%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2012. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Main Crypto API module.
-module(crypto).
-export([start/0, stop/0, info/0, info_lib/0, version/0]).
-export([hash/2]).
-export([md4/1, md4_init/0, md4_update/2, md4_final/1]).
-export([md5/1, md5_init/0, md5_update/2, md5_final/1]).
-export([sha/1, sha_init/0, sha_update/2, sha_final/1]).
-export([sha256/1, sha256_init/0, sha256_update/2, sha256_final/1]).
-export([sha512/1, sha512_init/0, sha512_update/2, sha512_final/1]).
-export([md5_mac/2, md5_mac_96/2, sha_mac/2, sha_mac/3, sha_mac_96/2]).
-export([sha256_mac/2, sha256_mac/3]).
-export([sha512_mac/2, sha512_mac/3]).
-export([hmac_init/2, hmac_update/2, hmac_final/1, hmac_final_n/2]).
-export([des_cbc_encrypt/3, des_cbc_decrypt/3, des_cbc_ivec/1]).
-export([des_ecb_encrypt/2, des_ecb_decrypt/2]).
-export([des_cfb_encrypt/3, des_cfb_decrypt/3, des_cfb_ivec/2]).
-export([des3_cbc_encrypt/5, des3_cbc_decrypt/5]).
-export([des3_cfb_encrypt/5, des3_cfb_decrypt/5]).
-export([blowfish_ecb_encrypt/2, blowfish_ecb_decrypt/2]).
-export([blowfish_cbc_encrypt/3, blowfish_cbc_decrypt/3]).
-export([blowfish_cfb64_encrypt/3, blowfish_cfb64_decrypt/3]).
-export([blowfish_ofb64_encrypt/3]).
-export([des_ede3_cbc_encrypt/5, des_ede3_cbc_decrypt/5]).
-export([aes_cfb_128_encrypt/3, aes_cfb_128_decrypt/3]).
-export([exor/2]).
-export([rc4_encrypt/2, rc4_set_key/1, rc4_encrypt_with_state/2]).
-export([rc2_cbc_encrypt/3, rc2_cbc_decrypt/3, rc2_40_cbc_encrypt/3, rc2_40_cbc_decrypt/3]).
-export([dss_verify/3, dss_verify/4, rsa_verify/3, rsa_verify/4]).
-export([dss_sign/2, dss_sign/3, rsa_sign/2, rsa_sign/3]).
-export([rsa_public_encrypt/3, rsa_private_decrypt/3]).
-export([rsa_private_encrypt/3, rsa_public_decrypt/3]).
-export([dh_generate_key/1, dh_generate_key/2, dh_compute_key/3]).
-export([rand_bytes/1, rand_bytes/3, rand_uniform/2]).
-export([strong_rand_bytes/1, strong_rand_mpint/3]).
-export([mod_exp/3, mpint/1, erlint/1]).
%% -export([idea_cbc_encrypt/3, idea_cbc_decrypt/3]).
-export([aes_cbc_128_encrypt/3, aes_cbc_128_decrypt/3]).
-export([aes_cbc_256_encrypt/3, aes_cbc_256_decrypt/3]).
-export([aes_cbc_ivec/1]).
-export([aes_ctr_encrypt/3, aes_ctr_decrypt/3]).
-export([aes_ctr_stream_init/2, aes_ctr_stream_encrypt/2, aes_ctr_stream_decrypt/2]).
-export([dh_generate_parameters/2, dh_check/1]). %% Testing see below
-define(FUNC_LIST, [md4, md4_init, md4_update, md4_final,
md5, md5_init, md5_update, md5_final,
sha, sha_init, sha_update, sha_final,
sha256, sha256_init, sha256_update, sha256_final,
sha512, sha512_init, sha512_update, sha512_final,
md5_mac, md5_mac_96,
sha_mac, sha_mac_96,
sha256_mac, sha512_mac,
sha_mac_init, sha_mac_update, sha_mac_final,
des_cbc_encrypt, des_cbc_decrypt,
des_cfb_encrypt, des_cfb_decrypt,
des_ecb_encrypt, des_ecb_decrypt,
des_ede3_cbc_encrypt, des_ede3_cbc_decrypt,
des_ede3_cfb_encrypt, des_ede3_cfb_decrypt,
aes_cfb_128_encrypt, aes_cfb_128_decrypt,
rand_bytes,
strong_rand_bytes,
strong_rand_mpint,
rand_uniform,
mod_exp,
dss_verify,dss_sign,
rsa_verify,rsa_sign,
rsa_public_encrypt,rsa_private_decrypt,
rsa_private_encrypt,rsa_public_decrypt,
dh_generate_key, dh_compute_key,
aes_cbc_128_encrypt, aes_cbc_128_decrypt,
exor,
rc4_encrypt, rc4_set_key, rc4_encrypt_with_state,
rc2_40_cbc_encrypt, rc2_40_cbc_decrypt,
%% idea_cbc_encrypt, idea_cbc_decrypt,
aes_cbc_256_encrypt, aes_cbc_256_decrypt,
aes_ctr_encrypt, aes_ctr_decrypt,
aes_ctr_stream_init, aes_ctr_stream_encrypt, aes_ctr_stream_decrypt,
info_lib]).
-type rsa_digest_type() :: 'md5' | 'sha' | 'sha256' | 'sha384' | 'sha512'.
-type dss_digest_type() :: 'none' | 'sha'.
-type data_or_digest() :: binary() | {digest, binary()}.
-type crypto_integer() :: binary() | integer().
-define(nif_stub,nif_stub_error(?LINE)).
-on_load(on_load/0).
-define(CRYPTO_NIF_VSN,101).
on_load() ->
LibBaseName = "crypto",
PrivDir = code:priv_dir(crypto),
LibName = case erlang:system_info(build_type) of
opt ->
LibBaseName;
Type ->
LibTypeName = LibBaseName ++ "." ++ atom_to_list(Type),
case (filelib:wildcard(
filename:join(
[PrivDir,
"lib",
LibTypeName ++ "*"])) /= []) orelse
(filelib:wildcard(
filename:join(
[PrivDir,
"lib",
erlang:system_info(system_architecture),
LibTypeName ++ "*"])) /= []) of
true -> LibTypeName;
false -> LibBaseName
end
end,
Lib = filename:join([PrivDir, "lib", LibName]),
Status = case erlang:load_nif(Lib, ?CRYPTO_NIF_VSN) of
ok -> ok;
{error, {load_failed, _}}=Error1 ->
ArchLibDir =
filename:join([PrivDir, "lib",
erlang:system_info(system_architecture)]),
Candidate =
filelib:wildcard(filename:join([ArchLibDir,LibName ++ "*" ])),
case Candidate of
[] -> Error1;
_ ->
ArchLib = filename:join([ArchLibDir, LibName]),
erlang:load_nif(ArchLib, ?CRYPTO_NIF_VSN)
end;
Error1 -> Error1
end,
case Status of
ok -> ok;
{error, {E, Str}} ->
error_logger:error_msg("Unable to load crypto library. Failed with error:~n\"~p, ~s\"~n"
"OpenSSL might not be installed on this system.~n",[E,Str]),
Status
end.
nif_stub_error(Line) ->
erlang:nif_error({nif_not_loaded,module,?MODULE,line,Line}).
start() ->
application:start(crypto).
stop() ->
application:stop(crypto).
info() ->
?FUNC_LIST.
info_lib() -> ?nif_stub.
%% Crypto app version history:
%% (no version): Driver implementation
%% 2.0 : NIF implementation, requires OTP R14
version() -> ?CRYPTO_VSN.
%% Below Key and Data are binaries or IO-lists. IVec is a binary.
%% Output is always a binary. Context is a binary.
%%
%% MESSAGE DIGESTS
%%
-spec hash(_, iodata()) -> binary().
hash(md5, Data) -> md5(Data);
hash(md4, Data) -> md4(Data);
hash(sha, Data) -> sha(Data);
hash(sha1, Data) -> sha(Data);
hash(sha256, Data) -> sha256(Data);
hash(sha512, Data) -> sha512(Data).
%%
%% MD5
%%
-spec md5(iodata()) -> binary().
-spec md5_init() -> binary().
-spec md5_update(binary(), iodata()) -> binary().
-spec md5_final(binary()) -> binary().
md5(_Data) -> ?nif_stub.
md5_init() -> ?nif_stub.
md5_update(_Context, _Data) -> ?nif_stub.
md5_final(_Context) -> ?nif_stub.
%%
%% MD4
%%
-spec md4(iodata()) -> binary().
-spec md4_init() -> binary().
-spec md4_update(binary(), iodata()) -> binary().
-spec md4_final(binary()) -> binary().
md4(_Data) -> ?nif_stub.
md4_init() -> ?nif_stub.
md4_update(_Context, _Data) -> ?nif_stub.
md4_final(_Context) -> ?nif_stub.
%%
%% SHA
%%
-spec sha(iodata()) -> binary().
-spec sha_init() -> binary().
-spec sha_update(binary(), iodata()) -> binary().
-spec sha_final(binary()) -> binary().
sha(_Data) -> ?nif_stub.
sha_init() -> ?nif_stub.
sha_update(_Context, _Data) -> ?nif_stub.
sha_final(_Context) -> ?nif_stub.
%
%% SHA256
%%
-spec sha256(iodata()) -> binary().
-spec sha256_init() -> binary().
-spec sha256_update(binary(), iodata()) -> binary().
-spec sha256_final(binary()) -> binary().
sha256(Data) ->
case sha256_nif(Data) of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha256_init() ->
case sha256_init_nif() of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha256_update(Context, Data) ->
case sha256_update_nif(Context, Data) of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha256_final(Context) ->
case sha256_final_nif(Context) of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha256_nif(_Data) -> ?nif_stub.
sha256_init_nif() -> ?nif_stub.
sha256_update_nif(_Context, _Data) -> ?nif_stub.
sha256_final_nif(_Context) -> ?nif_stub.
%
%% SHA512
%%
-spec sha512(iodata()) -> binary().
-spec sha512_init() -> binary().
-spec sha512_update(binary(), iodata()) -> binary().
-spec sha512_final(binary()) -> binary().
sha512(Data) ->
case sha512_nif(Data) of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha512_init() ->
case sha512_init_nif() of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha512_update(Context, Data) ->
case sha512_update_nif(Context, Data) of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha512_final(Context) ->
case sha512_final_nif(Context) of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha512_nif(_Data) -> ?nif_stub.
sha512_init_nif() -> ?nif_stub.
sha512_update_nif(_Context, _Data) -> ?nif_stub.
sha512_final_nif(_Context) -> ?nif_stub.
%%
%% MESSAGE AUTHENTICATION CODES
%%
%%
%% HMAC (multiple hash options)
%%
-spec hmac_init(atom(), iodata()) -> binary().
-spec hmac_update(binary(), iodata()) -> binary().
-spec hmac_final(binary()) -> binary().
-spec hmac_final_n(binary(), integer()) -> binary().
hmac_init(_Type, _Key) -> ?nif_stub.
hmac_update(_Context, _Data) -> ? nif_stub.
hmac_final(_Context) -> ? nif_stub.
hmac_final_n(_Context, _HashLen) -> ? nif_stub.
%%
%% MD5_MAC
%%
-spec md5_mac(iodata(), iodata()) -> binary().
-spec md5_mac_96(iodata(), iodata()) -> binary().
md5_mac(Key, Data) ->
md5_mac_n(Key,Data,16).
md5_mac_96(Key, Data) ->
md5_mac_n(Key,Data,12).
md5_mac_n(_Key,_Data,_MacSz) -> ?nif_stub.
%%
%% SHA_MAC
%%
-spec sha_mac(iodata(), iodata()) -> binary().
-spec sha_mac_96(iodata(), iodata()) -> binary().
sha_mac(Key, Data) ->
sha_mac_n(Key,Data,20).
sha_mac(Key, Data, Size) ->
sha_mac_n(Key, Data, Size).
sha_mac_96(Key, Data) ->
sha_mac_n(Key,Data,12).
sha_mac_n(_Key,_Data,_MacSz) -> ?nif_stub.
%%
%% SHA256_MAC
%%
-spec sha256_mac(iodata(), iodata()) -> binary().
sha256_mac(Key, Data) ->
sha256_mac(Key, Data, 256 div 8).
sha256_mac(Key, Data, Size) ->
case sha256_mac_nif(Key, Data, Size) of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha256_mac_nif(_Key,_Data,_MacSz) -> ?nif_stub.
notsup -> erlang:error(notsup);
Bin -> Bin
end.
%%
%% SHA512_MAC
%%
-spec sha512_mac(iodata(), iodata()) -> binary().
sha512_mac(Key, Data) ->
sha512_mac(Key, Data, 512 div 8).
sha512_mac(Key, Data, MacSz) ->
case sha512_mac_nif(Key, Data, MacSz) of
notsup -> erlang:error(notsup);
Bin -> Bin
end.
sha512_mac_nif(_Key,_Data,_MacSz) -> ?nif_stub.
%%
%% CRYPTO FUNCTIONS
%%
%%
%% DES - in cipher block chaining mode (CBC)
%%
-spec des_cbc_encrypt(iodata(), binary(), iodata()) -> binary().
-spec des_cbc_decrypt(iodata(), binary(), iodata()) -> binary().
des_cbc_encrypt(Key, IVec, Data) ->
des_cbc_crypt(Key, IVec, Data, true).
des_cbc_decrypt(Key, IVec, Data) ->
des_cbc_crypt(Key, IVec, Data, false).
des_cbc_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub.
%%
%% dec_cbc_ivec(Data) -> binary()
%%
%% Returns the IVec to be used in the next iteration of
%% des_cbc_[encrypt|decrypt].
%%
-spec des_cbc_ivec(iodata()) -> binary().
des_cbc_ivec(Data) when is_binary(Data) ->
{_, IVec} = split_binary(Data, size(Data) - 8),
IVec;
des_cbc_ivec(Data) when is_list(Data) ->
des_cbc_ivec(list_to_binary(Data)).
%%
%% DES - in 8-bits cipher feedback mode (CFB)
%%
-spec des_cfb_encrypt(iodata(), binary(), iodata()) -> binary().
-spec des_cfb_decrypt(iodata(), binary(), iodata()) -> binary().
des_cfb_encrypt(Key, IVec, Data) ->
des_cfb_crypt(Key, IVec, Data, true).
des_cfb_decrypt(Key, IVec, Data) ->
des_cfb_crypt(Key, IVec, Data, false).
des_cfb_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub.
%%
%% dec_cfb_ivec(IVec, Data) -> binary()
%%
%% Returns the IVec to be used in the next iteration of
%% des_cfb_[encrypt|decrypt].
%%
-spec des_cfb_ivec(iodata(), iodata()) -> binary().
des_cfb_ivec(IVec, Data) ->
IVecAndData = list_to_binary([IVec, Data]),
{_, NewIVec} = split_binary(IVecAndData, byte_size(IVecAndData) - 8),
NewIVec.
%%
%% DES - in electronic codebook mode (ECB)
%%
-spec des_ecb_encrypt(iodata(), iodata()) -> binary().
-spec des_ecb_decrypt(iodata(), iodata()) -> binary().
des_ecb_encrypt(Key, Data) ->
des_ecb_crypt(Key, Data, true).
des_ecb_decrypt(Key, Data) ->
des_ecb_crypt(Key, Data, false).
des_ecb_crypt(_Key, _Data, _IsEncrypt) -> ?nif_stub.
%%
%% DES3 - in cipher block chaining mode (CBC)
%%
-spec des3_cbc_encrypt(iodata(), iodata(), iodata(), binary(), iodata()) ->
binary().
-spec des3_cbc_decrypt(iodata(), iodata(), iodata(), binary(), iodata()) ->
binary().
des3_cbc_encrypt(Key1, Key2, Key3, IVec, Data) ->
des_ede3_cbc_encrypt(Key1, Key2, Key3, IVec, Data).
des_ede3_cbc_encrypt(Key1, Key2, Key3, IVec, Data) ->
des_ede3_cbc_crypt(Key1, Key2, Key3, IVec, Data, true).
des3_cbc_decrypt(Key1, Key2, Key3, IVec, Data) ->
des_ede3_cbc_decrypt(Key1, Key2, Key3, IVec, Data).
des_ede3_cbc_decrypt(Key1, Key2, Key3, IVec, Data) ->
des_ede3_cbc_crypt(Key1, Key2, Key3, IVec, Data, false).
des_ede3_cbc_crypt(_Key1, _Key2, _Key3, _IVec, _Data, _IsEncrypt) -> ?nif_stub.
%%
%% DES3 - in 8-bits cipher feedback mode (CFB)
%%
-spec des3_cfb_encrypt(iodata(), iodata(), iodata(), binary(), iodata()) ->
binary().
-spec des3_cfb_decrypt(iodata(), iodata(), iodata(), binary(), iodata()) ->
binary().
des3_cfb_encrypt(Key1, Key2, Key3, IVec, Data) ->
des_ede3_cfb_encrypt(Key1, Key2, Key3, IVec, Data).
des_ede3_cfb_encrypt(Key1, Key2, Key3, IVec, Data) ->
des_ede3_cfb_crypt(Key1, Key2, Key3, IVec, Data, true).
des3_cfb_decrypt(Key1, Key2, Key3, IVec, Data) ->
des_ede3_cfb_decrypt(Key1, Key2, Key3, IVec, Data).
des_ede3_cfb_decrypt(Key1, Key2, Key3, IVec, Data) ->
des_ede3_cfb_crypt(Key1, Key2, Key3, IVec, Data, false).
des_ede3_cfb_crypt(_Key1, _Key2, _Key3, _IVec, _Data, _IsEncrypt) -> ?nif_stub.
%%
%% Blowfish
%%
-spec blowfish_ecb_encrypt(iodata(), iodata()) -> binary().
-spec blowfish_ecb_decrypt(iodata(), iodata()) -> binary().
-spec blowfish_cbc_encrypt(iodata(), binary(), iodata()) -> binary().
-spec blowfish_cbc_decrypt(iodata(), binary(), iodata()) -> binary().
-spec blowfish_cfb64_encrypt(iodata(), binary(), iodata()) -> binary().
-spec blowfish_cfb64_decrypt(iodata(), binary(), iodata()) -> binary().
-spec blowfish_ofb64_encrypt(iodata(), binary(), iodata()) -> binary().
blowfish_ecb_encrypt(Key, Data) ->
bf_ecb_crypt(Key,Data, true).
blowfish_ecb_decrypt(Key, Data) ->
bf_ecb_crypt(Key,Data, false).
bf_ecb_crypt(_Key,_Data,_IsEncrypt) -> ?nif_stub.
blowfish_cbc_encrypt(Key, IVec, Data) ->
bf_cbc_crypt(Key,IVec,Data,true).
blowfish_cbc_decrypt(Key, IVec, Data) ->
bf_cbc_crypt(Key,IVec,Data,false).
bf_cbc_crypt(_Key,_IVec,_Data,_IsEncrypt) -> ?nif_stub.
blowfish_cfb64_encrypt(Key, IVec, Data) ->
bf_cfb64_crypt(Key, IVec, Data, true).
blowfish_cfb64_decrypt(Key, IVec, Data) ->
bf_cfb64_crypt(Key, IVec, Data, false).
bf_cfb64_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub.
blowfish_ofb64_encrypt(_Key, _IVec, _Data) -> ?nif_stub.
%%
%% AES in cipher feedback mode (CFB)
%%
-spec aes_cfb_128_encrypt(iodata(), binary(), iodata()) -> binary().
-spec aes_cfb_128_decrypt(iodata(), binary(), iodata()) -> binary().
aes_cfb_128_encrypt(Key, IVec, Data) ->
aes_cfb_128_crypt(Key, IVec, Data, true).
aes_cfb_128_decrypt(Key, IVec, Data) ->
aes_cfb_128_crypt(Key, IVec, Data, false).
aes_cfb_128_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub.
%%
%% RAND - pseudo random numbers using RN_ functions in crypto lib
%%
-spec rand_bytes(non_neg_integer()) -> binary().
-spec strong_rand_bytes(non_neg_integer()) -> binary().
-spec rand_uniform(crypto_integer(), crypto_integer()) ->
crypto_integer().
-spec strong_rand_mpint(Bits::non_neg_integer(),
Top::-1..1,
Bottom::0..1) -> binary().
rand_bytes(_Bytes) -> ?nif_stub.
strong_rand_bytes(Bytes) ->
case strong_rand_bytes_nif(Bytes) of
false -> erlang:error(low_entropy);
Bin -> Bin
end.
strong_rand_bytes_nif(_Bytes) -> ?nif_stub.
rand_bytes(_Bytes, _Topmask, _Bottommask) -> ?nif_stub.
strong_rand_mpint(Bits, Top, Bottom) ->
case strong_rand_mpint_nif(Bits,Top,Bottom) of
false -> erlang:error(low_entropy);
Bin -> Bin
end.
strong_rand_mpint_nif(_Bits, _Top, _Bottom) -> ?nif_stub.
rand_uniform(From,To) when is_binary(From), is_binary(To) ->
case rand_uniform_nif(From,To) of
<<Len:32/integer, MSB, Rest/binary>> when MSB > 127 ->
<<(Len + 1):32/integer, 0, MSB, Rest/binary>>;
Whatever ->
Whatever
end;
rand_uniform(From,To) when is_integer(From),is_integer(To) ->
if From < 0 ->
rand_uniform_pos(0, To - From) + From;
true ->
rand_uniform_pos(From, To)
end.
rand_uniform_pos(From,To) when From < To ->
BinFrom = mpint(From),
BinTo = mpint(To),
case rand_uniform(BinFrom, BinTo) of
Result when is_binary(Result) ->
erlint(Result);
Other ->
Other
end;
rand_uniform_pos(_,_) ->
error(badarg).
rand_uniform_nif(_From,_To) -> ?nif_stub.
%%
%% mod_exp - utility for rsa generation
%%
mod_exp(Base, Exponent, Modulo)
when is_integer(Base), is_integer(Exponent), is_integer(Modulo) ->
erlint(mod_exp(mpint(Base), mpint(Exponent), mpint(Modulo)));
mod_exp(Base, Exponent, Modulo) ->
case mod_exp_nif(Base,Exponent,Modulo) of
<<Len:32/integer, MSB, Rest/binary>> when MSB > 127 ->
<<(Len + 1):32/integer, 0, MSB, Rest/binary>>;
Whatever ->
Whatever
end.
mod_exp_nif(_Base,_Exp,_Mod) -> ?nif_stub.
%%
%% DSS, RSA - verify
%%
-spec dss_verify(data_or_digest(), binary(), [binary()]) -> boolean().
-spec dss_verify(dss_digest_type(), data_or_digest(), binary(), [binary()]) -> boolean().
-spec rsa_verify(data_or_digest(), binary(), [binary()]) -> boolean().
-spec rsa_verify(rsa_digest_type(), data_or_digest(), binary(), [binary()]) ->
boolean().
%% Key = [P,Q,G,Y] P,Q,G=DSSParams Y=PublicKey
dss_verify(Data,Signature,Key) ->
dss_verify(sha, Data, Signature, Key).
dss_verify(_Type,_Data,_Signature,_Key) -> ?nif_stub.
% Key = [E,N] E=PublicExponent N=PublicModulus
rsa_verify(Data,Signature,Key) ->
rsa_verify_nif(sha, Data,Signature,Key).
rsa_verify(Type, DataOrDigest, Signature, Key) ->
case rsa_verify_nif(Type, DataOrDigest, Signature, Key) of
notsup -> erlang:error(notsup);
Bool -> Bool
end.
rsa_verify_nif(_Type, _Data, _Signature, _Key) -> ?nif_stub.
%%
%% DSS, RSA - sign
%%
%% Key = [P,Q,G,X] P,Q,G=DSSParams X=PrivateKey
-spec dss_sign(data_or_digest(), [binary()]) -> binary().
-spec dss_sign(dss_digest_type(), data_or_digest(), [binary()]) -> binary().
-spec rsa_sign(data_or_digest(), [binary()]) -> binary().
-spec rsa_sign(rsa_digest_type(), data_or_digest(), [binary()]) -> binary().
dss_sign(DataOrDigest,Key) ->
dss_sign(sha,DataOrDigest,Key).
dss_sign(Type, DataOrDigest, Key) ->
case dss_sign_nif(Type,DataOrDigest,Key) of
error -> erlang:error(badkey, [DataOrDigest, Key]);
Sign -> Sign
end.
dss_sign_nif(_Type,_Data,_Key) -> ?nif_stub.
%% Key = [E,N,D] E=PublicExponent N=PublicModulus D=PrivateExponent
rsa_sign(DataOrDigest,Key) ->
rsa_sign(sha, DataOrDigest, Key).
rsa_sign(Type, DataOrDigest, Key) ->
case rsa_sign_nif(Type,DataOrDigest,Key) of
error -> erlang:error(badkey, [Type,DataOrDigest,Key]);
Sign -> Sign
end.
rsa_sign_nif(_Type,_Data,_Key) -> ?nif_stub.
%%
%% rsa_public_encrypt
%% rsa_private_decrypt
-type rsa_padding() :: 'rsa_pkcs1_padding' | 'rsa_pkcs1_oaep_padding' | 'rsa_no_padding'.
-spec rsa_public_encrypt(binary(), [binary()], rsa_padding()) ->
binary().
-spec rsa_public_decrypt(binary(), [binary()], rsa_padding()) ->
binary().
-spec rsa_private_encrypt(binary(), [binary()], rsa_padding()) ->
binary().
-spec rsa_private_decrypt(binary(), [binary()], rsa_padding()) ->
binary().
%% Binary, Key = [E,N]
rsa_public_encrypt(BinMesg, Key, Padding) ->
case rsa_public_crypt(BinMesg, Key, Padding, true) of
error ->
erlang:error(encrypt_failed, [BinMesg,Key, Padding]);
Sign -> Sign
end.
rsa_public_crypt(_BinMsg, _Key, _Padding, _IsEncrypt) -> ?nif_stub.
%% Binary, Key = [E,N,D]
rsa_private_decrypt(BinMesg, Key, Padding) ->
case rsa_private_crypt(BinMesg, Key, Padding, false) of
error ->
erlang:error(decrypt_failed, [BinMesg,Key, Padding]);
Sign -> Sign
end.
rsa_private_crypt(_BinMsg, _Key, _Padding, _IsEncrypt) -> ?nif_stub.
%% Binary, Key = [E,N,D]
rsa_private_encrypt(BinMesg, Key, Padding) ->
case rsa_private_crypt(BinMesg, Key, Padding, true) of
error ->
erlang:error(encrypt_failed, [BinMesg,Key, Padding]);
Sign -> Sign
end.
%% Binary, Key = [E,N]
rsa_public_decrypt(BinMesg, Key, Padding) ->
case rsa_public_crypt(BinMesg, Key, Padding, false) of
error ->
erlang:error(decrypt_failed, [BinMesg,Key, Padding]);
Sign -> Sign
end.
%%
%% AES - with 128 or 256 bit key in cipher block chaining mode (CBC)
%%
-spec aes_cbc_128_encrypt(iodata(), binary(), iodata()) ->
binary().
-spec aes_cbc_128_decrypt(iodata(), binary(), iodata()) ->
binary().
-spec aes_cbc_256_encrypt(iodata(), binary(), iodata()) ->
binary().
-spec aes_cbc_256_decrypt(iodata(), binary(), iodata()) ->
binary().
aes_cbc_128_encrypt(Key, IVec, Data) ->
aes_cbc_crypt(Key, IVec, Data, true).
aes_cbc_128_decrypt(Key, IVec, Data) ->
aes_cbc_crypt(Key, IVec, Data, false).
aes_cbc_256_encrypt(Key, IVec, Data) ->
aes_cbc_crypt(Key, IVec, Data, true).
aes_cbc_256_decrypt(Key, IVec, Data) ->
aes_cbc_crypt(Key, IVec, Data, false).
aes_cbc_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub.
%%
%% aes_cbc_ivec(Data) -> binary()
%%
%% Returns the IVec to be used in the next iteration of
%% aes_cbc_*_[encrypt|decrypt].
%% IVec size: 16 bytes
%%
aes_cbc_ivec(Data) when is_binary(Data) ->
{_, IVec} = split_binary(Data, size(Data) - 16),
IVec;
aes_cbc_ivec(Data) when is_list(Data) ->
aes_cbc_ivec(list_to_binary(Data)).
%%
%% AES - in counter mode (CTR)
%%
-spec aes_ctr_encrypt(iodata(), binary(), iodata()) ->
binary().
-spec aes_ctr_decrypt(iodata(), binary(), iodata()) ->
binary().
aes_ctr_encrypt(_Key, _IVec, _Data) -> ?nif_stub.
aes_ctr_decrypt(_Key, _IVec, _Cipher) -> ?nif_stub.
%%
%% AES - in counter mode (CTR) with state maintained for multi-call streaming
%%
-type ctr_state() :: { iodata(), binary(), binary(), integer() }.
-spec aes_ctr_stream_init(iodata(), binary()) -> ctr_state().
-spec aes_ctr_stream_encrypt(ctr_state(), binary()) ->
{ ctr_state(), binary() }.
-spec aes_ctr_stream_decrypt(ctr_state(), binary()) ->
{ ctr_state(), binary() }.
aes_ctr_stream_init(Key, IVec) ->
{Key, IVec, << 0:128 >>, 0}.
aes_ctr_stream_encrypt({_Key, _IVec, _ECount, _Num}=_State, _Data) -> ?nif_stub.
aes_ctr_stream_decrypt({_Key, _IVec, _ECount, _Num}=_State, _Cipher) -> ?nif_stub.
%%
%% XOR - xor to iolists and return a binary
%% NB doesn't check that they are the same size, just concatenates
%% them and sends them to the driver
%%
-spec exor(iodata(), iodata()) -> binary().
exor(_A, _B) -> ?nif_stub.
%%
%% RC4 - symmetric stream cipher
%%
-spec rc4_encrypt(iodata(), iodata()) -> binary().
rc4_encrypt(_Key, _Data) -> ?nif_stub.
rc4_set_key(_Key) -> ?nif_stub.
rc4_encrypt_with_state(_State, _Data) -> ?nif_stub.
%% RC2 block cipher
rc2_cbc_encrypt(Key, IVec, Data) ->
rc2_cbc_crypt(Key,IVec,Data,true).
rc2_cbc_decrypt(Key, IVec, Data) ->
rc2_cbc_crypt(Key,IVec,Data,false).
rc2_cbc_crypt(_Key, _IVec, _Data, _IsEncrypt) -> ?nif_stub.
%%
%% RC2 - 40 bits block cipher - Backwards compatibility not documented.
%%
rc2_40_cbc_encrypt(Key, IVec, Data) when erlang:byte_size(Key) == 5 ->
rc2_cbc_crypt(Key,IVec,Data,true).
rc2_40_cbc_decrypt(Key, IVec, Data) when erlang:byte_size(Key) == 5 ->
rc2_cbc_crypt(Key,IVec,Data,false).
%%
%% DH Diffie-Hellman functions
%%
%% Generate (and check) Parameters is not documented because they are implemented
%% for testing (and offline parameter generation) only.
%% From the openssl doc:
%% DH_generate_parameters() may run for several hours before finding a suitable prime.
%% Thus dh_generate_parameters may in this implementation block
%% the emulator for several hours.
%%
%% usage: dh_generate_parameters(1024, 2 or 5) ->
%% [Prime=mpint(), SharedGenerator=mpint()]
dh_generate_parameters(PrimeLen, Generator) ->
case dh_generate_parameters_nif(PrimeLen, Generator) of
error -> erlang:error(generation_failed, [PrimeLen,Generator]);
Ret -> Ret
end.
dh_generate_parameters_nif(_PrimeLen, _Generator) -> ?nif_stub.
%% Checks that the DHParameters are ok.
%% DHParameters = [P (Prime)= mpint(), G(Generator) = mpint()]
dh_check([_Prime,_Gen]) -> ?nif_stub.
%% DHParameters = [P (Prime)= mpint(), G(Generator) = mpint()]
%% PrivKey = mpint()
-spec dh_generate_key([binary()]) -> {binary(),binary()}.
-spec dh_generate_key(binary()|undefined, [binary()]) ->
{binary(),binary()}.
dh_generate_key(DHParameters) ->
dh_generate_key(undefined, DHParameters).
dh_generate_key(PrivateKey, DHParameters) ->
case dh_generate_key_nif(PrivateKey, DHParameters) of
error -> erlang:error(generation_failed, [PrivateKey,DHParameters]);
Res -> Res
end.
dh_generate_key_nif(_PrivateKey, _DHParameters) -> ?nif_stub.
%% DHParameters = [P (Prime)= mpint(), G(Generator) = mpint()]
%% MyPrivKey, OthersPublicKey = mpint()
-spec dh_compute_key(binary(), binary(), [binary()]) -> binary().
dh_compute_key(OthersPublicKey, MyPrivateKey, DHParameters) ->
case dh_compute_key_nif(OthersPublicKey,MyPrivateKey,DHParameters) of
error -> erlang:error(computation_failed, [OthersPublicKey,MyPrivateKey,DHParameters]);
Ret -> Ret
end.
dh_compute_key_nif(_OthersPublicKey, _MyPrivateKey, _DHParameters) -> ?nif_stub.
%%
%% LOCAL FUNCTIONS
%%
%% large integer in a binary with 32bit length
%% MP representaion (SSH2)
mpint(X) when X < 0 ->
case X of
-1 ->
<<0,0,0,1,16#ff>>;
_ ->
mpint_neg(X,0,[])
end;
mpint(X) ->
case X of
0 ->
<<0,0,0,0>>;
_ ->
mpint_pos(X,0,[])
end.
-define(UINT32(X), X:32/unsigned-big-integer).
mpint_neg(-1,I,Ds=[MSB|_]) ->
if MSB band 16#80 =/= 16#80 ->
<<?UINT32((I+1)), (list_to_binary([255|Ds]))/binary>>;
true ->
(<<?UINT32(I), (list_to_binary(Ds))/binary>>)
end;
mpint_neg(X,I,Ds) ->
mpint_neg(X bsr 8,I+1,[(X band 255)|Ds]).
mpint_pos(0,I,Ds=[MSB|_]) ->
if MSB band 16#80 == 16#80 ->
<<?UINT32((I+1)), (list_to_binary([0|Ds]))/binary>>;
true ->
(<<?UINT32(I), (list_to_binary(Ds))/binary>>)
end;
mpint_pos(X,I,Ds) ->
mpint_pos(X bsr 8,I+1,[(X band 255)|Ds]).
%% int from integer in a binary with 32bit length
erlint(<<MPIntSize:32/integer,MPIntValue/binary>>) ->
Bits= MPIntSize * 8,
<<Integer:Bits/integer>> = MPIntValue,
Integer.