
		      Head = case arg_arg(Arg) of
				 #k_cons{hd=H,tl=T} -> [H,T|As];
				 #k_tuple{es=Es} -> Es ++ As;
				 #k_binary{segs=E}  -> [E|As];
				 #k_bin_seg{size=#k_atom{val=all},
					    seg=S,next={k_bin_end,[]}} ->
				     [S|As];
				 #k_bin_seg{seg=S,next=N} ->
				     [S,N|As];
				 #k_bin_int{next=N} ->
				     [N|As];
				 #k_map{op=exact,es=Es} ->
				     Vals = [V || #k_map_pair{val=V} <- Es],
				     Vals ++ As;
				 _Other ->
				     As
			     end,
		      Vs = arg_alias(Arg),
		      Osub1 = foldl(fun (#k_var{name=V}, Acc) ->
					    subst_vsub(V, U#k_var.name, Acc)
				    end, Osub0, Vs),
		      Isub1 = foldl(fun (#k_var{name=V}, Acc) ->
					    subst_vsub(V, U#k_var.name, Acc)
				    end, Isub0, Vs),
		      C#iclause{isub=Isub1,osub=Osub1,pats=Head}
	      end, Cs0),
    {Cs1,St}.

%% build_guard([GuardClause]) -> GuardExpr.

build_guard([]) -> fail;
build_guard(Cs) -> #k_guard{clauses=Cs}.

%% build_select(Var, [ConClause]) -> SelectExpr.

build_select(V, [Tc|_]=Tcs) ->
    copy_anno(#k_select{var=V,types=Tcs}, Tc).

%% build_alt(First, Then) -> AltExpr.
%%  Build an alt, attempt some simple optimisation.

build_alt(fail, Then) -> Then;
build_alt(First,Then) -> build_alt_1st_no_fail(First, Then).

build_alt_1st_no_fail(First, fail) -> First;
build_alt_1st_no_fail(First, Then) ->
    copy_anno(#k_alt{first=First,then=Then}, First).

%% build_match([MatchVar], MatchExpr) -> Kexpr.
%%  Build a match expr if there is a match.

build_match(Us, #k_alt{}=Km) -> copy_anno(#k_match{vars=Us,body=Km}, Km);
build_match(Us, #k_select{}=Km) -> copy_anno(#k_match{vars=Us,body=Km}, Km);
build_match(Us, #k_guard{}=Km) -> copy_anno(#k_match{vars=Us,body=Km}, Km);
build_match(_, Km) -> Km.

%% clause_arg(Clause) -> FirstArg.
%% clause_con(Clause) -> Constructor.
%% clause_val(Clause) -> Value.
%% is_var_clause(Clause) -> boolean().

clause_arg(#iclause{pats=[Arg|_]}) -> Arg.

clause_con(C) -> arg_con(clause_arg(C)).

clause_val(C) -> arg_val(clause_arg(C), C).

is_var_clause(C) -> clause_con(C) =:= k_var.

%% arg_arg(Arg) -> Arg.
%% arg_alias(Arg) -> Aliases.
%% arg_con(Arg) -> Constructor.
%% arg_val(Arg) -> Value.
%%  These are the basic functions for obtaining fields in an argument.

arg_arg(#ialias{pat=Con}) -> Con;
arg_arg(Con) -> Con.

arg_alias(#ialias{vars=As}) -> As;
arg_alias(_Con) -> [].

arg_con(Arg) ->
    case arg_arg(Arg) of
	#k_literal{} -> k_literal;
	#k_int{} -> k_int;
	#k_float{} -> k_float;
	#k_atom{} -> k_atom;
	#k_nil{} -> k_nil;
	#k_cons{} -> k_cons; 
	#k_tuple{} -> k_tuple;
	#k_map{} -> k_map;
	#k_binary{} -> k_binary;
	#k_bin_end{} -> k_bin_end;
	#k_bin_seg{} -> k_bin_seg;
	#k_var{} -> k_var
    end.

arg_val(Arg, C) ->
    case arg_arg(Arg) of
	#k_literal{val=Lit} -> Lit;
	#k_int{val=I} -> I;
	#k_float{val=F} -> F;
	#k_atom{val=A} -> A;
	#k_tuple{es=Es} -> length(Es);
	#k_bin_seg{size=S,unit=U,type=T,flags=Fs} ->
	    case S of
		#k_var{name=V} ->
		    #iclause{isub=Isub} = C,
		    {#k_var{name=get_vsub(V, Isub)},U,T,Fs};
		_ ->
		    {set_kanno(S, []),U,T,Fs}
	    end;
	#k_map{op=exact,es=Es} ->
	    lists:sort(fun(A,B) ->
			%% on the form K :: {'lit' | 'var', term()}
			%% lit < var as intended
			erts_internal:cmp_term(A,B) < 0
		end, [map_key_clean(Key) || #k_map_pair{key=Key} <- Es])
    end.

%% ubody_used_vars(Expr, State) -> [UsedVar]
%%  Return all used variables for the body sequence. Much more
%%  efficient than using ubody/3 if the body contains nested letrecs.
ubody_used_vars(Expr, St) ->
    {_,Used,_} = ubody(Expr, return, St#kern{funs=ignore}),
    Used.

%% ubody(Expr, Break, State) -> {Expr,[UsedVar],State}.
%%  Tag the body sequence with its used variables.  These bodies
%%  either end with a #k_break{}, or with #k_return{} or an expression
%%  which itself can return, #k_enter{}, #k_match{} ... .

ubody(#iset{vars=[],arg=#iletrec{}=Let,body=B0}, Br, St0) ->
    %% An iletrec{} should never be last.
    St = iletrec_funs(Let, St0),
    ubody(B0, Br, St);
ubody(#iset{anno=A,vars=Vs,arg=E0,body=B0}, Br, St0) ->
    {E1,Eu,St1} = uexpr(E0, {break,Vs}, St0),
    {B1,Bu,St2} = ubody(B0, Br, St1),
    Ns = lit_list_vars(Vs),
    Used = union(Eu, subtract(Bu, Ns)),		%Used external vars
    {#k_seq{anno=#k{us=Used,ns=Ns,a=A},arg=E1,body=B1},Used,St2};
ubody(#ivalues{anno=A,args=As}, return, St) ->
    Au = lit_list_vars(As),
    {#k_return{anno=#k{us=Au,ns=[],a=A},args=As},Au,St};
ubody(#ivalues{anno=A,args=As}, {break,_Vbs}, St) ->
    Au = lit_list_vars(As),
    case is_in_guard(St) of
	true ->
	    {#k_guard_break{anno=#k{us=Au,ns=[],a=A},args=As},Au,St};
	false ->
	    {#k_break{anno=#k{us=Au,ns=[],a=A},args=As},Au,St}
    end;
ubody(E, return, St0) ->
    %% Enterable expressions need no trailing return.
    case is_enter_expr(E) of
	true -> uexpr(E, return, St0);
	false ->
	    {Ea,Pa,St1} = force_atomic(E, St0),
	    ubody(pre_seq(Pa, #ivalues{args=[Ea]}), return, St1)
    end;
ubody(E, {break,_Rs} = Break, St0) ->
    %%ok = io:fwrite("ubody ~w:~p~n", [?LINE,{E,Br}]),
    %% Exiting expressions need no trailing break.
    case is_exit_expr(E) of
	true -> uexpr(E, return, St0);
	false ->
	    {Ea,Pa,St1} = force_atomic(E, St0),
	    ubody(pre_seq(Pa, #ivalues{args=[Ea]}), Break, St1)
    end.

iletrec_funs(#iletrec{defs=Fs}, St0) ->
    %% Use union of all free variables.
    %% First just work out free variables for all functions.
    Free = foldl(fun ({_,#ifun{vars=Vs,body=Fb0}}, Free0) ->
			 Fbu = ubody_used_vars(Fb0, St0),
			 Ns = lit_list_vars(Vs),
			 Free1 = subtract(Fbu, Ns),
			 union(Free1, Free0)
		 end, [], Fs),
    FreeVs = make_vars(Free),
    %% Add this free info to State.
    St1 = foldl(fun ({N,#ifun{vars=Vs}}, Lst) ->
			store_free(N, length(Vs), FreeVs, Lst)
		end, St0, Fs),
    iletrec_funs_gen(Fs, FreeVs, St1).

%% Now regenerate local functions to use free variable information.
iletrec_funs_gen(_, _, #kern{funs=ignore}=St) ->
    %% Optimization: The ultimate caller is only interested in the used variables,
    %% not the updated state. Makes a difference if there are nested letrecs.
    St;
iletrec_funs_gen(Fs, FreeVs, St) ->
    foldl(fun ({N,#ifun{anno=Fa,vars=Vs,body=Fb0}}, Lst0) ->
		  Arity0 = length(Vs),
		  {Fb1,_,Lst1} = ubody(Fb0, return, Lst0#kern{ff={N,Arity0}}),
		  Arity = Arity0 + length(FreeVs),
		  Fun = #k_fdef{anno=#k{us=[],ns=[],a=Fa},
				func=N,arity=Arity,
				vars=Vs ++ FreeVs,body=Fb1},
		  Lst1#kern{funs=[Fun|Lst1#kern.funs]}
	  end, St, Fs).


%% is_exit_expr(Kexpr) -> boolean().
%%  Test whether Kexpr always exits and never returns.

is_exit_expr(#k_receive_next{}) -> true;
is_exit_expr(_) -> false.

%% is_enter_expr(Kexpr) -> boolean().
%%  Test whether Kexpr is "enterable", i.e. can handle return from
%%  within itself without extra #k_return{}.

is_enter_expr(#k_try{}) -> true;
is_enter_expr(#k_call{}) -> true;
is_enter_expr(#k_match{}) -> true;
is_enter_expr(#k_receive{}) -> true;
is_enter_expr(#k_receive_next{}) -> true;
is_enter_expr(_) -> false.

%% uexpr(Expr, Break, State) -> {Expr,[UsedVar],State}.
%%  Tag an expression with its used variables.
%%  Break = return | {break,[RetVar]}.

uexpr(#k_test{anno=A,op=Op,args=As}=Test, {break,Rs}, St) ->
    [] = Rs,					%Sanity check
    Used = union(op_vars(Op), lit_list_vars(As)),
    {Test#k_test{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A}},
     Used,St};
uexpr(#iset{anno=A,vars=Vs,arg=E0,body=B0}, {break,_}=Br, St0) ->
    Ns = lit_list_vars(Vs),
    {E1,Eu,St1} = uexpr(E0, {break,Vs}, St0),
    {B1,Bu,St2} = uexpr(B0, Br, St1),
    Used = union(Eu, subtract(Bu, Ns)),
    {#k_seq{anno=#k{us=Used,ns=Ns,a=A},arg=E1,body=B1},Used,St2};
uexpr(#k_call{anno=A,op=#k_local{name=F,arity=Ar}=Op,args=As0}=Call, Br, St) ->
    Free = get_free(F, Ar, St),
    As1 = As0 ++ Free,				%Add free variables LAST!
    Used = lit_list_vars(As1),
    {case Br of
	 {break,Rs} ->
	     Call#k_call{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A},
			 op=Op#k_local{arity=Ar + length(Free)},
			 args=As1,ret=Rs};
	 return ->
	     #k_enter{anno=#k{us=Used,ns=[],a=A},
		      op=Op#k_local{arity=Ar + length(Free)},
		      args=As1}
     end,Used,St};
uexpr(#k_call{anno=A,op=Op,args=As}=Call, {break,Rs}, St) ->
    Used = union(op_vars(Op), lit_list_vars(As)),
    {Call#k_call{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A},ret=Rs},
     Used,St};
uexpr(#k_call{anno=A,op=Op,args=As}, return, St) ->
    Used = union(op_vars(Op), lit_list_vars(As)),
    {#k_enter{anno=#k{us=Used,ns=[],a=A},op=Op,args=As},
     Used,St};
uexpr(#k_bif{anno=A,op=Op,args=As}=Bif, {break,Rs}, St0) ->
    Used = union(op_vars(Op), lit_list_vars(As)),
    {Brs,St1} = bif_returns(Op, Rs, St0),
    {Bif#k_bif{anno=#k{us=Used,ns=lit_list_vars(Brs),a=A},ret=Brs},
     Used,St1};
uexpr(#k_match{anno=A,vars=Vs0,body=B0}, Br, St0) ->
    Vs = handle_reuse_annos(Vs0, St0),
    Rs = break_rets(Br),
    {B1,Bu,St1} = umatch(B0, Br, St0),
    case is_in_guard(St1) of
	true ->
	    {#k_guard_match{anno=#k{us=Bu,ns=lit_list_vars(Rs),a=A},
			    vars=Vs,body=B1,ret=Rs},Bu,St1};
	false ->
	    {#k_match{anno=#k{us=Bu,ns=lit_list_vars(Rs),a=A},
		      vars=Vs,body=B1,ret=Rs},Bu,St1}
    end;
uexpr(#k_receive{anno=A,var=V,body=B0,timeout=T,action=A0}, Br, St0) ->
    Rs = break_rets(Br),
    Tu = lit_vars(T),				%Timeout is atomic
    {B1,Bu,St1} = umatch(B0, Br, St0),
    {A1,Au,St2} = ubody(A0, Br, St1),
    Used = del_element(V#k_var.name, union(Bu, union(Tu, Au))),
    {#k_receive{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A},
		var=V,body=B1,timeout=T,action=A1,ret=Rs},
     Used,St2};
uexpr(#k_receive_accept{anno=A}, _, St) ->
    {#k_receive_accept{anno=#k{us=[],ns=[],a=A}},[],St};
uexpr(#k_receive_next{anno=A}, _, St) ->
    {#k_receive_next{anno=#k{us=[],ns=[],a=A}},[],St};
uexpr(#k_try{anno=A,arg=A0,vars=Vs,body=B0,evars=Evs,handler=H0},
      {break,Rs0}=Br, St0) ->
    case is_in_guard(St0) of
	true ->
	    {[#k_var{name=X}],#k_var{name=X}} = {Vs,B0}, %Assertion.
	    #k_atom{val=false} = H0,		%Assertion.
	    {A1,Bu,St1} = uexpr(A0, Br, St0),
	    {#k_protected{anno=#k{us=Bu,ns=lit_list_vars(Rs0),a=A},
			  arg=A1,ret=Rs0},Bu,St1};
	false ->
	    {Avs,St1} = new_vars(length(Vs), St0),
	    {A1,Au,St2} = ubody(A0, {break,Avs}, St1),
	    {B1,Bu,St3} = ubody(B0, Br, St2),
	    {H1,Hu,St4} = ubody(H0, Br, St3),
	    {Rs1,St5} = ensure_return_vars(Rs0, St4),
	    Used = union([Au,subtract(Bu, lit_list_vars(Vs)),
			  subtract(Hu, lit_list_vars(Evs))]),
	    {#k_try{anno=#k{us=Used,ns=lit_list_vars(Rs1),a=A},
		    arg=A1,vars=Vs,body=B1,evars=Evs,handler=H1,ret=Rs1},
	     Used,St5}
    end;
uexpr(#k_try{anno=A,arg=A0,vars=Vs,body=B0,evars=Evs,handler=H0},
      return, St0) ->
    {Avs,St1} = new_vars(length(Vs), St0),	%Need dummy names here
    {A1,Au,St2} = ubody(A0, {break,Avs}, St1),	%Must break to clean up here!
    {B1,Bu,St3} = ubody(B0, return, St2),
    {H1,Hu,St4} = ubody(H0, return, St3),
    NumNew = 1,
    {Ns,St5} = new_vars(NumNew, St4),
    Used = union([Au,subtract(Bu, lit_list_vars(Vs)),
		  subtract(Hu, lit_list_vars(Evs))]),
    {#k_try_enter{anno=#k{us=Used,ns=Ns,a=A},
		  arg=A1,vars=Vs,body=B1,evars=Evs,handler=H1},
     Used,St5};
uexpr(#k_catch{anno=A,body=B0}, {break,Rs0}, St0) ->
    {Rb,St1} = new_var(St0),
    {B1,Bu,St2} = ubody(B0, {break,[Rb]}, St1),
    %% Guarantee ONE return variable.
    {Ns,St3} = new_vars(1 - length(Rs0), St2),
    Rs1 = Rs0 ++ Ns,
    {#k_catch{anno=#k{us=Bu,ns=lit_list_vars(Rs1),a=A},body=B1,ret=Rs1},Bu,St3};
uexpr(#ifun{anno=A,vars=Vs,body=B0}, {break,Rs}, St0) ->
    {B1,Bu,St1} = ubody(B0, return, St0),	%Return out of new function
    Ns = lit_list_vars(Vs),
    Free = subtract(Bu, Ns),			%Free variables in fun
    Fvs = make_vars(Free),
    Arity = length(Vs) + length(Free),
    {Fname,St} =
	case lists:keyfind(id, 1, A) of 
	    {id,{_,_,Fname0}} ->
		{Fname0,St1};
	    false ->
		%% No id annotation. Must invent a fun name.
		new_fun_name(St1)
	end,
    Fun = #k_fdef{anno=#k{us=[],ns=[],a=A},func=Fname,arity=Arity,
		  vars=Vs ++ Fvs,body=B1},
    {#k_bif{anno=#k{us=Free,ns=lit_list_vars(Rs),a=A},
	    op=#k_internal{name=make_fun,arity=length(Free)+2},
	    args=[#k_atom{val=Fname},#k_int{val=Arity}|Fvs],
 	    ret=Rs},
     Free,add_local_function(Fun, St)};
uexpr(Lit, {break,Rs0}, St0) ->
    %% Transform literals to puts here.
    %%ok = io:fwrite("uexpr ~w:~p~n", [?LINE,Lit]),
    Used = lit_vars(Lit),
    {Rs,St1} = ensure_return_vars(Rs0, St0),
    {#k_put{anno=#k{us=Used,ns=lit_list_vars(Rs),a=get_kanno(Lit)},
	    arg=Lit,ret=Rs},Used,St1}.

add_local_function(_, #kern{funs=ignore}=St) -> St;
add_local_function(F, #kern{funs=Funs}=St) -> St#kern{funs=[F|Funs]}.

%% handle_reuse_annos([#k_var{}], State) -> State.
%%  In general, it is only safe to reuse a variable for a match context
%%  if the original value of the variable will no longer be needed.
%%
%%  If a variable has been bound in an outer letrec and is therefore
%%  free in the current function, the variable may still be used.
%%  We don't bother to check whether the variable is actually used,
%%  but simply clears the 'reuse_for_context' annotation for any variable
%%  that is free.
handle_reuse_annos(Vs, St) ->
    [handle_reuse_anno(V, St) || V <- Vs].

handle_reuse_anno(#k_var{anno=A}=V, St) ->
    case member(reuse_for_context, A) of
	false -> V;
	true -> handle_reuse_anno_1(V, St)
    end.

handle_reuse_anno_1(#k_var{anno=Anno,name=Vname}=V, #kern{ff={F,A}}=St) ->
    FreeVs = get_free(F, A, St),
    case keymember(Vname, #k_var.name, FreeVs) of
	true -> V#k_var{anno=Anno--[reuse_for_context]};
	false -> V
    end;
handle_reuse_anno_1(V, _St) -> V.

%% get_free(Name, Arity, State) -> [Free].
%% store_free(Name, Arity, [Free], State) -> State.

get_free(F, A, #kern{free=FreeMap}) ->
    Key = {F,A},
    case FreeMap of
	#{Key:=Val} -> Val;
	_ -> []
    end.

store_free(F, A, Free, #kern{free=FreeMap0}=St) ->
    Key = {F,A},
    FreeMap = FreeMap0#{Key=>Free},
    St#kern{free=FreeMap}.

break_rets({break,Rs}) -> Rs;
break_rets(return) -> [].

%% bif_returns(Op, [Ret], State) -> {[Ret],State}.

bif_returns(#k_remote{mod=M,name=N,arity=Ar}, Rs, St0) ->
    %%ok = io:fwrite("uexpr ~w:~p~n", [?LINE,{M,N,Ar,Rs}]),
    {Ns,St1} = new_vars(bif_vals(M, N, Ar) - length(Rs), St0),
    {Rs ++ Ns,St1};
bif_returns(#k_internal{name=N,arity=Ar}, Rs, St0) ->
    %%ok = io:fwrite("uexpr ~w:~p~n", [?LINE,{N,Ar,Rs}]),
    {Ns,St1} = new_vars(bif_vals(N, Ar) - length(Rs), St0),
    {Rs ++ Ns,St1}.

%% ensure_return_vars([Ret], State) -> {[Ret],State}.

ensure_return_vars([], St) -> new_vars(1, St);
ensure_return_vars([_]=Rs, St) -> {Rs,St}.

%% umatch(Match, Break, State) -> {Match,[UsedVar],State}.
%%  Tag a match expression with its used variables.

umatch(#k_alt{anno=A,first=F0,then=T0}, Br, St0) ->
    {F1,Fu,St1} = umatch(F0, Br, St0),
    {T1,Tu,St2} = umatch(T0, Br, St1),
    Used = union(Fu, Tu),
    {#k_alt{anno=#k{us=Used,ns=[],a=A},first=F1,then=T1},
     Used,St2};
umatch(#k_select{anno=A,var=V0,types=Ts0}, Br, St0) ->
    V = handle_reuse_anno(V0, St0),
    {Ts1,Tus,St1} = umatch_list(Ts0, Br, St0),
    Used = case member(no_usage, get_kanno(V)) of
	       true -> Tus;
	       false -> add_element(V#k_var.name, Tus)
	   end,
    {#k_select{anno=#k{us=Used,ns=[],a=A},var=V,types=Ts1},Used,St1};
umatch(#k_type_clause{anno=A,type=T,values=Vs0}, Br, St0) ->
    {Vs1,Vus,St1} = umatch_list(Vs0, Br, St0),
    {#k_type_clause{anno=#k{us=Vus,ns=[],a=A},type=T,values=Vs1},Vus,St1};
umatch(#k_val_clause{anno=A,val=P0,body=B0}, Br, St0) ->
    {U0,Ps} = pat_vars(P0),
    P = set_kanno(P0, #k{us=U0,ns=Ps,a=get_kanno(P0)}),
    {B1,Bu,St1} = umatch(B0, Br, St0),
    Used = union(U0, subtract(Bu, Ps)),
    {#k_val_clause{anno=#k{us=Used,ns=[],a=A},val=P,body=B1},
     Used,St1};
umatch(#k_guard{anno=A,clauses=Gs0}, Br, St0) ->
    {Gs1,Gus,St1} = umatch_list(Gs0, Br, St0),
    {#k_guard{anno=#k{us=Gus,ns=[],a=A},clauses=Gs1},Gus,St1};
umatch(#k_guard_clause{anno=A,guard=G0,body=B0}, Br, St0) ->
    %%ok = io:fwrite("~w: ~p~n", [?LINE,G0]),
    {G1,Gu,St1} = uexpr(G0, {break,[]},
			St0#kern{guard_refc=St0#kern.guard_refc+1}),
    %%ok = io:fwrite("~w: ~p~n", [?LINE,G1]),
    {B1,Bu,St2} = umatch(B0, Br, St1#kern{guard_refc=St1#kern.guard_refc-1}),
    Used = union(Gu, Bu),
    {#k_guard_clause{anno=#k{us=Used,ns=[],a=A},guard=G1,body=B1},Used,St2};
umatch(B0, Br, St0) -> ubody(B0, Br, St0).

umatch_list(Ms0, Br, St) ->
    foldr(fun (M0, {Ms1,Us,Sta}) ->
		  {M1,Mu,Stb} = umatch(M0, Br, Sta),
		  {[M1|Ms1],union(Mu, Us),Stb}
	  end, {[],[],St}, Ms0).

%% op_vars(Op) -> [VarName].

op_vars(#k_remote{mod=Mod,name=Name}) ->
    ordsets:from_list([V || #k_var{name=V} <- [Mod,Name]]);
op_vars(#k_internal{}) -> [];
op_vars(Atomic) -> lit_vars(Atomic).

%% lit_vars(Literal) -> [VarName].
%%  Return the variables in a literal.

lit_vars(#k_var{name=N}) -> [N];
lit_vars(#k_int{}) -> [];
lit_vars(#k_float{}) -> [];
lit_vars(#k_atom{}) -> [];
%%lit_vars(#k_char{}) -> [];
lit_vars(#k_nil{}) -> [];
lit_vars(#k_cons{hd=H,tl=T}) ->
    union(lit_vars(H), lit_vars(T));
lit_vars(#k_map{var=Var,es=Es}) ->
    lit_list_vars([Var|Es]);
lit_vars(#k_map_pair{key=K,val=V}) ->
    union(lit_vars(K), lit_vars(V));
lit_vars(#k_binary{segs=V}) -> lit_vars(V);
lit_vars(#k_bin_end{}) -> [];
lit_vars(#k_bin_seg{size=Size,seg=S,next=N}) ->
    union(lit_vars(Size), union(lit_vars(S), lit_vars(N)));
lit_vars(#k_tuple{es=Es}) ->
    lit_list_vars(Es);
lit_vars(#k_literal{}) -> [].

lit_list_vars(Ps) ->
    foldl(fun (P, Vs) -> union(lit_vars(P), Vs) end, [], Ps).

%% pat_vars(Pattern) -> {[UsedVarName],[NewVarName]}.
%%  Return variables in a pattern.  All variables are new variables
%%  except those in the size field of binary segments.
%%  and map_pair keys

pat_vars(#k_var{name=N}) -> {[],[N]};
%%pat_vars(#k_char{}) -> {[],[]};
pat_vars(#k_literal{}) -> {[],[]};
pat_vars(#k_int{}) -> {[],[]};
pat_vars(#k_float{}) -> {[],[]};
pat_vars(#k_atom{}) -> {[],[]};
pat_vars(#k_nil{}) -> {[],[]};
pat_vars(#k_cons{hd=H,tl=T}) ->
    pat_list_vars([H,T]);
pat_vars(#k_binary{segs=V}) ->
    pat_vars(V);
pat_vars(#k_bin_seg{size=Size,seg=S}) ->
    {U1,New} = pat_list_vars([S]),
    {[],U2} = pat_vars(Size),
    {union(U1, U2),New};
pat_vars(#k_bin_int{size=Size}) ->
    {[],U} = pat_vars(Size),
    {U,[]};
pat_vars(#k_bin_end{}) -> {[],[]};
pat_vars(#k_tuple{es=Es}) ->
    pat_list_vars(Es);
pat_vars(#k_map{es=Es}) ->
    pat_list_vars(Es);
pat_vars(#k_map_pair{key=K,val=V}) ->
    {U1,New} = pat_vars(V),
    {[], U2} = pat_vars(K),
    {union(U1,U2),New}.

pat_list_vars(Ps) ->
    foldl(fun (P, {Used0,New0}) ->
		  {Used,New} = pat_vars(P),
		  {union(Used0, Used),union(New0, New)} end,
	  {[],[]}, Ps).

%% List of integers in interval [N,M]. Empty list if N > M.

integers(N, M) when N =< M ->
    [N|integers(N + 1, M)];
integers(_, _) -> [].

%% is_in_guard(State) -> true|false.

is_in_guard(#kern{guard_refc=Refc}) ->
    Refc > 0.

%%%
%%% Handling of errors and warnings.
%%%

-type error() :: 'bad_call' | 'nomatch_shadow' | {'nomatch_shadow', integer()}.

-spec format_error(error()) -> string().

format_error({nomatch_shadow,Line}) ->
    M = io_lib:format("this clause cannot match because a previous clause at line ~p "
		      "always matches", [Line]),
    lists:flatten(M);
format_error(nomatch_shadow) ->
    "this clause cannot match because a previous clause always matches";
format_error(bad_call) ->
    "invalid module and/or function name; this call will always fail";
format_error(bad_segment_size) ->
    "binary construction will fail because of a type mismatch".

add_warning(none, Term, Anno, #kern{ws=Ws}=St) ->
    File = get_file(Anno),
    St#kern{ws=[{File,[{none,?MODULE,Term}]}|Ws]};
add_warning(Line, Term, Anno, #kern{ws=Ws}=St) ->
    File = get_file(Anno),
    St#kern{ws=[{File,[{Line,?MODULE,Term}]}|Ws]}.

is_compiler_generated(Ke) ->
    Anno = get_kanno(Ke),
    member(compiler_generated, Anno).