aboutsummaryrefslogblamecommitdiffstats
path: root/lib/dialyzer/src/dialyzer_typesig.erl
blob: 17a292a7d6862dfea3a812b6ae13ed9b8d93532d (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288


                                                                         
  
                                                        
  




                                                                      
  



                                                                         
  





                                                                      
                 





                                                                      
                         

                                  
                  



                                                                            
                                                       





                                                                         
 
                                                       






                                                                       
                                          








                                                                               

                                                                             








                                                          

                                    
                                                  
                                             
                                          

                                                                  

                                                    

                                              

                                                             


                                                                      



                                                                          

















                                                                               
                                                             
                                                             
                  
 








                                                                               
                                    

                                
                                      


                                                              
                                                             

                                     
                                                      










                                                                               
                                                                              




                                                                               

                                                                    




                                                                            
                                      


                                                                               
                                                 
                                                                    
 

                                                                   
                            
                                                                         












                                                                               


                            
































                                                                               
                                                                         












                                                                             
                                                                    
                                                             



                                                                           




                                                                         
                                     







                                                                            
                                                                       












                                                               

                                                                        




























                                                                             

















                                                                    

                                                                        












                                                                      
                             
              





                                                                      
                                        


                                                                         
                                                               

                             

                                                         



                                                            

                                                      




                                                            
                                                                  











                                                              
              

                                           
               
                                                  
                   










                                                                            
                                                     
















                                                                               
                                           































                                                                                
                                  








                                                                          
                       










                                                                               

                                                                           

























































































                                                                                  
       






                                                                          
                    




                                                       
                                                                      


                                               
                    







                                      
                                                 










                                                                               
                   

                                                                             
                   


                                                                                
                            





















                                                                               
                                        













                                                                  
                   



















                                                                             

                                
                             
                          





                                                     



                                             
                                                     





                                                                  



                                                                                

                                                                    












                                                                                     


















                                                                                
                                             





                                                                    

                                                                      












                                                                            
                                                                       


                                                               
             


                                        

           















                                                                       
                                                         







                                                
              

                                                                          
     





                                                                  
                



                                                                     



                                                                                



                                                         
                                                    


                                                                     
                                                            

                                             

                                                      










                                                                                   
                                        










                                                                               

                                                          












                                                         

                                                  


































                                                                              
                                                                          



                                                                              
                                                                            
                                                              
                                                          
                                            










                                                      
            





















































                                                                             
                










































                                                                        
                       
           
                        









































                                                                                
                                          

















                                                                               
                                                                 
                                            



                                                                             

                  
           





                                              
                           






                                                              
                           








                                                 
                                





                                                                  
                                                                 
                                                          
          















                                                                             
                             


                                                                         
                             


                                                                          
                             


                                                                         
                             

















                                                                          





                                                                         







                                                                  
                        
                                            
                           













                                                                 
                           








                                                                 

                                   
                                                      



                                                                               




















                                                                      
                        







                                                                    
                                           





















                                                                         
                                    
                      


                                                                    
                                   




                                                                               

                                   
          














                                                                        
                                                                                
                                           


                                                                               
                                    












                                                
                                                
                      
                                                                                      
                             
                                                         








                                                            

                                                                           
                                                       

















                                                                                          
                                   




















                                                                         
                                 













                                                     
                                                      






                                                                  


                                                 

















                                                                          
                                 













                                                     
                                                       






                                                                   


                                                 






                                                                           






                                                                
                   











                                                  

                                      









                                                                       
                      




















                                                                               


                                                   



























                                                                          
                              










                                                  
                                   
                           

                                                


                                                             
                                                      
                                                          





                                                             
                                                       




                                                                      
                                          
                                                             
                                               





                                                                          
      
                                                     
                                        
                                


                                                             





                                                         
                                          

                                                                                     
















                                                                           
                                      
                                                 
                                      

                            
        







                                                                           
                                   
                                                 
                                   

















                                                 
                                    
                                



                                                      
                                                         











                                                                            
                         





                                                      
                                    









                                                                               
                                                        
                                   
                                   
                            
                                                        
                                               




                                                   
                                                       





                                                          
                                          






                                                              
                                                   
                                                                




                                                           
                                                                   


                                                                     
                                                          




                                                                 



                                                     
                                                                

                                       




                                                     
                                                         
                                                      
                



                                     

              
            
                                                       















                                                                                
                                                  





                                           

      





                                               

                                        










                                                                

                           


































































                                                                                



                                                          
                                    











                                                                         







































                                                                                

                                                                        

























































































































































































































































































































































































                                                                                    
                                                        
                                         
                        
                                  
                                  
                          
        
                                                               



                                                                    
                                                        
                            
                                                                   
           




                                         
           



                                                                              















                                                                               
                                                                  






                                                         


                                                                               
                        
                                  
                                  


                                             

                                              
           







                                                                  






                                                                 
                                                                      
                       











                                                                          
                               

                                                  
               






                                                                       
                                           

                                                 

















                                                                               
            

                                                        
                                                     

                                  













                                                                      
                                                  
            
                                       
                       
                         




                                            
                                                                        





                                                                     
                        


                  
                                                     
             
                                                       
                           




                                                                      



             
                                         






                                                                    
                                        

                                                     

                                                




                                                       







                                                                    





                                                                               


             

                   
                  







                                                                   





























                                                               
            
                                                                       
           













                                                                       
               













                                                                             
                           



                                                      

                                                   


                            
                            
                                






                                                      









                                              
                                   







                                                        
























                                                                   
                    




                              
            

















                                                                   





                                                             




                                                                    





                                                                               
                                                                 


                                                          
                                                           









                                                                
                                                                           
                                                                              
                                                             






                                                                          
                                             
 














                                              
            



                                                            
 










                                                                  
                                                                   


                                                      
                






















                                                                             














                                                            




                                


                                                        





                                       







                                                                       





                                              
                                                                             









                                              
                                                                      












































                                                                              
 




                                                      
                                                                 
                                     
                                   
 


                                                  

                        

                                                      



































                                                                                        
                                               
                                  
                

















                                                                         

              


                                                       






                                                                       





                                                                                         

       























                                                              
                                             






                                                                     


                                                     





                                                                  
                                         




















                                                                           
                                    


                                                                   
                             

















                                                                    
     












                                                                        
                        











                                                                     
                                                     











































                                                                               
                                                                 






                                                                            
                                                         
                                                          
                                                                            

                                                               

                                                              





                                                                      




                                                    
                                                              
                


                                                                    
                                                                            








                                                                        


                                                                    
                                                                 


















                                                                            

                                             




                                                                     


                                          






                                                                    















                                                               







                                                                               
                  























                                     


































                                                                      








                                                                        


                                                     












                                                                               
                                                      

                                                             




                                                       


                       

                          





                                                               




                                  
          











                                                                         









                                                                    
                                                                 



                                       
                                          


          


                                                                          
                                
                   
                                          


                                                             
                              


                                                                 
                                                                     






                                                                 


                                                                          















                                                                  








                                     
                                                                       














                                                                               
                        


                                                  
                                            


                                                                                

                                                                      



                                                                               

                                                            







                                                                      
                                            

                                                                                


                                                                           




                                                                         
 
                       
                           




                                       
%% -*- erlang-indent-level: 2 -*-
%%-----------------------------------------------------------------------
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2006-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%

%%%-------------------------------------------------------------------
%%% File    : dialyzer_typesig.erl
%%% Author  : Tobias Lindahl <[email protected]>
%%% Description :
%%%
%%% Created : 25 Apr 2005 by Tobias Lindahl <[email protected]>
%%%-------------------------------------------------------------------

-module(dialyzer_typesig).

-export([analyze_scc/6]).
-export([get_safe_underapprox/2]).

-import(erl_types,
	[t_any/0, t_atom/0, t_atom_vals/1,
	 t_binary/0, t_bitstr/0, t_bitstr/2, t_bitstr_concat/1, t_boolean/0,
	 t_collect_vars/1, t_cons/2, t_cons_hd/1, t_cons_tl/1,
	 t_float/0, t_from_range/2, t_from_term/1,
	 t_fun/0, t_fun/2, t_fun_args/1, t_fun_range/1,
	 t_has_var/1,
	 t_inf/2, t_inf/3, t_integer/0,
	 t_is_any/1, t_is_atom/1, t_is_atom/2, t_is_cons/1, t_is_equal/2,
	 t_is_float/1, t_is_fun/1,
	 t_is_integer/1, t_non_neg_integer/0,
	 t_is_list/1, t_is_nil/1, t_is_none/1, t_is_number/1,

	 t_is_subtype/2, t_limit/2, t_list/0, t_list/1,
	 t_list_elements/1, t_nonempty_list/1, t_maybe_improper_list/0,
	 t_module/0, t_number/0, t_number_vals/1,
	 t_opaque_match_record/2, t_opaque_matching_structure/2,
	 t_opaque_from_records/1,
	 t_pid/0, t_port/0, t_product/1, t_reference/0,
	 t_subst/2, t_subtract/2, t_subtract_list/2, t_sup/1, t_sup/2,
	 t_timeout/0, t_tuple/0, t_tuple/1,
	 t_unify/3, t_var/1, t_var_name/1,
	 t_none/0, t_unit/0]).

-include("dialyzer.hrl").

%%-----------------------------------------------------------------------------

-type dep()      :: integer().  %% type variable names used as constraint ids
-type type_var() :: erl_types:erl_type(). %% actually: {'c','var',_,_}

-record(fun_var, {'fun' :: fun((_) -> erl_types:erl_type()), deps :: [dep()],
		  origin :: integer()}).

-type constr_op()    :: 'eq' | 'sub'.
-type fvar_or_type() :: #fun_var{} | erl_types:erl_type().

-record(constraint, {lhs  :: erl_types:erl_type(),
		     op   :: constr_op(),
		     rhs  :: fvar_or_type(),
		     deps :: [dep()]}).

-type constraint() :: #constraint{}.

-record(constraint_list, {type :: 'conj' | 'disj',
			  list :: [constr()],
			  deps :: [dep()],
                          masks :: [{dep(),[non_neg_integer()]}] |
                                   {'d',dict()},
			  id   :: {'list', dep()}}).

-type constraint_list() :: #constraint_list{}.

-record(constraint_ref, {id :: type_var(), deps :: [dep()]}).

-type constraint_ref() :: #constraint_ref{}.

-type constr() :: constraint() | constraint_list() | constraint_ref().

-type typesig_scc()    :: [{mfa(), {cerl:c_var(), cerl:c_fun()}, dict()}].
-type typesig_funmap() :: [{type_var(), type_var()}]. %% Orddict

-type dict_or_ets() :: {'d', dict()} | {'e', ets:tid()}.

-record(state, {callgraph                    :: dialyzer_callgraph:callgraph(),
		cs          = []                :: [constr()],
		cmap        = {'d', dict:new()} :: dict_or_ets(),
		fun_map     = []                :: typesig_funmap(),
		fun_arities = dict:new()        :: dict(),
		in_match    = false             :: boolean(),
		in_guard    = false             :: boolean(),
		module                          :: module(),
		name_map    = dict:new()        :: dict(),
		next_label  = 0                 :: label(),
		self_rec                        :: erl_types:erl_type(),
		plt                             :: dialyzer_plt:plt(),
		prop_types  = {'d', dict:new()} :: dict_or_ets(),
		records     = dict:new()        :: dict(),
		opaques     = []                :: [erl_types:erl_type()],
		scc         = []                :: [type_var()],
		mfas                            :: [tuple()],
                solvers     = []                :: [solver()]
	       }).

%%-----------------------------------------------------------------------------

-define(TYPE_LIMIT, 4).
-define(INTERNAL_TYPE_LIMIT, 5).

%%-define(DEBUG, true).
%%-define(DEBUG_CONSTRAINTS, true).
-ifdef(DEBUG).
-define(DEBUG_NAME_MAP, true).
-define(DEBUG_LOOP_DETECTION, true).
-endif.
%%-define(DEBUG_NAME_MAP, true).
%%-define(DEBUG_LOOP_DETECTION, true).

-ifdef(DEBUG).
-define(debug(__String, __Args), io:format(__String, __Args)).
-define(mk_fun_var(Fun, Vars), mk_fun_var(?LINE, Fun, Vars)).
-else.
-define(debug(__String, __Args), ok).
-define(mk_fun_var(Fun, Vars), mk_fun_var(Fun, Vars)).
-endif.

%% ============================================================================
%%
%%  The analysis.
%%
%% ============================================================================

%%-----------------------------------------------------------------------------
%% Analysis of strongly connected components.
%%
%% analyze_scc(SCC, NextLabel, CallGraph, PLT, PropTypes, Solvers) -> FunTypes
%%
%% SCC       - [{MFA, Def, Records}]
%%             where Def = {Var, Fun} as in the Core Erlang module definitions.
%%                   Records = dict(RecName, {Arity, [{FieldName, FieldType}]})
%% NextLabel - An integer that is higher than any label in the code.
%% CallGraph - A callgraph as produced by dialyzer_callgraph.erl
%%             Note: The callgraph must have been built with all the
%%                   code that the SCC is a part of.
%% PLT       - A dialyzer PLT. This PLT should contain available information
%%             about functions that can be called by this SCC.
%% PropTypes - A dictionary.
%% FunTypes  - A dictionary.
%% Solvers   - User specified solvers.
%%-----------------------------------------------------------------------------

-spec analyze_scc(typesig_scc(), label(),
		  dialyzer_callgraph:callgraph(),
		  dialyzer_plt:plt(), dict(), [solver()]) -> dict().

analyze_scc(SCC, NextLabel, CallGraph, Plt, PropTypes, Solvers0) ->
  Solvers = solvers(Solvers0),
  assert_format_of_scc(SCC),
  State1 = new_state(SCC, NextLabel, CallGraph, Plt, PropTypes, Solvers),
  DefSet = add_def_list([Var || {_MFA, {Var, _Fun}, _Rec} <- SCC], sets:new()),
  State2 = traverse_scc(SCC, DefSet, State1),
  State3 = state__finalize(State2),
  Funs = state__scc(State3),
  pp_constrs_scc(Funs, State3),
  constraints_to_dot_scc(Funs, State3),
  solve(Funs, State3).

assert_format_of_scc([{_MFA, {_Var, _Fun}, _Records}|Left]) ->
  assert_format_of_scc(Left);
assert_format_of_scc([]) ->
  ok.

solvers([]) -> [v2];
solvers(Solvers) -> Solvers.

%% ============================================================================
%%
%%  Gets the constraints by traversing the code.
%%
%% ============================================================================

traverse_scc([{MFA, Def, Rec}|Left], DefSet, AccState) ->
  TmpState1 = state__set_rec_dict(AccState, Rec),
  TmpState2 = state__set_opaques(TmpState1, MFA),
  DummyLetrec = cerl:c_letrec([Def], cerl:c_atom(foo)),
  {NewAccState, _} = traverse(DummyLetrec, DefSet, TmpState2),
  traverse_scc(Left, DefSet, NewAccState);
traverse_scc([], _DefSet, AccState) ->
  AccState.

traverse(Tree, DefinedVars, State) ->
  ?debug("Handling ~p\n", [cerl:type(Tree)]),
  case cerl:type(Tree) of
    alias ->
      Var = cerl:alias_var(Tree),
      Pat = cerl:alias_pat(Tree),
      DefinedVars1 = add_def(Var, DefinedVars),
      {State1, PatVar} = traverse(Pat, DefinedVars1, State),
      State2 = state__store_conj(mk_var(Var), eq, PatVar, State1),
      {State2, PatVar};
    apply ->
      Args = cerl:apply_args(Tree),
      Arity = length(Args),
      Op = cerl:apply_op(Tree),
      {State0, ArgTypes} = traverse_list(Args, DefinedVars, State),
      {State1, OpType} = traverse(Op, DefinedVars, State0),
      {State2, FunType} = state__get_fun_prototype(OpType, Arity, State1),
      State3 = state__store_conj(FunType, eq, OpType, State2),
      State4 = state__store_conj(mk_var(Tree), sub, t_fun_range(FunType),
				 State3),
      State5 = state__store_conj_lists(ArgTypes, sub, t_fun_args(FunType),
				       State4),
      case state__lookup_apply(Tree, State) of
	unknown ->
	  {State5, mk_var(Tree)};
	FunLabels ->
	  case get_apply_constr(FunLabels, mk_var(Tree), ArgTypes, State5) of
	    error -> {State5, mk_var(Tree)};
	    {ok, State6} -> {State6, mk_var(Tree)}
	  end
      end;
    binary ->
      {State1, SegTypes} = traverse_list(cerl:binary_segments(Tree),
					 DefinedVars, State),
      Type = ?mk_fun_var(fun(Map) ->
			     TmpSegTypes = lookup_type_list(SegTypes, Map),
			     t_bitstr_concat(TmpSegTypes)
			 end, SegTypes),
      {state__store_conj(mk_var(Tree), sub, Type, State1), mk_var(Tree)};
    bitstr ->
      Size = cerl:bitstr_size(Tree),
      UnitVal = cerl:int_val(cerl:bitstr_unit(Tree)),
      Val = cerl:bitstr_val(Tree),
      {State1, [SizeType, ValType]} =
	traverse_list([Size, Val], DefinedVars, State),
      {State2, TypeConstr} =
	case cerl:bitstr_bitsize(Tree) of
	  all -> {State1, t_bitstr(UnitVal, 0)};
	  utf -> {State1, t_binary()}; % contains an integer number of bytes
	  N when is_integer(N) -> {State1, t_bitstr(0, N)};
	  any -> % Size is not a literal
	    {state__store_conj(SizeType, sub, t_non_neg_integer(), State1),
	     ?mk_fun_var(bitstr_constr(SizeType, UnitVal), [SizeType])}
	end,
      ValTypeConstr =
	case cerl:concrete(cerl:bitstr_type(Tree)) of
	  binary -> TypeConstr;
	  float ->
	    case state__is_in_match(State1) of
	      true -> t_float();
	      false -> t_number()
	    end;
	  integer ->
	    case state__is_in_match(State1) of
	      true ->
		Flags = cerl:concrete(cerl:bitstr_flags(Tree)),
		?mk_fun_var(bitstr_val_constr(SizeType, UnitVal, Flags),
			    [SizeType]);
	      false -> t_integer()
	    end;
	  utf8  -> t_integer();
	  utf16 -> t_integer();
	  utf32 -> t_integer()
	end,
      State3 = state__store_conj(ValType, sub, ValTypeConstr, State2),
      State4 = state__store_conj(mk_var(Tree), sub, TypeConstr, State3),
      {State4, mk_var(Tree)};
    'case' ->
      Arg = cerl:case_arg(Tree),
      Clauses = filter_match_fail(cerl:case_clauses(Tree)),
      {State1, ArgVar} = traverse(Arg, DefinedVars, State),
      handle_clauses(Clauses, mk_var(Tree), ArgVar, DefinedVars, State1);
    call ->
      handle_call(Tree, DefinedVars, State);
    'catch' ->
      %% XXX: Perhaps there is something to say about this.
      {State, mk_var(Tree)};
    cons ->
      Hd = cerl:cons_hd(Tree),
      Tl = cerl:cons_tl(Tree),
      {State1, [HdVar, TlVar]} = traverse_list([Hd, Tl], DefinedVars, State),
      case cerl:is_literal(cerl:fold_literal(Tree)) of
	true ->
	  %% We do not need to do anything more here.
	  {State, t_cons(HdVar, TlVar)};
	false ->
	  ConsVar = mk_var(Tree),
	  ConsType = ?mk_fun_var(fun(Map) ->
				     t_cons(lookup_type(HdVar, Map),
					    lookup_type(TlVar, Map))
				 end, [HdVar, TlVar]),
	  HdType = ?mk_fun_var(fun(Map) ->
				   Cons = lookup_type(ConsVar, Map),
				   case t_is_cons(Cons) of
				     false -> t_any();
				     true -> t_cons_hd(Cons)
				   end
			       end, [ConsVar]),
	  TlType = ?mk_fun_var(fun(Map) ->
				   Cons = lookup_type(ConsVar, Map),
				   case t_is_cons(Cons) of
				     false -> t_any();
				     true -> t_cons_tl(Cons)
				   end
			       end, [ConsVar]),
	  State2 = state__store_conj_lists([HdVar, TlVar, ConsVar], sub,
					   [HdType, TlType, ConsType],
					   State1),
	  {State2, ConsVar}
      end;
    'fun' ->
      Body = cerl:fun_body(Tree),
      Vars = cerl:fun_vars(Tree),
      DefinedVars1 = add_def_list(Vars, DefinedVars),
      State0 = state__new_constraint_context(State),
      FunFailType =
	case state__prop_domain(cerl_trees:get_label(Tree), State0) of
	  error -> t_fun(length(Vars), t_none());
	  {ok, Dom} -> t_fun(Dom, t_none())
	end,
      TreeVar = mk_var(Tree),
      State2 =
	try
	  State1 = case state__add_prop_constrs(Tree, State0) of
		     not_called -> State0;
		     PropState -> PropState
		   end,
	  {BodyState, BodyVar} = traverse(Body, DefinedVars1, State1),
	  state__store_conj(TreeVar, eq,
			    t_fun(mk_var_list(Vars), BodyVar), BodyState)
	catch
	  throw:error ->
	    state__store_conj(TreeVar, eq, FunFailType, State0)
	end,
      Cs = state__cs(State2),
      State3 = state__store_constrs(TreeVar, Cs, State2),
      Ref = mk_constraint_ref(TreeVar, get_deps(Cs)),
      OldCs = state__cs(State),
      State4 = state__new_constraint_context(State3),
      State5 = state__store_conj_list([OldCs, Ref], State4),
      State6 = state__store_fun_arity(Tree, State5),
      State7 = state__add_fun_to_scc(TreeVar, State6),
      {State7, TreeVar};
    'let' ->
      Vars = cerl:let_vars(Tree),
      Arg = cerl:let_arg(Tree),
      Body = cerl:let_body(Tree),
      {State1, ArgVars} = traverse(Arg, DefinedVars, State),
      State2 = state__store_conj(t_product(mk_var_list(Vars)), eq,
				 ArgVars, State1),
      DefinedVars1 = add_def_list(Vars, DefinedVars),
      traverse(Body, DefinedVars1, State2);
    letrec ->
      Defs = cerl:letrec_defs(Tree),
      Body = cerl:letrec_body(Tree),
      Funs = [Fun || {_Var, Fun} <- Defs],
      Vars = [Var || {Var, _Fun} <- Defs],
      State1 = state__store_funs(Vars, Funs, State),
      DefinedVars1 = add_def_list(Vars, DefinedVars),
      {State2, _} = traverse_list(Funs, DefinedVars1, State1),
      traverse(Body, DefinedVars1, State2);
    literal ->
      %% This is needed for finding records
      case cerl:unfold_literal(Tree) of
	Tree ->
	  Type = t_from_term(cerl:concrete(Tree)),
	  NewType =
	    case erl_types:t_opaque_match_atom(Type, State#state.opaques) of
	      [Opaque] -> Opaque;
	      _ -> Type
	    end,
	  {State, NewType};
	NewTree -> traverse(NewTree, DefinedVars, State)
      end;
    module ->
      Defs = cerl:module_defs(Tree),
      Funs = [Fun || {_Var, Fun} <- Defs],
      Vars = [Var || {Var, _Fun} <- Defs],
      DefinedVars1 = add_def_list(Vars, DefinedVars),
      State1 = state__store_funs(Vars, Funs, State),
      FoldFun = fun(Fun, AccState) ->
		    {S, _} = traverse(Fun, DefinedVars1,
				      state__new_constraint_context(AccState)),
		    S
		end,
      lists:foldl(FoldFun, State1, Funs);
    primop ->
      case cerl:atom_val(cerl:primop_name(Tree)) of
	match_fail -> throw(error);
	raise -> throw(error);
	bs_init_writable -> {State, t_from_term(<<>>)};
	Other -> erlang:error({'Unsupported primop', Other})
      end;
    'receive' ->
      Clauses = filter_match_fail(cerl:receive_clauses(Tree)),
      Timeout = cerl:receive_timeout(Tree),
      case (cerl:is_c_atom(Timeout) andalso
	    (cerl:atom_val(Timeout) =:= infinity)) of
	true ->
	  handle_clauses(Clauses, mk_var(Tree), [], DefinedVars, State);
 	false ->
	  Action = cerl:receive_action(Tree),
	  {State1, TimeoutVar} = traverse(Timeout, DefinedVars, State),
	  State2 = state__store_conj(TimeoutVar, sub, t_timeout(), State1),
	  handle_clauses(Clauses, mk_var(Tree), [], Action, DefinedVars, State2)
     end;
    seq ->
      Body = cerl:seq_body(Tree),
      Arg = cerl:seq_arg(Tree),
      {State1, _} = traverse(Arg, DefinedVars, State),
      traverse(Body, DefinedVars, State1);
    'try' ->
      handle_try(Tree, DefinedVars, State);
    tuple ->
      Elements = cerl:tuple_es(Tree),
      {State1, EVars} = traverse_list(Elements, DefinedVars, State),
      {State2, TupleType} =
	case cerl:is_literal(cerl:fold_literal(Tree)) of
	  true ->
	    %% We do not need to do anything more here.
	    {State, t_tuple(EVars)};
	  false ->
	    %% We have the same basic problem as in products, but we want to
	    %% make sure that everything that can be used as tags for the
	    %% disjoint unions stays in the tuple.
	    Fun = fun(Var, AccState) ->
		      case t_has_var(Var) of
			true ->
			  {AccState1, NewVar} = state__mk_var(AccState),
			  {NewVar,
			   state__store_conj(Var, eq, NewVar, AccState1)};
			false ->
			  {Var, AccState}
		      end
		  end,
	    {NewEvars, TmpState} = lists:mapfoldl(Fun, State1, EVars),
	    {TmpState, t_tuple(NewEvars)}
	end,
      case Elements of
	[Tag|Fields] ->
	  case cerl:is_c_atom(Tag) of
	    true ->
	      %% Check if an opaque term is constructed.
	      case t_opaque_match_record(TupleType, State#state.opaques) of
		[Opaque] ->
		  OpStruct = t_opaque_matching_structure(TupleType, Opaque),
		  State3 = state__store_conj(TupleType, sub, OpStruct, State2),
		  {State3, Opaque};
		%% Check if a record is constructed.
		_ ->
		  Arity = length(Fields),
		  Records = State2#state.records,
		  case lookup_record(Records, cerl:atom_val(Tag), Arity) of
		    error -> {State2, TupleType};
		    {ok, RecType} ->
		      State3 = state__store_conj(TupleType, sub, RecType, State2),
		      {State3, TupleType}
		  end
	      end;
	    false -> {State2, TupleType}
	  end;
	[] -> {State2, TupleType}
      end;
    values ->
      %% We can get into trouble when unifying products that have the
      %% same element appearing several times. Handle these cases by
      %% introducing fresh variables and constraining them to be equal
      %% to the original ones. This is similar to what happens in
      %% pattern matching where the matching is done on fresh
      %% variables and guards assert that the matching is correct.
      Elements = cerl:values_es(Tree),
      {State1, EVars} = traverse_list(Elements, DefinedVars, State),
      Arity = length(EVars),
      Unique = length(ordsets:from_list(EVars)),
      case Arity =:= Unique of
	true -> {State1, t_product(EVars)};
	false ->
	  {State2, Vars} = state__mk_vars(Arity, State1),
	  State3 = state__store_conj_lists(Vars, eq, EVars, State2),
	  {State3, t_product(Vars)}
      end;
    var ->
      case is_def(Tree, DefinedVars) of
	true -> {State, mk_var(Tree)};
	false ->
	  %% If we are analyzing SCCs this can be a function variable.
	  case state__lookup_undef_var(Tree, State) of
	    error -> erlang:error({'Undefined variable', Tree});
	    {ok, Type} ->
	      {State1, NewVar} = state__mk_var(State),
	      {state__store_conj(NewVar, sub, Type, State1), NewVar}
	  end
      end;
    Other ->
      erlang:error({'Unsupported type', Other})
  end.

traverse_list(Trees, DefinedVars, State) ->
  traverse_list(Trees, DefinedVars, State, []).

traverse_list([Tree|Tail], DefinedVars, State, Acc) ->
  {State1, Var} = traverse(Tree, DefinedVars, State),
  traverse_list(Tail, DefinedVars, State1, [Var|Acc]);
traverse_list([], _DefinedVars, State, Acc) ->
  {State, lists:reverse(Acc)}.

add_def(Var, Set) ->
  sets:add_element(cerl_trees:get_label(Var), Set).

add_def_list([H|T], Set) ->
  add_def_list(T, add_def(H, Set));
add_def_list([], Set) ->
  Set.

add_def_from_tree(T, DefinedVars) ->
  Vars = cerl_trees:fold(fun(X, Acc) ->
			     case cerl:is_c_var(X) of
			       true -> [X|Acc];
			       false -> Acc
			     end
			 end, [], T),
  add_def_list(Vars, DefinedVars).

add_def_from_tree_list([H|T], DefinedVars) ->
  add_def_from_tree_list(T, add_def_from_tree(H, DefinedVars));
add_def_from_tree_list([], DefinedVars) ->
  DefinedVars.

is_def(Var, Set) ->
  sets:is_element(cerl_trees:get_label(Var), Set).

%%----------------------------------------
%% Try
%%

handle_try(Tree, DefinedVars, State) ->
  Arg = cerl:try_arg(Tree),
  Vars = cerl:try_vars(Tree),
  EVars = cerl:try_evars(Tree),
  Body = cerl:try_body(Tree),
  Handler = cerl:try_handler(Tree),
  State1 = state__new_constraint_context(State),
  {ArgBodyState, BodyVar} =
    try
      {State2, ArgVar} = traverse(Arg, DefinedVars, State1),
      DefinedVars1 = add_def_list(Vars, DefinedVars),
      {State3, BodyVar1} = traverse(Body, DefinedVars1, State2),
      State4 = state__store_conj(t_product(mk_var_list(Vars)), eq, ArgVar,
				 State3),
      {State4, BodyVar1}
    catch
      throw:error ->
	{State1, t_none()}
    end,
  State6 = state__new_constraint_context(ArgBodyState),
  {HandlerState, HandlerVar} =
    try
      DefinedVars2 = add_def_list([X || X <- EVars, cerl:is_c_var(X)],
				  DefinedVars),
      traverse(Handler, DefinedVars2, State6)
    catch
      throw:error ->
	{State6, t_none()}
    end,
  ArgBodyCs = state__cs(ArgBodyState),
  HandlerCs = state__cs(HandlerState),
  TreeVar = mk_var(Tree),
  OldCs = state__cs(State),
  case state__is_in_guard(State) of
    true ->
      Conj1 = mk_conj_constraint_list([ArgBodyCs,
				       mk_constraint(BodyVar, eq, TreeVar)]),
      Disj = mk_disj_constraint_list([Conj1,
				      mk_constraint(HandlerVar, eq, TreeVar)]),
      NewState1 = state__new_constraint_context(HandlerState),
      Conj2 = mk_conj_constraint_list([OldCs, Disj]),
      NewState2 = state__store_conj(Conj2, NewState1),
      {NewState2, TreeVar};
    false ->
      {NewCs, ReturnVar} =
	case {t_is_none(BodyVar), t_is_none(HandlerVar)} of
	  {false, false} ->
	    Conj1 =
	      mk_conj_constraint_list([ArgBodyCs,
				       mk_constraint(TreeVar, eq, BodyVar)]),
	    Conj2 =
	      mk_conj_constraint_list([HandlerCs,
				       mk_constraint(TreeVar, eq, HandlerVar)]),
	    Disj = mk_disj_constraint_list([Conj1, Conj2]),
	    {Disj, TreeVar};
	  {false, true} ->
	    {mk_conj_constraint_list([ArgBodyCs,
				      mk_constraint(TreeVar, eq, BodyVar)]),
	     BodyVar};
	  {true, false} ->
	    {mk_conj_constraint_list([HandlerCs,
				      mk_constraint(TreeVar, eq, HandlerVar)]),
	     HandlerVar};
	  {true, true} ->
	    ?debug("Throw failed\n", []),
	    throw(error)
	end,
      Conj = mk_conj_constraint_list([OldCs, NewCs]),
      NewState1 = state__new_constraint_context(HandlerState),
      NewState2 = state__store_conj(Conj, NewState1),
      {NewState2, ReturnVar}
  end.

%%----------------------------------------
%% Call
%%

handle_call(Call, DefinedVars, State) ->
  Args = cerl:call_args(Call),
  Mod = cerl:call_module(Call),
  Fun = cerl:call_name(Call),
  Dst = mk_var(Call),
  case cerl:is_c_atom(Mod) andalso cerl:is_c_atom(Fun) of
    true ->
      M = cerl:atom_val(Mod),
      F = cerl:atom_val(Fun),
      A = length(Args),
      MFA = {M, F, A},
      {State1, ArgVars} = traverse_list(Args, DefinedVars, State),
      case state__lookup_rec_var_in_scope(MFA, State) of
	error ->
	  case get_bif_constr(MFA, Dst, ArgVars, State1) of
	    none ->
	      {get_plt_constr(MFA, Dst, ArgVars, State1), Dst};
	    C ->
	      {state__store_conj(C, State1), Dst}
	  end;
	{ok, Var} ->
	  %% This is part of the SCC currently analyzed.
	  %% Intercept and change this to an apply instead.
	  ?debug("Found the call to ~w\n", [MFA]),
	  Label = cerl_trees:get_label(Call),
	  Apply = cerl:ann_c_apply([{label, Label}], Var, Args),
	  traverse(Apply, DefinedVars, State)
      end;
    false ->
      {State1, MF} = traverse_list([Mod, Fun], DefinedVars, State),
      {state__store_conj_lists(MF, sub, [t_module(), t_atom()], State1), Dst}
  end.

get_plt_constr(MFA, Dst, ArgVars, State) ->
  Plt = state__plt(State),
  PltRes = dialyzer_plt:lookup(Plt, MFA),
  Opaques = State#state.opaques,
  Module = State#state.module,
  SCCMFAs = State#state.mfas,
  {FunModule, _, _} = MFA,
  Contract =
    case lists:member(MFA, SCCMFAs) of
      true -> none;
      false -> dialyzer_plt:lookup_contract(Plt, MFA)
    end,
  case Contract of
    none ->
      case PltRes of
	none -> State;
	{value, {PltRetType, PltArgTypes}} ->
	  state__store_conj_lists([Dst|ArgVars], sub,
				  [PltRetType|PltArgTypes], State)
      end;
    {value, #contract{args = GenArgs} = C} ->
      {RetType, ArgCs} =
	case PltRes of
	  none ->
	    {?mk_fun_var(fun(Map) ->
			     ArgTypes = lookup_type_list(ArgVars, Map),
			     dialyzer_contracts:get_contract_return(C, ArgTypes)
			 end, ArgVars), GenArgs};
	  {value, {PltRetType, PltArgTypes}} ->
	    %% Need to combine the contract with the success typing.
	    {?mk_fun_var(
		fun(Map) ->
		    ArgTypes0 = lookup_type_list(ArgVars, Map),
		    ArgTypes = case FunModule =:= Module of
				 false ->
				   List = lists:zip(PltArgTypes, ArgTypes0),
				   [erl_types:t_unopaque_on_mismatch(T1, T2, Opaques)
				    || {T1, T2} <- List];
				 true -> ArgTypes0
			       end,
		    CRet = dialyzer_contracts:get_contract_return(C, ArgTypes),
		    t_inf(CRet, PltRetType, opaque)
		end, ArgVars),
	     [t_inf(X, Y, opaque) || {X, Y} <- lists:zip(GenArgs, PltArgTypes)]}
	end,
      state__store_conj_lists([Dst|ArgVars], sub, [RetType|ArgCs], State)
  end.

filter_match_fail([Clause] = Cls) ->
  Body = cerl:clause_body(Clause),
  case cerl:type(Body) of
    primop ->
      case cerl:atom_val(cerl:primop_name(Body)) of
	match_fail -> [];
	raise -> [];
	_ -> Cls
      end;
    _ -> Cls
  end;
filter_match_fail([H|T]) ->
  [H|filter_match_fail(T)];
filter_match_fail([]) ->
  %% This can actually happen, for example in
  %%      receive after 1 -> ok end
  [].

%% If there is a significant number of clauses, we cannot apply the
%% list subtraction scheme since it causes the analysis to be too
%% slow. Typically, this only affects automatically generated files.
%% The dataflow analysis doesn't suffer from this, so we will get some
%% information anyway.
-define(MAX_NOF_CLAUSES, 15).

handle_clauses(Clauses, TopVar, Arg, DefinedVars, State) ->
  handle_clauses(Clauses, TopVar, Arg, none, DefinedVars, State).

handle_clauses([], _, _, Action, DefinedVars, State) when Action =/= none ->
  %% Can happen when a receive has no clauses, see filter_match_fail.
  traverse(Action, DefinedVars, State);
handle_clauses(Clauses, TopVar, Arg, Action, DefinedVars, State) ->
  SubtrTypeList =
    if length(Clauses) > ?MAX_NOF_CLAUSES -> overflow;
       true -> []
    end,
  {State1, CList} = handle_clauses_1(Clauses, TopVar, Arg, DefinedVars,
				     State, SubtrTypeList, []),
  {NewCs, NewState} =
    case Action of
      none ->
	if CList =:= [] -> throw(error);
	   true -> {CList, State1}
	end;
      _ ->
	try
	  {State2, ActionVar} = traverse(Action, DefinedVars, State1),
	  TmpC = mk_constraint(TopVar, eq, ActionVar),
	  ActionCs = mk_conj_constraint_list([state__cs(State2),TmpC]),
	  {[ActionCs|CList], State2}
	catch
	  throw:error ->
	    if CList =:= [] -> throw(error);
	       true -> {CList, State1}
	    end
	end
    end,
  OldCs = state__cs(State),
  NewCList = mk_disj_constraint_list(NewCs),
  FinalState = state__new_constraint_context(NewState),
  {state__store_conj_list([OldCs, NewCList], FinalState), TopVar}.

handle_clauses_1([Clause|Tail], TopVar, Arg, DefinedVars,
		 State, SubtrTypes, Acc) ->
  State0 = state__new_constraint_context(State),
  Pats = cerl:clause_pats(Clause),
  Guard = cerl:clause_guard(Clause),
  Body = cerl:clause_body(Clause),
  NewSubtrTypes =
    case SubtrTypes =:= overflow of
      true -> overflow;
      false ->
	ordsets:add_element(get_safe_underapprox(Pats, Guard), SubtrTypes)
    end,
  try
    DefinedVars1 = add_def_from_tree_list(Pats, DefinedVars),
    State1 = state__set_in_match(State0, true),
    {State2, PatVars} = traverse_list(Pats, DefinedVars1, State1),
    State3 =
      case Arg =:= [] of
	true -> State2;
        false ->
	  S = state__store_conj(Arg, eq, t_product(PatVars), State2),
	  case SubtrTypes =:= overflow of
	    true -> S;
	    false ->
	      SubtrPatVar = ?mk_fun_var(fun(Map) ->
					    TmpType = lookup_type(Arg, Map),
					    t_subtract_list(TmpType, SubtrTypes)
					end, [Arg]),
	      state__store_conj(Arg, sub, SubtrPatVar, S)
	  end
      end,
    State4 = handle_guard(Guard, DefinedVars1, State3),
    {State5, BodyVar} = traverse(Body, DefinedVars1,
				 state__set_in_match(State4, false)),
    State6 = state__store_conj(TopVar, eq, BodyVar, State5),
    Cs = state__cs(State6),
    handle_clauses_1(Tail, TopVar, Arg, DefinedVars, State6,
		     NewSubtrTypes, [Cs|Acc])
  catch
    throw:error ->
      handle_clauses_1(Tail, TopVar, Arg, DefinedVars,
		       State, NewSubtrTypes, Acc)
  end;
handle_clauses_1([], _TopVar, _Arg, _DefinedVars, State, _SubtrType, Acc) ->
  {state__new_constraint_context(State), Acc}.

-spec get_safe_underapprox([cerl:c_values()], cerl:cerl()) -> erl_types:erl_type().

get_safe_underapprox(Pats, Guard) ->
  try
    Map1 = cerl_trees:fold(fun(X, Acc) ->
			       case cerl:is_c_var(X) of
				 true ->
				   dict:store(cerl_trees:get_label(X), t_any(),
					      Acc);
				 false -> Acc
			       end
			   end, dict:new(), cerl:c_values(Pats)),
    {Type, Map2} = get_underapprox_from_guard(Guard, Map1),
    Map3 = case t_is_none(t_inf(t_from_term(true), Type)) of
	     true -> throw(dont_know);
	     false ->
	       case cerl:is_c_var(Guard) of
		 false -> Map2;
		 true ->
		   dict:store(cerl_trees:get_label(Guard),
			      t_from_term(true), Map2)
	       end
	   end,
    {Ts, _Map4} = get_safe_underapprox_1(Pats, [], Map3),
    t_product(Ts)
  catch
    throw:dont_know -> t_none()
  end.

get_underapprox_from_guard(Tree, Map) ->
  True = t_from_term(true),
  case cerl:type(Tree) of
    call ->
      case {cerl:concrete(cerl:call_module(Tree)),
	    cerl:concrete(cerl:call_name(Tree)),
	    length(cerl:call_args(Tree))} of
	{erlang, is_function, 2} ->
	  [Fun, Arity] = cerl:call_args(Tree),
	  case cerl:is_c_int(Arity) of
	    false -> throw(dont_know);
	    true ->
	      {FunType, Map1} = get_underapprox_from_guard(Fun, Map),
	      Inf = t_inf(FunType, t_fun(cerl:int_val(Arity), t_any())),
	      case t_is_none(Inf) of
		true -> throw(dont_know);
		false ->
		  {True, dict:store(cerl_trees:get_label(Fun), Inf, Map1)}
	      end
	  end;
	MFA ->
	  case get_type_test(MFA) of
	    {ok, Type} ->
	      [Arg] = cerl:call_args(Tree),
	      {ArgType, Map1} = get_underapprox_from_guard(Arg, Map),
	      Inf = t_inf(Type, ArgType),
	      case t_is_none(Inf) of
		true -> throw(dont_know);
		false ->
		  case cerl:is_literal(Arg) of
		    true -> {True, Map1};
		    false ->
		      {True, dict:store(cerl_trees:get_label(Arg), Inf, Map1)}
		  end
	      end;
	    error ->
	      case MFA of
		{erlang, '=:=', 2} -> throw(dont_know);
		{erlang, '==', 2} -> throw(dont_know);
		{erlang, 'and', 2} ->
		  [Arg1, Arg2] = cerl:call_args(Tree),
		  case ((cerl:is_c_var(Arg1) orelse cerl:is_literal(Arg1))
			andalso
			(cerl:is_c_var(Arg2) orelse cerl:is_literal(Arg2))) of
		    true ->
		      {Arg1Type, _} = get_underapprox_from_guard(Arg1, Map),
		      {Arg2Type, _} = get_underapprox_from_guard(Arg2, Map),
		      case (t_is_equal(True, Arg1Type) andalso
			    t_is_equal(True, Arg2Type)) of
			true -> {True, Map};
			false -> throw(dont_know)
		      end;
		    false ->
		      throw(dont_know)
		  end;
		{erlang, 'or', 2} -> throw(dont_know);
		_ -> throw(dont_know)
	      end
	  end
      end;
    var ->
      Type =
	case dict:find(cerl_trees:get_label(Tree), Map) of
	  error -> throw(dont_know);
	  {ok, T} -> T
	end,
      {Type, Map};
    literal ->
      case cerl:unfold_literal(Tree) of
	Tree ->
	  Type =
	    case cerl:concrete(Tree) of
	      Int when is_integer(Int) -> t_from_term(Int);
	      Atom when is_atom(Atom) -> t_from_term(Atom);
	      _Other -> throw(dont_know)
	    end,
	  {Type, Map};
	OtherTree ->
	  get_underapprox_from_guard(OtherTree, Map)
      end;
    _ ->
      throw(dont_know)
  end.

%%
%% The guard test {erlang, is_function, 2} is handled specially by the
%% function get_underapprox_from_guard/2
%%
get_type_test({erlang, is_atom, 1}) ->      {ok, t_atom()};
get_type_test({erlang, is_boolean, 1}) ->   {ok, t_boolean()};
get_type_test({erlang, is_binary, 1}) ->    {ok, t_binary()};
get_type_test({erlang, is_bitstring, 1}) -> {ok, t_bitstr()};
get_type_test({erlang, is_float, 1}) ->     {ok, t_float()};
get_type_test({erlang, is_function, 1}) ->  {ok, t_fun()};
get_type_test({erlang, is_integer, 1}) ->   {ok, t_integer()};
get_type_test({erlang, is_list, 1}) ->      {ok, t_list()};
get_type_test({erlang, is_number, 1}) ->    {ok, t_number()};
get_type_test({erlang, is_pid, 1}) ->       {ok, t_pid()};
get_type_test({erlang, is_port, 1}) ->      {ok, t_port()};
%% get_type_test({erlang, is_record, 2}) ->    {ok, t_tuple()};
%% get_type_test({erlang, is_record, 3}) ->    {ok, t_tuple()};
get_type_test({erlang, is_reference, 1}) -> {ok, t_reference()};
get_type_test({erlang, is_tuple, 1}) ->     {ok, t_tuple()};
get_type_test({M, F, A}) when is_atom(M), is_atom(F), is_integer(A) -> error.

bitstr_constr(SizeType, UnitVal) ->
  fun(Map) ->
      TmpSizeType = lookup_type(SizeType, Map),
      case t_is_subtype(TmpSizeType, t_non_neg_integer()) of
	true ->
	  case t_number_vals(TmpSizeType) of
	    [OneSize] -> t_bitstr(0, OneSize * UnitVal);
	    _ ->
	      MinSize = erl_types:number_min(TmpSizeType),
	      t_bitstr(UnitVal, MinSize * UnitVal)
	  end;
	false ->
	  t_bitstr(UnitVal, 0)
      end
  end.

bitstr_val_constr(SizeType, UnitVal, Flags) ->
  fun(Map) ->
      TmpSizeType = lookup_type(SizeType, Map),
      case t_is_subtype(TmpSizeType, t_non_neg_integer()) of
	true ->
	  case erl_types:number_max(TmpSizeType) of
	    N when is_integer(N), N < 128 -> %% Avoid illegal arithmetic
	      TotalSizeVal = N * UnitVal,
	      {RangeMin, RangeMax} =
		case lists:member(signed, Flags) of
		  true -> {-(1 bsl (TotalSizeVal - 1)),
			   1 bsl (TotalSizeVal - 1) - 1};
		  false -> {0, 1 bsl TotalSizeVal - 1}
		end,
	      t_from_range(RangeMin, RangeMax);
	    _ ->
	      t_integer()
	  end;
	false ->
	  t_integer()
      end
  end.

get_safe_underapprox_1([Pat|Left], Acc, Map) ->
  case cerl:type(Pat) of
    alias ->
      APat = cerl:alias_pat(Pat),
      AVar = cerl:alias_var(Pat),
      {[VarType], Map1} = get_safe_underapprox_1([AVar], [], Map),
      {[PatType], Map2} = get_safe_underapprox_1([APat], [], Map1),
      Inf = t_inf(VarType, PatType),
      case t_is_none(Inf) of
	true -> throw(dont_know);
	false ->
	  Map3 = dict:store(cerl_trees:get_label(AVar), Inf, Map2),
	  get_safe_underapprox_1(Left, [Inf|Acc], Map3)
      end;
    binary ->
      %% TODO: Can maybe do something here
      throw(dont_know);
    cons ->
      {[Hd, Tl], Map1} =
	get_safe_underapprox_1([cerl:cons_hd(Pat), cerl:cons_tl(Pat)], [], Map),
      case t_is_any(Tl) of
	true -> get_safe_underapprox_1(Left, [t_nonempty_list(Hd)|Acc], Map1);
	false -> throw(dont_know)
      end;
    literal ->
      case cerl:unfold_literal(Pat) of
	Pat ->
	  Type =
	    case cerl:concrete(Pat) of
	      Int when is_integer(Int) -> t_from_term(Int);
	      Atom when is_atom(Atom) -> t_from_term(Atom);
	      [] -> t_from_term([]);
	      _Other -> throw(dont_know)
	    end,
	  get_safe_underapprox_1(Left, [Type|Acc], Map);
	OtherPat ->
	  get_safe_underapprox_1([OtherPat|Left], Acc, Map)
      end;
    tuple ->
      Es = cerl:tuple_es(Pat),
      {Ts, Map1} = get_safe_underapprox_1(Es, [], Map),
      Type = t_tuple(Ts),
      get_safe_underapprox_1(Left, [Type|Acc], Map1);
    values ->
      Es = cerl:values_es(Pat),
      {Ts, Map1} = get_safe_underapprox_1(Es, [], Map),
      Type = t_product(Ts),
      get_safe_underapprox_1(Left, [Type|Acc], Map1);
    var ->
      case dict:find(cerl_trees:get_label(Pat), Map) of
	error -> throw(dont_know);
	{ok, VarType} -> get_safe_underapprox_1(Left, [VarType|Acc], Map)
      end
  end;
get_safe_underapprox_1([], Acc, Map) ->
  {lists:reverse(Acc), Map}.

%%----------------------------------------
%% Guards
%%

handle_guard(Guard, DefinedVars, State) ->
  True = t_from_term(true),
  State1 = state__set_in_guard(State, true),
  State2 = state__new_constraint_context(State1),
  {State3, Return} = traverse(Guard, DefinedVars, State2),
  State4 = state__store_conj(Return, eq, True, State3),
  Cs = state__cs(State4),
  NewCs = mk_disj_norm_form(Cs),
  OldCs = state__cs(State),
  State5 = state__set_in_guard(State4, state__is_in_guard(State)),
  State6 = state__new_constraint_context(State5),
  state__store_conj(mk_conj_constraint_list([OldCs, NewCs]), State6).

%%=============================================================================
%%
%%  BIF constraints
%%
%%=============================================================================

get_bif_constr({erlang, Op, 2}, Dst, Args = [Arg1, Arg2], _State)
  when Op =:= '+'; Op =:= '-'; Op =:= '*' ->
  ReturnType = ?mk_fun_var(fun(Map) ->
			       TmpArgTypes = lookup_type_list(Args, Map),
			       erl_bif_types:type(erlang, Op, 2, TmpArgTypes)
			   end, Args),
  ArgFun =
    fun(A, Pos) ->
	F =
	  fun(Map) ->
	      DstType = lookup_type(Dst, Map),
	      AType = lookup_type(A, Map),
	      case t_is_integer(DstType) of
		true ->
		  case t_is_integer(AType) of
		    true ->
		      eval_inv_arith(Op, Pos, DstType, AType);
		    false  ->
		      %% This must be temporary.
		      t_integer()
		  end;
		false ->
		  case t_is_float(DstType) of
		    true ->
		      case t_is_integer(AType) of
			true -> t_float();
			false -> t_number()
		      end;
		    false ->
		      t_number()
		  end
	      end
	  end,
	?mk_fun_var(F, [Dst, A])
    end,
  Arg1FunVar = ArgFun(Arg2, 2),
  Arg2FunVar = ArgFun(Arg1, 1),
  mk_conj_constraint_list([mk_constraint(Dst, sub, ReturnType),
			   mk_constraint(Arg1, sub, Arg1FunVar),
			   mk_constraint(Arg2, sub, Arg2FunVar)]);
get_bif_constr({erlang, Op, 2}, Dst, [Arg1, Arg2] = Args, _State)
  when Op =:= '<'; Op =:= '=<'; Op =:= '>'; Op =:= '>=' ->
  ArgFun =
    fun(LocalArg1, LocalArg2, LocalOp) ->
	fun(Map) ->
	    DstType = lookup_type(Dst, Map),
	    IsTrue = t_is_atom(true, DstType),
	    IsFalse = t_is_atom(false, DstType),
	    case IsTrue orelse IsFalse of
	      true ->
		Arg1Type = lookup_type(LocalArg1, Map),
		Arg2Type = lookup_type(LocalArg2, Map),
		case t_is_integer(Arg1Type) andalso t_is_integer(Arg2Type) of
		  true ->
		    Max1 = erl_types:number_max(Arg1Type),
		    Min1 = erl_types:number_min(Arg1Type),
		    Max2 = erl_types:number_max(Arg2Type),
		    Min2 = erl_types:number_min(Arg2Type),
		    case LocalOp of
		      '=<' ->
			if IsTrue  -> t_from_range(Min1, Max2);
			   IsFalse -> t_from_range(range_inc(Min2), Max1)
			end;
		      '<'  ->
			if IsTrue  -> t_from_range(Min1, range_dec(Max2));
			   IsFalse -> t_from_range(Min2, Max1)
			end;
		      '>=' ->
			if IsTrue  -> t_from_range(Min2, Max1);
			   IsFalse -> t_from_range(Min1, range_dec(Max2))
			end;
		      '>'  ->
			if IsTrue  -> t_from_range(range_inc(Min2), Max1);
			   IsFalse -> t_from_range(Min1, Max2)
			end
		    end;
		  false -> t_any()
		end;
	      false -> t_any()
	    end
	end
    end,
  {Arg1Fun, Arg2Fun} =
    case Op of
      '<'  -> {ArgFun(Arg1, Arg2, '<'),  ArgFun(Arg2, Arg1, '>=')};
      '=<' -> {ArgFun(Arg1, Arg2, '=<'), ArgFun(Arg2, Arg1, '>=')};
      '>'  -> {ArgFun(Arg1, Arg2, '>'),  ArgFun(Arg2, Arg1, '<')};
      '>=' -> {ArgFun(Arg1, Arg2, '>='), ArgFun(Arg2, Arg1, '=<')}
    end,
  DstArgs = [Dst, Arg1, Arg2],
  Arg1Var = ?mk_fun_var(Arg1Fun, DstArgs),
  Arg2Var = ?mk_fun_var(Arg2Fun, DstArgs),
  DstVar = ?mk_fun_var(fun(Map) ->
			   TmpArgTypes = lookup_type_list(Args, Map),
			   erl_bif_types:type(erlang, Op, 2, TmpArgTypes)
		       end, Args),
  mk_conj_constraint_list([mk_constraint(Dst, sub, DstVar),
			   mk_constraint(Arg1, sub, Arg1Var),
			   mk_constraint(Arg2, sub, Arg2Var)]);
get_bif_constr({erlang, '++', 2}, Dst, [Hd, Tl] = Args, _State) ->
  HdFun = fun(Map) ->
	      DstType = lookup_type(Dst, Map),
	      case t_is_cons(DstType) of
		true -> t_list(t_cons_hd(DstType));
		false ->
		  case t_is_list(DstType) of
		    true ->
		      case t_is_nil(DstType) of
			true -> DstType;
			false -> t_list(t_list_elements(DstType))
		      end;
		    false -> t_list()
 		  end
	      end
	  end,
  TlFun = fun(Map) ->
	      DstType = lookup_type(Dst, Map),
	      case t_is_cons(DstType) of
		true -> t_sup(t_cons_tl(DstType), DstType);
		false ->
		  case t_is_list(DstType) of
		    true ->
		      case t_is_nil(DstType) of
			true -> DstType;
			false -> t_list(t_list_elements(DstType))
		      end;
		    false -> t_any()
		  end
	      end
	  end,
  DstL = [Dst],
  HdVar = ?mk_fun_var(HdFun, DstL),
  TlVar = ?mk_fun_var(TlFun, DstL),
  ArgTypes = erl_bif_types:arg_types(erlang, '++', 2),
  ReturnType = ?mk_fun_var(fun(Map) ->
			       TmpArgTypes = lookup_type_list(Args, Map),
			       erl_bif_types:type(erlang, '++', 2, TmpArgTypes)
			   end, Args),
  Cs = mk_constraints(Args, sub, ArgTypes),
  mk_conj_constraint_list([mk_constraint(Dst, sub, ReturnType),
			   mk_constraint(Hd, sub, HdVar),
			   mk_constraint(Tl, sub, TlVar)
			   |Cs]);
get_bif_constr({erlang, is_atom, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_atom(), State);
get_bif_constr({erlang, is_binary, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_binary(), State);
get_bif_constr({erlang, is_bitstring, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_bitstr(), State);
get_bif_constr({erlang, is_boolean, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_boolean(), State);
get_bif_constr({erlang, is_float, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_float(), State);
get_bif_constr({erlang, is_function, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_fun(), State);
get_bif_constr({erlang, is_function, 2}, Dst, [Fun, Arity], _State) ->
  ArgFun = fun(Map) ->
	       DstType = lookup_type(Dst, Map),
	       case t_is_atom(true, DstType) of
		 true ->
		   ArityType = lookup_type(Arity, Map),
		   case t_number_vals(ArityType) of
		     unknown -> t_fun();
		     Vals -> t_sup([t_fun(X, t_any()) || X <- Vals])
		   end;
		 false -> t_any()
	       end
	   end,
  ArgV = ?mk_fun_var(ArgFun, [Dst, Arity]),
  mk_conj_constraint_list([mk_constraint(Dst, sub, t_boolean()),
			   mk_constraint(Arity, sub, t_integer()),
			   mk_constraint(Fun, sub, ArgV)]);
get_bif_constr({erlang, is_integer, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_integer(), State);
get_bif_constr({erlang, is_list, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_maybe_improper_list(), State);
get_bif_constr({erlang, is_number, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_number(), State);
get_bif_constr({erlang, is_pid, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_pid(), State);
get_bif_constr({erlang, is_port, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_port(), State);
get_bif_constr({erlang, is_reference, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_reference(), State);
get_bif_constr({erlang, is_record, 2}, Dst, [Var, Tag] = Args, _State) ->
  ArgFun = fun(Map) ->
	       case t_is_atom(true, lookup_type(Dst, Map)) of
		 true -> t_tuple();
		 false -> t_any()
	       end
	   end,
  ArgV = ?mk_fun_var(ArgFun, [Dst]),
  DstFun = fun(Map) ->
	       TmpArgTypes = lookup_type_list(Args, Map),
	       erl_bif_types:type(erlang, is_record, 2, TmpArgTypes)
	   end,
  DstV = ?mk_fun_var(DstFun, Args),
  mk_conj_constraint_list([mk_constraint(Dst, sub, DstV),
			   mk_constraint(Tag, sub, t_atom()),
			   mk_constraint(Var, sub, ArgV)]);
get_bif_constr({erlang, is_record, 3}, Dst, [Var, Tag, Arity] = Args, State) ->
  %% TODO: Revise this to make it precise for Tag and Arity.
  Records = State#state.records,
  AllOpaques = State#state.opaques,
  ArgFun =
    fun(Map) ->
	case t_is_atom(true, lookup_type(Dst, Map)) of
	  true ->
	    ArityType = lookup_type(Arity, Map),
	    case t_is_integer(ArityType) of
	      true ->
		case t_number_vals(ArityType) of
		  [ArityVal] ->
		    TagType = lookup_type(Tag, Map),
		    case t_is_atom(TagType) of
		      true ->
			AnyElems = lists:duplicate(ArityVal-1, t_any()),
			GenRecord = t_tuple([TagType|AnyElems]),
			case t_atom_vals(TagType) of
			  [TagVal] ->
			    case lookup_record(Records, TagVal, ArityVal - 1) of
			      {ok, Type} ->
				case t_opaque_match_record(Type, AllOpaques) of
				  [Opaque] -> Opaque;
				  _ -> Type
				end;
			      error -> GenRecord
			    end;
			  _ -> GenRecord
			end;
		      false -> t_tuple(ArityVal)
		    end;
		  _ -> t_tuple()
		end;
	      false -> t_tuple()
	    end;
	  false -> t_any()
	end
    end,
  ArgV = ?mk_fun_var(ArgFun, [Tag, Arity, Dst]),
  DstFun = fun(Map) ->
	       [TmpVar, TmpTag, TmpArity] = TmpArgTypes = lookup_type_list(Args, Map),
	       TmpArgTypes2 =
		 case lists:member(TmpVar, AllOpaques) of
		   true ->
		     case t_is_integer(TmpArity) of
		       true ->
			 case t_number_vals(TmpArity) of
			   [TmpArityVal] ->
			     case t_is_atom(TmpTag) of
			       true ->
				 case t_atom_vals(TmpTag) of
				   [TmpTagVal] ->
				     case lookup_record(Records, TmpTagVal,
							TmpArityVal - 1) of
				       {ok, TmpType} ->
					 case t_is_none(t_inf(TmpType, TmpVar, opaque)) of
					   true  -> TmpArgTypes;
					   false -> [TmpType, TmpTag, TmpArity]
					 end;
				       error -> TmpArgTypes
				     end;
				   _ -> TmpArgTypes
				 end;
			       false -> TmpArgTypes
			     end;
			   _ -> TmpArgTypes
			 end;
		       false -> TmpArgTypes
		     end;
		   false -> TmpArgTypes
		 end,
	       erl_bif_types:type(erlang, is_record, 3, TmpArgTypes2)
	   end,
  DstV = ?mk_fun_var(DstFun, Args),
  mk_conj_constraint_list([mk_constraint(Dst, sub, DstV),
			   mk_constraint(Arity, sub, t_integer()),
			   mk_constraint(Tag, sub, t_atom()),
			   mk_constraint(Var, sub, ArgV)]);
get_bif_constr({erlang, is_tuple, 1}, Dst, [Arg], State) ->
  get_bif_test_constr(Dst, Arg, t_tuple(), State);
get_bif_constr({erlang, 'and', 2}, Dst, [Arg1, Arg2] = Args, _State) ->
  True = t_from_term(true),
  False = t_from_term(false),
  ArgFun = fun(Var) ->
	       fun(Map) ->
		   DstType = lookup_type(Dst, Map),
		   case t_is_atom(true, DstType) of
		     true -> True;
		     false ->
		       case t_is_atom(false, DstType) of
			 true ->
			   case t_is_atom(true, lookup_type(Var, Map)) of
			     true -> False;
			     false -> t_boolean()
			   end;
			 false ->
			   t_boolean()
		       end
		   end
	       end
	   end,
  DstFun = fun(Map) ->
	       Arg1Type = lookup_type(Arg1, Map),
	       case t_is_atom(false, Arg1Type) of
		 true -> False;
		 false ->
		   Arg2Type = lookup_type(Arg2, Map),
		   case t_is_atom(false, Arg2Type) of
		     true -> False;
		     false ->
		       case (t_is_atom(true, Arg1Type)
			     andalso t_is_atom(true, Arg2Type)) of
			 true -> True;
			 false -> t_boolean()
		       end
		   end
	       end
	   end,
  ArgV1 = ?mk_fun_var(ArgFun(Arg2), [Arg2, Dst]),
  ArgV2 = ?mk_fun_var(ArgFun(Arg1), [Arg1, Dst]),
  DstV = ?mk_fun_var(DstFun, Args),
  mk_conj_constraint_list([mk_constraint(Dst, sub, DstV),
			   mk_constraint(Arg1, sub, ArgV1),
			   mk_constraint(Arg2, sub, ArgV2)]);
get_bif_constr({erlang, 'or', 2}, Dst, [Arg1, Arg2] = Args, _State) ->
  True = t_from_term(true),
  False = t_from_term(false),
  ArgFun = fun(Var) ->
	       fun(Map) ->
		   DstType = lookup_type(Dst, Map),
		   case t_is_atom(false, DstType) of
		     true -> False;
		     false ->
		       case t_is_atom(true, DstType) of
			 true ->
			   case t_is_atom(false, lookup_type(Var, Map)) of
			     true -> True;
			     false -> t_boolean()
			   end;
			 false ->
			   t_boolean()
		       end
		   end
	       end
	   end,
  DstFun = fun(Map) ->
	       Arg1Type = lookup_type(Arg1, Map),
	       case t_is_atom(true, Arg1Type) of
		 true -> True;
		 false ->
		   Arg2Type = lookup_type(Arg2, Map),
		   case t_is_atom(true, Arg2Type) of
		     true -> True;
		     false ->
		       case (t_is_atom(false, Arg1Type)
			     andalso t_is_atom(false, Arg2Type)) of
			 true -> False;
			 false -> t_boolean()
		       end
		   end
	       end
	   end,
  ArgV1 = ?mk_fun_var(ArgFun(Arg2), [Arg2, Dst]),
  ArgV2 = ?mk_fun_var(ArgFun(Arg1), [Arg1, Dst]),
  DstV = ?mk_fun_var(DstFun, Args),
  F = fun(A) ->
	  try [mk_constraint(A, sub, True)]
	  catch throw:error -> []
	  end
      end,
  Constrs = F(Arg1) ++ F(Arg2),
  Disj = mk_disj_constraint_list([mk_constraint(Dst, sub, False)|Constrs]),
  mk_conj_constraint_list([mk_constraint(Dst, sub, DstV),
			   mk_constraint(Arg1, sub, ArgV1),
			   mk_constraint(Arg2, sub, ArgV2),
			   Disj]);
get_bif_constr({erlang, 'not', 1}, Dst, [Arg] = Args, _State) ->
  True = t_from_term(true),
  False = t_from_term(false),
  Fun = fun(Var) ->
	    fun(Map) ->
		Type = lookup_type(Var, Map),
		case t_is_atom(true, Type) of
		  true -> False;
		  false ->
		    case t_is_atom(false, Type) of
		      true -> True;
		      false -> t_boolean()
		    end
		end
	    end
	end,
  ArgV = ?mk_fun_var(Fun(Dst), [Dst]),
  DstV = ?mk_fun_var(Fun(Arg), Args),
  mk_conj_constraint_list([mk_constraint(Arg, sub, ArgV),
			   mk_constraint(Dst, sub, DstV)]);
get_bif_constr({erlang, '=:=', 2}, Dst, [Arg1, Arg2] = Args, _State) ->
  ArgFun =
    fun(Self, OtherVar) ->
	fun(Map) ->
	    DstType = lookup_type(Dst, Map),
	    OtherVarType = lookup_type(OtherVar, Map),
	    case t_is_atom(true, DstType) of
	      true -> OtherVarType;
	      false ->
		case t_is_atom(false, DstType) of
		  true ->
		    case is_singleton_type(OtherVarType) of
		      true -> t_subtract(lookup_type(Self, Map), OtherVarType);
		      false -> t_any()
		    end;
		  false ->
		    t_any()
		end
	    end
	end
    end,
  DstFun = fun(Map) ->
	       ArgType1 = lookup_type(Arg1, Map),
	       ArgType2 = lookup_type(Arg2, Map),
	       case t_is_none(t_inf(ArgType1, ArgType2)) of
		 true -> t_from_term(false);
		 false -> t_boolean()
	       end
	   end,
  DstArgs = [Dst, Arg1, Arg2],
  ArgV1 = ?mk_fun_var(ArgFun(Arg1, Arg2), DstArgs),
  ArgV2 = ?mk_fun_var(ArgFun(Arg2, Arg1), DstArgs),
  DstV = ?mk_fun_var(DstFun, Args),
  mk_conj_constraint_list([mk_constraint(Dst, sub, DstV),
			   mk_constraint(Arg1, sub, ArgV1),
			   mk_constraint(Arg2, sub, ArgV2)]);
get_bif_constr({erlang, '==', 2}, Dst, [Arg1, Arg2] = Args, _State) ->
  DstFun = fun(Map) ->
	       TmpArgTypes = lookup_type_list(Args, Map),
	       erl_bif_types:type(erlang, '==', 2, TmpArgTypes)
	   end,
  ArgFun =
    fun(Var, Self) ->
	fun(Map) ->
	    VarType = lookup_type(Var, Map),
	    DstType = lookup_type(Dst, Map),
	    case is_singleton_non_number_type(VarType) of
	      true ->
		case t_is_atom(true, DstType) of
		  true -> VarType;
		  false ->
		    case t_is_atom(false, DstType) of
		      true -> t_subtract(lookup_type(Self, Map), VarType);
		      false -> t_any()
		    end
		end;
	      false ->
		case t_is_atom(true, DstType) of
		  true ->
		    case t_is_number(VarType) of
		      true -> t_number();
		      false ->
			case t_is_atom(VarType) of
			  true -> VarType;
			  false -> t_any()
			end
		    end;
		  false ->
		    t_any()
		end
	    end
	end
    end,
  DstV = ?mk_fun_var(DstFun, Args),
  ArgL = [Arg1, Arg2, Dst],
  ArgV1 = ?mk_fun_var(ArgFun(Arg2, Arg1), ArgL),
  ArgV2 = ?mk_fun_var(ArgFun(Arg1, Arg2), ArgL),
  mk_conj_constraint_list([mk_constraint(Dst, sub, DstV),
			   mk_constraint(Arg1, sub, ArgV1),
			   mk_constraint(Arg2, sub, ArgV2)]);
get_bif_constr({erlang, element, 2} = _BIF, Dst, Args,
               #state{cs = Constrs, opaques = Opaques}) ->
  GenType = erl_bif_types:type(erlang, element, 2),
  case t_is_none(GenType) of
    true -> ?debug("Bif: ~w failed\n", [_BIF]), throw(error);
    false ->
      Fun = fun(Map) ->
		[I, T] = ATs = lookup_type_list(Args, Map),
		ATs2 = case lists:member(T, Opaques) of
			 true -> [I, erl_types:t_opaque_structure(T)];
			 false -> ATs
		       end,
		erl_bif_types:type(erlang, element, 2, ATs2)
	    end,
      ReturnType = ?mk_fun_var(Fun, Args),
      ArgTypes = erl_bif_types:arg_types(erlang, element, 2),
      Cs = mk_constraints(Args, sub, ArgTypes),
      NewCs =
        case find_element(Args, Constrs) of
          'unknown' -> Cs;
          Elem -> [mk_constraint(Dst, eq, Elem)|Cs]
        end,
      mk_conj_constraint_list([mk_constraint(Dst, sub, ReturnType)|NewCs])
  end;
get_bif_constr({M, F, A} = _BIF, Dst, Args, State) ->
  GenType = erl_bif_types:type(M, F, A),
  Opaques = State#state.opaques,
  case t_is_none(GenType) of
    true -> ?debug("Bif: ~w failed\n", [_BIF]), throw(error);
    false ->
      UnopaqueFun =
	fun(T) -> case lists:member(T, Opaques)  of
		    true -> erl_types:t_unopaque(T, [T]);
		    false -> T
		  end
	end,
      ReturnType = ?mk_fun_var(fun(Map) ->
				  TmpArgTypes0 = lookup_type_list(Args, Map),
				  TmpArgTypes = [UnopaqueFun(T) || T<- TmpArgTypes0],
				  erl_bif_types:type(M, F, A, TmpArgTypes)
			      end, Args),
      case erl_bif_types:is_known(M, F, A) of
	false ->
	  case t_is_any(GenType) of
	    true ->
	      none;
	    false ->
	      mk_constraint(Dst, sub, ReturnType)
	  end;
	true ->
	  ArgTypes = erl_bif_types:arg_types(M, F, A),
	  Cs = mk_constraints(Args, sub, ArgTypes),
	  mk_conj_constraint_list([mk_constraint(Dst, sub, ReturnType)|Cs])
      end
  end.

eval_inv_arith('+', _Pos, Dst, Arg) ->
  erl_bif_types:type(erlang, '-', 2, [Dst, Arg]);
eval_inv_arith('*', _Pos, Dst, Arg) ->
  case t_number_vals(Arg) of
    [0] -> t_integer();
    _ ->
      TmpRet = erl_bif_types:type(erlang, 'div', 2, [Dst, Arg]),
      Zero = t_from_term(0),
      %% If 0 is not part of the result, it cannot be part of the argument.
      case t_is_subtype(Zero, Dst) of
	false -> t_subtract(TmpRet, Zero);
	true -> TmpRet
      end
  end;
eval_inv_arith('-', 1, Dst, Arg) ->
  erl_bif_types:type(erlang, '-', 2, [Arg, Dst]);
eval_inv_arith('-', 2, Dst, Arg) ->
  erl_bif_types:type(erlang, '+', 2, [Arg, Dst]).

range_inc(neg_inf) -> neg_inf;
range_inc(pos_inf) -> pos_inf;
range_inc(Int) when is_integer(Int) -> Int + 1.

range_dec(neg_inf) -> neg_inf;
range_dec(pos_inf) -> pos_inf;
range_dec(Int) when is_integer(Int) -> Int - 1.

get_bif_test_constr(Dst, Arg, Type, State) ->
  ArgFun = fun(Map) ->
	       DstType = lookup_type(Dst, Map),
	       case t_is_atom(true, DstType) of
		 true -> Type;
		 false -> t_any()
	       end
	   end,
  ArgV = ?mk_fun_var(ArgFun, [Dst]),
  Opaques = State#state.opaques,
  DstFun = fun(Map) ->
	       ArgType = lookup_type(Arg, Map),
	       case t_is_none(t_inf(ArgType, Type)) of
		 true ->
		   case lists:member(ArgType, Opaques) of
		     true ->
		       OpaqueStruct = erl_types:t_opaque_structure(ArgType),
		       case t_is_none(t_inf(OpaqueStruct, Type)) of
			 true -> t_from_term(false);
			 false ->
			   case t_is_subtype(ArgType, Type) of
			     true -> t_from_term(true);
			     false -> t_boolean()
			   end
		       end;
		     false ->  t_from_term(false)
		   end;
		 false ->
		   case t_is_subtype(ArgType, Type) of
		     true -> t_from_term(true);
		     false -> t_boolean()
		   end
	       end
	   end,
  DstV = ?mk_fun_var(DstFun, [Arg]),
  mk_conj_constraint_list([mk_constraint(Dst, sub, DstV),
			   mk_constraint(Arg, sub, ArgV)]).

%%=============================================================================
%%
%%  Constraint solver.
%%
%%=============================================================================

solve([Fun], State) ->
  ?debug("============ Analyzing Fun: ~w ===========\n",
	 [debug_lookup_name(Fun)]),
  solve_fun(Fun, map_new(), State);
solve([_|_] = SCC, State) ->
  ?debug("============ Analyzing SCC: ~w ===========\n",
	 [[debug_lookup_name(F) || F <- SCC]]),
  {Parallel, NewState} =
    case parallel_split(SCC) of
      false -> {false, State};
      SplitSCC -> {SplitSCC, minimize_state(State)}
    end,
  solve_scc(SCC, Parallel, map_new(), NewState, false).

solve_fun(Fun, FunMap, State) ->
  Cs = state__get_cs(Fun, State),
  Deps = get_deps(Cs),
  Ref = mk_constraint_ref(Fun, Deps),
  %% Note that functions are always considered to succeed.
  NewMap = solve(Fun, Ref, FunMap, State),
  NewType = lookup_type(Fun, NewMap),
  NewFunMap1 = case state__get_rec_var(Fun, State) of
		 error -> FunMap;
		 {ok, Var} -> enter_type(Var, NewType, FunMap)
	       end,
  enter_type(Fun, NewType, NewFunMap1).

solve_scc(SCC, Parallel, Map, State, TryingUnit) ->
  Vars0 = [{Fun, state__get_rec_var(Fun, State)} || Fun <- SCC],
  Vars = [Var || {_, {ok, Var}} <- Vars0],
  Funs = [Fun || {Fun, {ok, _}} <- Vars0],
  Types = unsafe_lookup_type_list(Funs, Map),
  RecTypes = [t_limit(Type, ?TYPE_LIMIT) || Type <- Types],
  CleanMap = lists:foldl(fun(Fun, AccFunMap) ->
			     erase_type(t_var_name(Fun), AccFunMap)
			 end, Map, SCC),
  Map1 = enter_type_lists(Vars, RecTypes, CleanMap),
  ?debug("Checking SCC: ~w\n", [[debug_lookup_name(F) || F <- SCC]]),
  FunSet = ordsets:from_list([t_var_name(F) || F <- SCC]),
  Map2 =
    case Parallel of
      false -> solve_whole_scc(SCC, Map1, State);
      SplitSCC -> solve_whole_scc_parallel(SplitSCC, Map1, State)
    end,
  case maps_are_equal(Map2, Map, FunSet) of
    true ->
      ?debug("SCC ~w reached fixpoint\n", [SCC]),
      NewTypes = unsafe_lookup_type_list(Funs, Map2),
      case erl_types:any_none([t_fun_range(T) || T <- NewTypes])
	andalso TryingUnit =:= false of
	true ->
	  UnitTypes =
	    [case t_is_none(t_fun_range(T)) of
	       false -> T;
	       true -> t_fun(t_fun_args(T), t_unit())
	     end || T <- NewTypes],
	  Map3 = enter_type_lists(Funs, UnitTypes, Map2),
	  solve_scc(SCC, Parallel, Map3, State, true);
	false ->
	  case Parallel of
	    false -> true;
	    _ -> dispose_state(State)
	  end,
	  Map2
      end;
    false ->
      ?debug("SCC ~w did not reach fixpoint\n", [SCC]),
      solve_scc(SCC, Parallel, Map2, State, TryingUnit)
  end.

solve_whole_scc(SCC, Map, State) ->
  SolveFun = fun(X, Y) -> scc_fold_fun(X, Y, State) end,
  lists:foldl(SolveFun, Map, SCC).

%%------------------------------------------------------------------------------

-define(worth_it, 42).

parallel_split(SCC) ->
  Length = length(SCC),
  case Length > 2*?worth_it of
    false -> false;
    true ->
      case min(dialyzer_utils:parallelism(), 8) of
	1 -> false;
	CPUs ->
	  FullShare = Length div CPUs + 1,
	  Unit = max(FullShare, ?worth_it),
	  split(SCC, Unit, [])
      end
  end.

minimize_state(#state{
		  cmap        = {d, CMap},
		  fun_map     = FunMap,
		  fun_arities = FunArities,
		  self_rec    = SelfRec,
		  prop_types  = {d, PropTypes},
		  opaques     = Opaques,
                  solvers     = Solvers
		 }) ->
  ETSCMap = ets:new(cmap,[{read_concurrency, true}]),
  ETSPropTypes = ets:new(prop_types,[{read_concurrency, true}]),
  true = ets:insert(ETSCMap, dict:to_list(CMap)),
  true = ets:insert(ETSPropTypes, dict:to_list(PropTypes)),
  #state
    {cmap        = {e, ETSCMap},
     fun_map     = FunMap,
     fun_arities = FunArities,
     self_rec    = SelfRec,
     prop_types  = {e, ETSPropTypes},
     opaques     = Opaques,
     solvers     = Solvers
    }.

dispose_state(#state{cmap = {e, ETSCMap},
		     prop_types = {e, ETSPropTypes}}) ->
  true = ets:delete(ETSCMap),
  true = ets:delete(ETSPropTypes).

solve_whole_scc_parallel(SplitSCC, Map, State) ->
  Workers = spawn_workers(SplitSCC, Map, State),
  wait_results(Workers, Map, fold_res_fun(State)).

spawn_workers(SplitSCC, Map, State) ->
  Spawner = solve_scc_spawner(self(), Map, State),
  lists:foreach(Spawner, SplitSCC),
  length(SplitSCC).

wait_results(0, Map, _FoldResFun) ->
  Map;
wait_results(Pending, Map, FoldResFun) ->
  Res = receive_scc_result(),
  NewMap = lists:foldl(FoldResFun, Map, Res),
  wait_results(Pending-1, NewMap, FoldResFun).

solve_scc_spawner(Parent, Map, State) ->
  fun(SCCPart) ->
      spawn_link(fun() -> solve_scc_worker(Parent, SCCPart, Map, State) end)
  end.

split([], _Unit, Acc) ->
  Acc;
split(List, Unit, Acc) ->
  {Taken, Rest} =
    try
      lists:split(Unit, List)
    catch
      _:_ -> {List, []}
    end,
  split(Rest, Unit, [Taken|Acc]).

solve_scc_worker(Parent, SCCPart, Map, State) ->
  SolveFun = fun(X, Y) -> scc_fold_fun(X, Y, State) end,
  FinalMap = lists:foldl(SolveFun, Map, SCCPart),
  Res =
    [{F, t_limit(unsafe_lookup_type(F, FinalMap), ?TYPE_LIMIT)} ||
      F <- SCCPart],
  send_scc_result(Parent, Res).

fold_res_fun(State) ->
  fun({F, Type}, Map) ->
      case state__get_rec_var(F, State) of
	{ok, R} ->
	  enter_type(R, Type, enter_type(F, Type, Map));
	error ->
	  enter_type(F, Type, Map)
      end
  end.

receive_scc_result() ->
    receive
      {scc_fun, Res} -> Res
    end.

send_scc_result(Parent, Res) ->
  Parent ! {scc_fun, Res}.

%%------------------------------------------------------------------------------

scc_fold_fun(F, FunMap, State) ->
  Deps = get_deps(state__get_cs(F, State)),
  Cs = mk_constraint_ref(F, Deps),
  %% Note that functions are always considered to succeed.
  Map = solve(F, Cs, FunMap, State),
  NewType0 = unsafe_lookup_type(F, Map),
  NewType = t_limit(NewType0, ?TYPE_LIMIT),
  NewFunMap = case state__get_rec_var(F, State) of
		{ok, R} ->
		  enter_type(R, NewType, enter_type(F, NewType, FunMap));
		error ->
		  enter_type(F, NewType, FunMap)
	      end,
  ?debug("Done solving for function ~w :: ~s\n", [debug_lookup_name(F),
						  format_type(NewType)]),
  NewFunMap.

solve(Fun, Cs, FunMap, State) ->
  Solvers = State#state.solvers,
  R = [solver(S, solve_fun(S, Fun, Cs, FunMap, State)) || S <- Solvers],
  check_solutions(R, Fun, no_solver, no_map).

solver(Solver, SolveFun) ->
  ?debug("Start solver ~w\n", [Solver]),
  try timer:tc(SolveFun) of
    {Time, {ok, Map}} ->
      ?debug("End solver ~w (~w microsecs)\n", [Solver, Time]),
      {Solver, Map, Time};
    {_, _R} ->
      ?debug("Solver ~w returned unexpected result:\n  ~P\n",
             [Solver, _R, 60]),
      throw(error)
  catch E:R ->
      io:format("Solver ~w failed: ~w:~p\n ~p\n",
                [Solver, E, R, erlang:get_stacktrace()]),
      throw(error)
  end.

solve_fun(v1, _Fun, Cs, FunMap, State) ->
  fun() ->
      {ok, _MapDict, NewMap} = solve_ref_or_list(Cs, FunMap, dict:new(), State),
      {ok, NewMap}
  end;
solve_fun(v2, Fun, _Cs, FunMap, State) ->
  fun() -> v2_solve_ref(Fun, FunMap, State) end.

check_solutions([], _Fun, _S, Map) ->
  Map;
check_solutions([{S1,Map1,_Time1}|Maps], Fun, S, Map) ->
  ?debug("Solver ~w needed ~w microsecs\n", [S1, _Time1]),
  case Map =:= no_map orelse sane_maps(Map, Map1, [Fun], S, S1) of
    true ->
      check_solutions(Maps, Fun, S1, Map1);
    false ->
      ?debug("Constraint solvers do not agree on ~w\n", [Fun]),
      pp_map(atom_to_list(S), Map),
      pp_map(atom_to_list(S1), Map1),
      io:format("A bug was found. Please report it, and use the option "
                "`--solver v1' until the bug has been fixed.\n"),
      throw(error)
  end.

sane_maps(Map1, Map2, Keys, _S1, _S2) ->
  lists:all(fun(Key) ->
                V1 = unsafe_lookup_type(Key, Map1),
                V2 = unsafe_lookup_type(Key, Map2),
                case t_is_equal(V1, V2) of
                  true -> true;
                  false ->
                    ?debug("Constraint solvers do not agree on ~w\n", [Key]),
                    ?debug("~w: ~s\n",
                           [_S1, format_type(unsafe_lookup_type(Key, Map1))]),
                    ?debug("~w: ~s\n",
                           [_S2, format_type(unsafe_lookup_type(Key, Map2))]),
                    false
                end
            end, Keys).

%% Solver v2

-record(v2_state, {constr_data = dict:new() :: dict(),
                   state :: #state{}}).

v2_solve_ref(Fun, Map, State) ->
  V2State = #v2_state{state = State},
  {ok, NewMap, _, _} = v2_solve_reference(Fun, Map, V2State),
  {ok, NewMap}.

v2_solve(#constraint{}=C, Map, V2State) ->
  State = V2State#v2_state.state,
  case solve_one_c(C, Map, State#state.opaques) of
    error ->
      report_failed_constraint(C, Map),
      {error, V2State};
    {ok, {NewMap, U}} ->
      {ok, NewMap, V2State, U}
  end;
v2_solve(#constraint_list{type = disj}=C, Map, V2State) ->
  v2_solve_disjunct(C, Map, V2State);
v2_solve(#constraint_list{type = conj}=C, Map, V2State) ->
  v2_solve_conjunct(C, Map, V2State);
v2_solve(#constraint_ref{id = Id}, Map, V2State) ->
  v2_solve_reference(Id, Map, V2State).

v2_solve_reference(Id, Map, V2State0) ->
  ?debug("Checking ref to fun: ~w\n", [debug_lookup_name(Id)]),
  pp_map("Map", Map),
  pp_constr_data("solve_ref", V2State0),
  Map1 = restore_local_map(V2State0, Id, Map),
  State = V2State0#v2_state.state,
  Cs = state__get_cs(Id, State),
  Res =
    case state__is_self_rec(Id, State) of
      true -> v2_solve_self_recursive(Cs, Map1, Id, t_none(), V2State0);
      false -> v2_solve(Cs, Map1, V2State0)
    end,
  {FunType, V2State} =
    case Res of
      {error, V2State1} ->
        ?debug("Error solving for function ~p\n", [debug_lookup_name(Id)]),
        Arity = state__fun_arity(Id, State),
        FunType0 =
          case state__prop_domain(t_var_name(Id), State) of
            error -> t_fun(Arity, t_none());
            {ok, Dom} -> t_fun(Dom, t_none())
          end,
        {FunType0, V2State1};
      {ok, NewMap, V2State1, U} ->
        ?debug("Done solving fun: ~p\n", [debug_lookup_name(Id)]),
        FunType0 = lookup_type(Id, NewMap),
        V2State2 = save_local_map(V2State1, Id, U, NewMap),
        {FunType0, V2State2}
    end,
  ?debug("ref Id=~w Assigned ~s\n", [Id, format_type(FunType)]),
  {NewMap1, U1} = enter_var_type(Id, FunType, Map),
  {NewMap2, U2} =
    case state__get_rec_var(Id, State) of
      {ok, Var} -> enter_var_type(Var, FunType, NewMap1);
      error -> {NewMap1, []}
    end,
  {ok, NewMap2, V2State, lists:umerge(U1, U2)}.

v2_solve_self_recursive(Cs, Map, Id, RecType0, V2State0) ->
  ?debug("Solving self recursive ~w\n", [debug_lookup_name(Id)]),
  State = V2State0#v2_state.state,
  {ok, RecVar} = state__get_rec_var(Id, State),
  ?debug("OldRecType ~s\n", [format_type(RecType0)]),
  RecType = t_limit(RecType0, ?TYPE_LIMIT),
  {Map1, U0} = enter_var_type(RecVar, RecType, Map),
  V2State1 = save_updated_vars1(V2State0, Cs, U0), % Probably not necessary
  case v2_solve(Cs, Map1, V2State1) of
    {error, _V2State}=Error ->
      case t_is_none(RecType0) of
	true ->
	  %% Try again and assume that this is a non-terminating function.
	  Arity = state__fun_arity(Id, State),
	  NewRecType = t_fun(lists:duplicate(Arity, t_any()), t_unit()),
	  v2_solve_self_recursive(Cs, Map, Id, NewRecType, V2State0);
	false ->
	  Error
      end;
    {ok, NewMap, V2State, U} ->
      pp_map("recursive finished", NewMap),
      NewRecType = unsafe_lookup_type(Id, NewMap),
      case t_is_equal(NewRecType, RecType0) of
	true ->
          {NewMap2, U1} = enter_var_type(RecVar, NewRecType, NewMap),
	  {ok, NewMap2, V2State, lists:umerge(U, U1)};
	false ->
	  v2_solve_self_recursive(Cs, Map, Id, NewRecType, V2State0)
      end
  end.

enter_var_type(Var, Type, Map0) ->
  {Map, Vs} = enter_type2(Var, Type, Map0),
  {Map, [t_var_name(V) || V <- Vs]}.

v2_solve_disjunct(Disj, Map, V2State0) ->
  #constraint_list{type = disj, id = _Id, list = Cs, masks = Masks} = Disj,
  ?debug("disjunct Id=~w~n", [_Id]),
  pp_map("Map", Map),
  pp_constr_data("disjunct", V2State0),
  case get_flags(V2State0, Disj) of
    {V2State1, failed_list} -> {error, V2State1}; % cannot happen
    {V2State1, Flags} when Flags =/= [] ->
      {ok, V2State, Eval, UL, MapL0, Uneval, Failed} =
        v2_solve_disj(Flags, Cs, 1, Map, V2State1, [], [], [], [], false),
      ?debug("disj ending _Id=~w Eval=~w, |Uneval|=~w |UL|=~w~n",
             [_Id, Eval, length(Uneval), length(UL)]),
      if Eval =:= [], Uneval =:= [] ->
           {error, failed_list(Disj, V2State0)};
         true ->
           {Is0, UnIds} = lists:unzip(Uneval),
           MapL = [restore_local_map(V2State, Id, Map) ||
                    Id <- UnIds] ++ MapL0,
           %% If some branch has just failed every variable of the
           %% non-failed branches need to be checked, not just the
           %% updated ones.
           U0 = case Failed of
                  false -> lists:umerge(UL);
                  true -> constrained_keys(MapL)
                end,
           if U0 =:= [] -> {ok, Map, V2State, []};
              true ->
                NotFailed = lists:umerge(Is0, Eval),
                U1 = [V || V <- U0,
                           var_occurs_everywhere(V, Masks, NotFailed)],
                NewMap = join_maps(U1, MapL, Map),
                pp_map("NewMap", NewMap),
                U = updated_vars_only(U1, Map, NewMap),
                ?debug("disjunct finished _Id=~w\n", [_Id]),
                {ok, NewMap, V2State, U}
           end
      end
  end.

var_occurs_everywhere(V, Masks, NotFailed) ->
  ordsets:is_subset(NotFailed, get_mask(V, Masks)).

v2_solve_disj([I|Is], [C|Cs], I, Map0, V2State0, UL, MapL, Eval, Uneval,
              Failed0) ->
  Id = C#constraint_list.id,
  Map1 = restore_local_map(V2State0, Id, Map0),
  case v2_solve(C, Map1, V2State0) of
    {error, V2State} ->
      ?debug("disj error I=~w~n", [I]),
      Failed = Failed0 orelse not is_failed_list(C, V2State0),
      v2_solve_disj(Is, Cs, I+1, Map0, V2State, UL, MapL, Eval, Uneval, Failed);
    {ok, Map, V2State1, U} ->
      ?debug("disj I=~w U=~w~n", [I, U]),
      V2State = save_local_map(V2State1, Id, U, Map),
      pp_map("DMap", Map),
      v2_solve_disj(Is, Cs, I+1, Map0, V2State, [U|UL], [Map|MapL],
                    [I|Eval], Uneval, Failed0)
  end;
v2_solve_disj([], [], _I, _Map, V2State, UL, MapL, Eval, Uneval, Failed) ->
  {ok, V2State, lists:reverse(Eval), UL, MapL, lists:reverse(Uneval), Failed};
v2_solve_disj(Is, [C|Cs], I, Map, V2State, UL, MapL, Eval, Uneval0, Failed) ->
  Uneval = [{I,C#constraint_list.id} ||
             not is_failed_list(C, V2State)] ++ Uneval0,
  v2_solve_disj(Is, Cs, I+1, Map, V2State, UL, MapL, Eval, Uneval, Failed).

save_local_map(#v2_state{constr_data = ConData}=V2State, Id, U, Map) ->
  Part0 = [{V,dict:fetch(V, Map)} || V <- U],
  Part1 =
    case dict:find(Id, ConData) of
      error -> []; % cannot happen
      {ok, {Part2,[]}} -> Part2
    end,
  ?debug("save local map Id=~w:\n", [Id]),
  Part = lists:ukeymerge(1, lists:keysort(1, Part0), Part1),
  pp_map("New Part", dict:from_list(Part0)),
  pp_map("Old Part", dict:from_list(Part1)),
  pp_map(" => Part", dict:from_list(Part)),
  V2State#v2_state{constr_data = dict:store(Id, {Part,[]}, ConData)}.

restore_local_map(#v2_state{constr_data = ConData}, Id, Map0) ->
  case dict:find(Id, ConData) of
    error -> Map0;
    {ok, failed} -> Map0;
    {ok, {[],_}} -> Map0;
    {ok, {Part0,U}} ->
      Part = [{K,V} || {K,V} <- Part0, not lists:member(K, U)],
      ?debug("restore local map Id=~w U=~w\n", [Id, U]),
      pp_map("Part", dict:from_list(Part)),
      pp_map("Map0", Map0),
      Map = lists:foldl(fun({K,V}, D) -> dict:store(K, V, D)end, Map0, Part),
      pp_map("Map", Map),
      Map
  end.

v2_solve_conjunct(Conj, Map, V2State0) ->
  #constraint_list{type = conj, list = Cs} = Conj,
  ?debug("conjunct Id=~w~n", [Conj#constraint_list.id]),
  IsFlat = case Cs of [#constraint{}|_] -> true; _ -> false end,
  case get_flags(V2State0, Conj) of
    {V2State, failed_list} -> {error, V2State};
    {V2State, Flags} ->
      v2_solve_conj(Flags, Cs, 1, Map, Conj, IsFlat, V2State, [], [], [],
                    Map, Flags)
  end.

%% LastMap and LastFlags are used for loop detection.
v2_solve_conj([I|Is], [Cs|Tail], I, Map0, Conj, IsFlat, V2State0,
              UL, NewFs0, VarsUp, LastMap, LastFlags) ->
  ?debug("conj Id=~w I=~w~n", [Conj#constraint_list.id, I]),
  true = IsFlat =:= is_record(Cs, constraint),
  pp_constr_data("conj", V2State0),
  case v2_solve(Cs, Map0, V2State0) of
    {error, V2State1} -> {error, failed_list(Conj, V2State1)};
    {ok, Map, V2State1, []} ->
      v2_solve_conj(Is, Tail, I+1, Map, Conj, IsFlat, V2State1,
                    UL, NewFs0, VarsUp, LastMap, LastFlags);
    {ok, Map, V2State1, U} when IsFlat -> % optimization
      %% It is ensured by enumerate_constraints() that every
      %% #constraint{} has a conjunct as parent, and that such a
      %% parent has nothing but #constraint{}:s as children, a fact
      %% which is used here to simplify the flag calculation.
      Mask = lists:umerge([get_mask(V, Conj#constraint_list.masks) || V <- U]),
      {Is1, NewF} = add_mask_to_flags(Is, Mask, I, []),
      NewFs = [NewF|NewFs0],
      v2_solve_conj(Is1, Tail, I+1, Map, Conj, IsFlat, V2State1,
                    [U|UL], NewFs, VarsUp, LastMap, LastFlags);
    {ok, Map, V2State1, U} ->
      #constraint_list{masks = Masks, list = AllCs} = Conj,
      M = lists:keydelete(I, 1, vars_per_child(U, Masks)),
      {V2State2, NewF0} = save_updated_vars_list(AllCs, M, V2State1),
      {NewF, F} = lists:splitwith(fun(J) -> J < I end, NewF0),
      Is1 = lists:umerge(Is, F),
      NewFs = [NewF|NewFs0],
      v2_solve_conj(Is1, Tail, I+1, Map, Conj, IsFlat, V2State2,
                    [U|UL], NewFs, VarsUp, LastMap, LastFlags)
  end;
v2_solve_conj([], _Cs, _I, Map, Conj, IsFlat, V2State, UL, NewFs, VarsUp,
             LastMap, LastFlags) ->
  U = lists:umerge(UL),
  case lists:umerge(NewFs) of
    [] ->
      ?debug("conjunct finished Id=~w\n", [Conj#constraint_list.id]),
      {ok, Map, V2State, lists:umerge([U|VarsUp])};
    NewFlags when NewFlags =:= LastFlags, Map =:= LastMap ->
      %% A loop was detected! The cause is some bug, possibly in erl_types.
      %% The evaluation continues, but the results can be wrong.
      report_detected_loop(Conj),
      {ok, Map, V2State, lists:umerge([U|VarsUp])};
    NewFlags ->
      #constraint_list{type = conj, list = Cs} = Conj,
      v2_solve_conj(NewFlags, Cs, 1, Map, Conj, IsFlat, V2State,
                    [], [], [U|VarsUp], Map, NewFlags)
  end;
v2_solve_conj(Is, [_|Tail], I, Map, Conj, IsFlat, V2State, UL, NewFs, VarsUp,
             LastMap, LastFlags) ->
  v2_solve_conj(Is, Tail, I+1, Map, Conj, IsFlat, V2State, UL, NewFs, VarsUp,
               LastMap, LastFlags).

-ifdef(DEBUG_LOOP_DETECTION).
report_detected_loop(Conj) ->
  io:format("A loop was detected in ~w\n", [Conj#constraint_list.id]).
-else.
report_detected_loop(_) ->
  ok.
-endif.

add_mask_to_flags(Flags, [Im|M], I, L) when I > Im ->
  add_mask_to_flags(Flags, M, I, [Im|L]);
add_mask_to_flags(Flags, [_|M], _I, L) ->
  {lists:umerge(Flags, M), lists:reverse(L)}.

get_mask(V, {d, Masks}) ->
  case dict:find(V, Masks) of
    error -> [];
    {ok, M} -> M
  end;
get_mask(V, Masks) ->
  case lists:keyfind(V, 1, Masks) of
    false -> [];
    {V, M} -> M
  end.

get_flags(#v2_state{constr_data = ConData}=V2State0, C) ->
  #constraint_list{id = Id, list = Cs, masks = Masks} = C,
  case dict:find(Id, ConData) of
    error ->
      ?debug("get_flags Id=~w Flags=all ~w\n", [Id, length(Cs)]),
      V2State = V2State0#v2_state{constr_data = dict:store(Id, {[],[]}, ConData)},
      {V2State, lists:seq(1, length(Cs))};
    {ok, failed} ->
      {V2State0, failed_list};
    {ok, {Part,U}} when U =/= [] ->
      ?debug("get_flags Id=~w U=~w\n", [Id, U]),
      V2State = V2State0#v2_state{constr_data = dict:store(Id, {Part,[]}, ConData)},
      save_updated_vars_list(Cs, vars_per_child(U, Masks), V2State)
  end.

vars_per_child(U, Masks) ->
  family([{I, V} || V <- lists:usort(U), I <- get_mask(V, Masks)]).

save_updated_vars_list(Cs, IU, V2State) ->
  save_updated_vars_list1(Cs, IU, V2State, 1, []).

save_updated_vars_list1([C|Cs], [{I,U}|IU], V2State0, I, Is) ->
  V2State = save_updated_vars(C, U, V2State0),
  save_updated_vars_list1(Cs, IU, V2State, I+1, [I|Is]);
save_updated_vars_list1([], [], V2State, _I, Is) ->
  {V2State, lists:reverse(Is)};
save_updated_vars_list1([_|Cs], IU, V2State, I, Is) ->
  save_updated_vars_list1(Cs, IU, V2State, I+1, Is).

save_updated_vars(#constraint{}, _, V2State) ->
  V2State;
save_updated_vars(#constraint_list{}=C, U, V2State0) ->
  save_updated_vars1(V2State0, C, U);
save_updated_vars(#constraint_ref{id = Id}, U, V2State) ->
  Cs = state__get_cs(Id, V2State#v2_state.state),
  save_updated_vars(Cs, U, V2State).

save_updated_vars1(V2State, C, U) ->
  #v2_state{constr_data = ConData} = V2State,
  #constraint_list{id = Id} = C,
  case dict:find(Id, ConData) of
    error -> V2State; % error means everything is flagged
    {ok, failed} -> V2State;
    {ok, {Part,U0}} ->
      %% Duplicates are not so common; let masks/2 remove them.
      U1 = U ++ U0,
      V2State#v2_state{constr_data = dict:store(Id, {Part,U1}, ConData)}
  end.

-ifdef(DEBUG).
pp_constr_data(_Tag, #v2_state{constr_data = D}) ->
  io:format("Constr data at ~p\n", [_Tag]),
  _ = [begin
         case _PartU of
           {_Part, _U} ->
             io:format("Id: ~w Vars: ~w\n", [_Id, _U]),
             [pp_map("Part", dict:from_list(_Part)) || _Part =/= []];
           failed ->
             io:format("Id: ~w failed list\n", [_Id])
         end
       end ||
        {_Id, _PartU} <- lists:keysort(1, dict:to_list(D))],
  ok.

-else.
pp_constr_data(_Tag, _V2State) ->
  ok.
-endif.

failed_list(#constraint_list{id = Id}, #v2_state{constr_data = D}=V2State) ->
  ?debug("error list ~w~n", [Id]),
  V2State#v2_state{constr_data = dict:store(Id, failed, D)}.

is_failed_list(#constraint_list{id = Id}, #v2_state{constr_data = D}) ->
  dict:find(Id, D) =:= {ok, failed}.

%% Solver v1

solve_ref_or_list(#constraint_ref{id = Id, deps = Deps},
		  Map, MapDict, State) ->
  {OldLocalMap, Check} =
    case dict:find(Id, MapDict) of
      error -> {map_new(), false};
      {ok, M} -> {M, true}
    end,
  ?debug("Checking ref to fun: ~w\n", [debug_lookup_name(Id)]),
  %% Note: mk_constraint_ref() has already removed Id from Deps. The
  %% reason for doing it there is that it makes it easy for
  %% calculate_masks() to make the corresponding adjustment for
  %% version v2.
  CheckDeps = ordsets:del_element(t_var_name(Id), Deps),
  true = CheckDeps =:= Deps,
  case Check andalso maps_are_equal(OldLocalMap, Map, CheckDeps) of
    true ->
      ?debug("Equal\n", []),
      {ok, MapDict, Map};
    false ->
      ?debug("Not equal. Solving\n", []),
      Cs = state__get_cs(Id, State),
      Res =
	case state__is_self_rec(Id, State) of
	  true -> solve_self_recursive(Cs, Map, MapDict, Id, t_none(), State);
	  false -> solve_ref_or_list(Cs, Map, MapDict, State)
	end,
      {NewMapDict, FunType} =
	case Res of
	  {error, NewMapDict0} ->
	    ?debug("Error solving for function ~p\n", [debug_lookup_name(Id)]),
	    Arity = state__fun_arity(Id, State),
	    FunType0 =
	      case state__prop_domain(t_var_name(Id), State) of
		error -> t_fun(Arity, t_none());
		{ok, Dom} -> t_fun(Dom, t_none())
	      end,
	    {NewMapDict0, FunType0};
	  {ok, NewMapDict0, NewMap} ->
	    ?debug("Done solving fun: ~p\n", [debug_lookup_name(Id)]),
	    FunType0 = lookup_type(Id, NewMap),
	    {NewMapDict0, FunType0}
	end,
      ?debug("  Id=~w Assigned ~s\n", [Id, format_type(FunType)]),
      NewMap1 = enter_type(Id, FunType, Map),
      NewMap2 =
	case state__get_rec_var(Id, State) of
	  {ok, Var} -> enter_type(Var, FunType, NewMap1);
	  error -> NewMap1
	end,
      {ok, dict:store(Id, NewMap2, NewMapDict), NewMap2}
  end;
solve_ref_or_list(#constraint_list{type=Type, list = Cs, deps = Deps, id = Id},
		  Map, MapDict, State) ->
  {OldLocalMap, Check} =
    case dict:find(Id, MapDict) of
      error -> {map_new(), false};
      {ok, M} -> {M, true}
    end,
  ?debug("Checking ref to list: ~w\n", [Id]),
  if
    OldLocalMap =:= error -> {error, MapDict};
    true ->
      case Check andalso maps_are_equal(OldLocalMap, Map, Deps) of
        true ->
          ?debug("~w equal ~w\n", [Type, Id]),
          {ok, MapDict, Map};
        false ->
          ?debug("~w not equal: ~w. Solving\n", [Type, Id]),
          solve_clist(Cs, Type, Id, Deps, MapDict, Map, State)
      end
  end.

solve_self_recursive(Cs, Map, MapDict, Id, RecType0, State) ->
  ?debug("Solving self recursive ~w\n", [debug_lookup_name(Id)]),
  {ok, RecVar} = state__get_rec_var(Id, State),
  ?debug("OldRecType ~s\n", [format_type(RecType0)]),
  RecType = t_limit(RecType0, ?TYPE_LIMIT),
  Map1 = enter_type(RecVar, RecType, erase_type(t_var_name(Id), Map)),
  pp_map("Map1", Map1),
  case solve_ref_or_list(Cs, Map1, MapDict, State) of
    {error, _} = Error ->
      case t_is_none(RecType0) of
	true ->
	  %% Try again and assume that this is a non-terminating function.
	  Arity = state__fun_arity(Id, State),
	  NewRecType = t_fun(lists:duplicate(Arity, t_any()), t_unit()),
	  solve_self_recursive(Cs, Map, MapDict, Id, NewRecType, State);
	false ->
	  Error
      end;
    {ok, NewMapDict, NewMap} ->
      pp_map("NewMap", NewMap),
      NewRecType = unsafe_lookup_type(Id, NewMap),
      case t_is_equal(NewRecType, RecType0) of
	true ->
	  {ok, NewMapDict, enter_type(RecVar, NewRecType, NewMap)};
	false ->
	  solve_self_recursive(Cs, Map, MapDict, Id, NewRecType, State)
      end
  end.

solve_clist(Cs, conj, Id, Deps, MapDict, Map, State) ->
  case solve_cs(Cs, Map, MapDict, State) of
    {error, NewMapDict} ->
      {error, dict:store(Id, error, NewMapDict)};
    {ok, NewMapDict, NewMap} = Ret ->
      case Cs of
	[_] ->
	  %% Just a special case for one conjunctive constraint.
	  Ret;
	_ ->
	  case maps_are_equal(Map, NewMap, Deps) of
	    true -> {ok, dict:store(Id, NewMap, NewMapDict), NewMap};
	    false -> solve_clist(Cs, conj, Id, Deps, NewMapDict, NewMap, State)
	  end
      end
  end;
solve_clist(Cs, disj, Id, _Deps, MapDict, Map, State) ->
  Fun = fun(C, Dict) ->
	    case solve_ref_or_list(C, Map, Dict, State) of
	      {ok, NewDict, NewMap} -> {{ok, NewMap}, NewDict};
	      {error, _NewDict} = Error -> Error
	    end
	end,
  {Maps, NewMapDict} = lists:mapfoldl(Fun, MapDict, Cs),
  case [X || {ok, X} <- Maps] of
    [] -> {error, dict:store(Id, error, NewMapDict)};
    MapList ->
      NewMap = join_maps(MapList),
      {ok, dict:store(Id, NewMap, NewMapDict), NewMap}
  end.

solve_cs([#constraint_ref{} = C|Tail], Map, MapDict, State) ->
  case solve_ref_or_list(C, Map, MapDict, State) of
    {ok, NewMapDict, Map1} -> solve_cs(Tail, Map1, NewMapDict, State);
    {error, _NewMapDict} = Error -> Error
  end;
solve_cs([#constraint_list{} = C|Tail], Map, MapDict, State) ->
  case solve_ref_or_list(C, Map, MapDict, State) of
    {ok, NewMapDict, Map1} -> solve_cs(Tail, Map1, NewMapDict, State);
    {error, _NewMapDict} = Error -> Error
  end;
solve_cs([#constraint{} = C|Tail], Map, MapDict, State) ->
  case solve_one_c(C, Map, State#state.opaques) of
    error ->
      report_failed_constraint(C, Map),
      {error, MapDict};
    {ok, {NewMap, _U}} ->
      solve_cs(Tail, NewMap, MapDict, State)
  end;
solve_cs([], Map, MapDict, _State) ->
  {ok, MapDict, Map}.

solve_one_c(#constraint{lhs = Lhs, rhs = Rhs, op = Op}, Map, Opaques) ->
  LhsType = lookup_type(Lhs, Map),
  RhsType = lookup_type(Rhs, Map),
  Inf = t_inf(LhsType, RhsType, opaque),
  ?debug("Solving: ~s :: ~s ~w ~s :: ~s\n\tInf: ~s\n",
	 [format_type(Lhs), format_type(LhsType), Op,
	  format_type(Rhs), format_type(RhsType), format_type(Inf)]),
  case t_is_none(Inf) of
    true -> error;
    false ->
      case Op of
	sub -> solve_subtype(Lhs, Inf, Map, Opaques);
	eq ->
	  case solve_subtype(Lhs, Inf, Map, Opaques) of
	    error -> error;
	    {ok, {Map1, U1}} ->
              case solve_subtype(Rhs, Inf, Map1, Opaques) of
                error -> error;
                {ok, {Map2, U2}} -> {ok, {Map2, lists:umerge(U1, U2)}}
              end
	  end
      end
  end.

solve_subtype(Type, Inf, Map, Opaques) ->
  %% case cerl:is_literal(Type) of
  %%   true ->
  %%     case t_is_subtype(t_from_term(cerl:concrete(Type)), Inf) of
  %%	true -> {ok, Map};
  %%	false -> error
  %%     end;
  %%   false ->
      try t_unify(Type, Inf, Opaques) of
	{_, List} -> {ok, enter_type_list(List, Map)}
      catch
	throw:{mismatch, _T1, _T2} ->
	  ?debug("Mismatch between ~s and ~s\n",
		 [format_type(_T1), format_type(_T2)]),
	  error
      end.
  %% end.

report_failed_constraint(_C, _Map) ->
  ?debug("+++++++++++\nFailed: ~s :: ~s ~w ~s :: ~s\n+++++++++++\n",
         [format_type(_C#constraint.lhs),
          format_type(lookup_type(_C#constraint.lhs, _Map)),
          _C#constraint.op,
          format_type(_C#constraint.rhs),
          format_type(lookup_type(_C#constraint.rhs, _Map))]).

%% ============================================================================
%%
%%  Maps and types.
%%
%% ============================================================================

map_new() ->
  dict:new().

join_maps([Map]) ->
  Map;
join_maps(Maps) ->
  Keys = constrained_keys(Maps),
  join_maps(Keys, Maps, map_new()).

constrained_keys(Maps) ->
  lists:foldl(fun(TmpMap, AccKeys) ->
                  [Key || Key <- AccKeys, dict:is_key(Key, TmpMap)]
              end,
              dict:fetch_keys(hd(Maps)), tl(Maps)).

join_maps([Key|Left], Maps = [Map|MapsLeft], AccMap) ->
  NewType = join_one_key(Key, MapsLeft, lookup_type(Key, Map)),
  NewAccMap = enter_type(Key, NewType, AccMap),
  join_maps(Left, Maps, NewAccMap);
join_maps([], _Maps, AccMap) ->
  AccMap.

join_one_key(Key, [Map|Maps], Type) ->
  case t_is_any(Type) of
    true -> Type;
    false ->
      NewType = lookup_type(Key, Map),
      case t_is_equal(NewType, Type) of
	true  -> join_one_key(Key, Maps, Type);
	false -> join_one_key(Key, Maps, t_sup(NewType, Type))
      end
  end;
join_one_key(_Key, [], Type) ->
  Type.

maps_are_equal(Map1, Map2, Deps) ->
  NewDeps = prune_keys(Map1, Map2, Deps),
  maps_are_equal_1(Map1, Map2, NewDeps).

maps_are_equal_1(Map1, Map2, [H|Tail]) ->
  T1 = lookup_type(H, Map1),
  T2 = lookup_type(H, Map2),
  case t_is_equal(T1, T2) of
    true -> maps_are_equal_1(Map1, Map2, Tail);
    false ->
      ?debug("~w: ~s =/= ~s\n", [H, format_type(T1), format_type(T2)]),
      false
  end;
maps_are_equal_1(_Map1, _Map2, []) ->
  true.

-define(PRUNE_LIMIT, 100).

prune_keys(Map1, Map2, Deps) ->
  %% This is only worthwhile if the number of deps is reasonably large,
  %% and also bigger than the number of elements in the maps.
  NofDeps = length(Deps),
  case NofDeps > ?PRUNE_LIMIT of
    true ->
      Keys1 = dict:fetch_keys(Map1),
      case length(Keys1) > NofDeps of
	true ->
	  Set1 = lists:sort(Keys1),
	  Set2 = lists:sort(dict:fetch_keys(Map2)),
	  ordsets:intersection(ordsets:union(Set1, Set2), Deps);
	false ->
	  Deps
      end;
    false ->
      Deps
  end.

enter_type(Key, Val, Map) when is_integer(Key) ->
  ?debug("Entering ~s :: ~s\n", [format_type(t_var(Key)), format_type(Val)]),
  case t_is_any(Val) of
    true ->
      erase_type(Key, Map);
    false ->
      LimitedVal = t_limit(Val, ?INTERNAL_TYPE_LIMIT),
      case dict:find(Key, Map) of
	{ok, LimitedVal} -> Map;
	{ok, _} -> map_store(Key, LimitedVal, Map);
	error -> map_store(Key, LimitedVal, Map)
      end
  end;
enter_type(Key, Val, Map) ->
  KeyName = t_var_name(Key),
  enter_type(KeyName, Val, Map).

enter_type_lists([Key|KeyTail], [Val|ValTail], Map) ->
  Map1 = enter_type(Key, Val, Map),
  enter_type_lists(KeyTail, ValTail, Map1);
enter_type_lists([], [], Map) ->
  Map.

enter_type_list(KeyVals, Map) ->
  enter_type_list(KeyVals, Map, []).

enter_type_list([{Key, Val}|Tail], Map, U0) ->
  {Map1,U1} = enter_type2(Key, Val, Map),
  enter_type_list(Tail, Map1, U1++U0);
enter_type_list([], Map, U) ->
  {Map, ordsets:from_list(U)}.

enter_type2(Key, Val, Map) ->
  Map1 = enter_type(Key, Val, Map),
  {Map1, [Key || not is_same(Key, Map, Map1)]}.

map_store(Key, Val, Map) ->
  ?debug("Storing ~w :: ~s\n", [Key, format_type(Val)]),
  dict:store(Key, Val, Map).

erase_type(Key, Map) ->
  dict:erase(Key, Map).

lookup_type_list(List, Map) ->
  [lookup_type(X, Map) || X <- List].

unsafe_lookup_type(Key, Map) ->
  case dict:find(t_var_name(Key), Map) of
    {ok, Type} -> Type;
    error -> t_none()
  end.

unsafe_lookup_type_list(List, Map) ->
  [unsafe_lookup_type(X, Map) || X <- List].

lookup_type(Key, Map) when is_integer(Key) ->
  case dict:find(Key, Map) of
    error -> t_any();
    {ok, Val} -> Val
  end;
lookup_type(#fun_var{'fun' = Fun}, Map) ->
  Fun(Map);
lookup_type(Key, Map) ->
  %% Seems unused and dialyzer complains about it -- commented out.
  %% case cerl:is_literal(Key) of
  %%   true -> t_from_term(cerl:concrete(Key));
  %%   false ->
  t_subst(Key, Map).
  %% end.

mk_var(Var) ->
  case cerl:is_literal(Var) of
    true -> Var;
    false ->
      case cerl:is_c_values(Var) of
	true -> t_product(mk_var_no_lit_list(cerl:values_es(Var)));
	false -> t_var(cerl_trees:get_label(Var))
      end
  end.

mk_var_list(List) ->
  [mk_var(X) || X <- List].

mk_var_no_lit(Var) ->
  case cerl:is_literal(Var) of
    true -> t_from_term(cerl:concrete(Var));
    false -> mk_var(Var)
  end.

mk_var_no_lit_list(List) ->
  [mk_var_no_lit(X) || X <- List].

updated_vars_only(U, OldMap, NewMap) ->
  [V || V <- U, not is_same(V, OldMap, NewMap)].

is_same(Key, Map1, Map2) ->
  t_is_equal(lookup_type(Key, Map1), lookup_type(Key, Map2)).

pp_map(_S, _Map) ->
  ?debug("\t~s: ~p\n",
            [_S, [{X, lists:flatten(format_type(Y))} ||
                  {X, Y} <- lists:keysort(1, dict:to_list(_Map))]]).

%% ============================================================================
%%
%%  The State.
%%
%% ============================================================================

new_state(SCC0, NextLabel, CallGraph, Plt, PropTypes, Solvers) ->
  List = [{MFA, Var} || {MFA, {Var, _Fun}, _Rec} <- SCC0],
  NameMap = dict:from_list(List),
  MFAs = [MFA || {MFA, _Var} <- List],
  SCC = [mk_var(Fun) || {_MFA, {_Var, Fun}, _Rec} <- SCC0],
  SelfRec =
    case SCC of
      [OneF] ->
	Label = t_var_name(OneF),
	case dialyzer_callgraph:is_self_rec(Label, CallGraph) of
	  true -> OneF;
	  false -> false
	end;
      _Many -> false
    end,
  #state{callgraph = CallGraph, name_map = NameMap, next_label = NextLabel,
	 prop_types = {d, PropTypes}, plt = Plt, scc = ordsets:from_list(SCC),
	 mfas = MFAs, self_rec = SelfRec, solvers = Solvers}.

state__set_rec_dict(State, RecDict) ->
  State#state{records = RecDict}.

state__set_opaques(#state{records = RecDict} = State, {M, _F, _A}) ->
  Opaques =
    erl_types:module_builtin_opaques(M) ++ t_opaque_from_records(RecDict),
  State#state{opaques = Opaques, module = M}.

state__set_in_match(State, Bool) ->
  State#state{in_match = Bool}.

state__is_in_match(#state{in_match = Bool}) ->
  Bool.

state__set_in_guard(State, Bool) ->
  State#state{in_guard = Bool}.

state__is_in_guard(#state{in_guard = Bool}) ->
  Bool.

state__get_fun_prototype(Op, Arity, State) ->
  case t_is_fun(Op) of
    true -> {State, Op};
    false ->
      {State1, [Ret|Args]} = state__mk_vars(Arity+1, State),
      Fun = t_fun(Args, Ret),
      {State1, Fun}
  end.

state__lookup_rec_var_in_scope(MFA, #state{name_map = NameMap}) ->
  dict:find(MFA, NameMap).

state__store_fun_arity(Tree, #state{fun_arities = Map} = State) ->
  Arity = length(cerl:fun_vars(Tree)),
  Id = mk_var(Tree),
  State#state{fun_arities = dict:store(Id, Arity, Map)}.

state__fun_arity(Id, #state{fun_arities = Map}) ->
  dict:fetch(Id, Map).

state__lookup_undef_var(Tree, #state{callgraph = CG, plt = Plt}) ->
  Label = cerl_trees:get_label(Tree),
  case dialyzer_callgraph:lookup_rec_var(Label, CG) of
    error -> error;
    {ok, MFA} ->
      case dialyzer_plt:lookup(Plt, MFA) of
	none -> error;
	{value, {RetType, ArgTypes}} -> {ok, t_fun(ArgTypes, RetType)}
      end
  end.

state__lookup_apply(Tree, #state{callgraph = Callgraph}) ->
  Apply = cerl_trees:get_label(Tree),
  case dialyzer_callgraph:lookup_call_site(Apply, Callgraph) of
    error ->
      unknown;
    {ok, List} ->
      case lists:member(external, List) of
	true -> unknown;
	false -> List
      end
  end.

get_apply_constr(FunLabels, Dst, ArgTypes, #state{callgraph = CG} = State) ->
  MFAs = [dialyzer_callgraph:lookup_name(Label, CG) || Label <- FunLabels],
  case lists:member(error, MFAs) of
    true -> error;
    false ->
      Constrs0 =
	[begin
	   State1 = state__new_constraint_context(State),
	   try get_plt_constr(MFA, Dst, ArgTypes, State1) of
	       State2 -> state__cs(State2)
	   catch
	     throw:error -> error
	   end
	 end || {ok, MFA} <- MFAs],
      case [C || C <- Constrs0, C =/= error] of
	[] -> throw(error);
	Constrs ->
	  ApplyConstr = mk_disj_constraint_list(Constrs),
	  {ok, state__store_conj(ApplyConstr, State)}
      end
  end.

state__scc(#state{scc = SCC}) ->
  SCC.

state__add_fun_to_scc(Fun, #state{scc = SCC} = State) ->
  State#state{scc = ordsets:add_element(Fun, SCC)}.

state__plt(#state{plt = PLT}) ->
  PLT.

state__new_constraint_context(State) ->
  State#state{cs = []}.

state__prop_domain(FunLabel, #state{prop_types = {e, ETSPropTypes}}) ->
  try ets:lookup_element(ETSPropTypes, FunLabel, 2) of
      {_Range_Fun, Dom} -> {ok, Dom};
      FunType -> {ok, t_fun_args(FunType)}
  catch
    _:_ -> error
  end;
state__prop_domain(FunLabel, #state{prop_types = {d, PropTypes}}) ->
 case dict:find(FunLabel, PropTypes) of
    error -> error;
    {ok, {_Range_Fun, Dom}} -> {ok, Dom};
    {ok, FunType} -> {ok, t_fun_args(FunType)}
  end.

state__add_prop_constrs(Tree, #state{prop_types = {d, PropTypes}} = State) ->
  Label = cerl_trees:get_label(Tree),
  case dict:find(Label, PropTypes) of
    error -> State;
    {ok, FunType} ->
      case t_fun_args(FunType) of
	unknown -> State;
	ArgTypes ->
	  case erl_types:any_none(ArgTypes) of
	    true -> not_called;
	    false ->
	      ?debug("Adding propagated constr: ~s for function ~w\n",
		     [format_type(FunType), debug_lookup_name(mk_var(Tree))]),
	      FunVar = mk_var(Tree),
	      state__store_conj(FunVar, sub, FunType, State)
	  end
      end
  end.

state__cs(#state{cs = Cs}) ->
  mk_conj_constraint_list(Cs).

state__store_conj(C, #state{cs = Cs} = State) ->
  State#state{cs = [C|Cs]}.

state__store_conj_list([H|T], State) ->
  State1 = state__store_conj(H, State),
  state__store_conj_list(T, State1);
state__store_conj_list([], State) ->
  State.

state__store_conj(Lhs, Op, Rhs, #state{cs = Cs} = State) ->
  State#state{cs = [mk_constraint(Lhs, Op, Rhs)|Cs]}.

state__store_conj_lists(List1, Op, List2, State) ->
  {NewList1, NewList2} = strip_of_any_constrs(List1, List2),
  state__store_conj_lists_1(NewList1, Op, NewList2, State).

strip_of_any_constrs(List1, List2) ->
  strip_of_any_constrs(List1, List2, [], []).

strip_of_any_constrs([T1|Left1], [T2|Left2], Acc1, Acc2) ->
  case t_is_any(T1) orelse constraint_opnd_is_any(T2) of
    true -> strip_of_any_constrs(Left1, Left2, Acc1, Acc2);
    false -> strip_of_any_constrs(Left1, Left2, [T1|Acc1], [T2|Acc2])
  end;
strip_of_any_constrs([], [], Acc1, Acc2) ->
  {Acc1, Acc2}.

state__store_conj_lists_1([Arg1|Arg1Tail], Op, [Arg2|Arg2Tail], State) ->
  State1 = state__store_conj(Arg1, Op, Arg2, State),
  state__store_conj_lists_1(Arg1Tail, Op, Arg2Tail, State1);
state__store_conj_lists_1([], _Op, [], State) ->
  State.

state__mk_var(#state{next_label = NL} = State) ->
  {State#state{next_label = NL+1}, t_var(NL)}.

state__mk_vars(N, #state{next_label = NL} = State) ->
  NewLabel = NL + N,
  Vars = [t_var(X) || X <- lists:seq(NL, NewLabel-1)],
  {State#state{next_label = NewLabel}, Vars}.

state__store_constrs(Id, Cs, #state{cmap = {d, Dict}} = State) ->
  NewDict = dict:store(Id, Cs, Dict),
  State#state{cmap = {d, NewDict}}.

state__get_cs(Var, #state{cmap = {e, ETSDict}}) ->
  ets:lookup_element(ETSDict, Var, 2);
state__get_cs(Var, #state{cmap = {d, Dict}}) ->
  dict:fetch(Var, Dict).

state__is_self_rec(Fun, #state{self_rec = SelfRec}) ->
  Fun =:= SelfRec.

state__store_funs(Vars0, Funs0, #state{fun_map = Map} = State) ->
  debug_make_name_map(Vars0, Funs0),
  Vars = mk_var_list(Vars0),
  Funs = mk_var_list(Funs0),
  NewMap = lists:foldl(fun({Var, Fun}, MP) -> orddict:store(Var, Fun, MP) end,
		       Map, lists:zip(Vars, Funs)),
  State#state{fun_map = NewMap}.

state__get_rec_var(Fun, #state{fun_map = Map}) ->
  case [V || {V, FV} <- Map, FV =:= Fun] of
    [Var] -> {ok, Var};
    [] -> error
  end.

state__finalize(State) ->
  State1 = enumerate_constraints(State),
  order_fun_constraints(State1).

%% ============================================================================
%%
%%  Constraints
%%
%% ============================================================================

-spec mk_constraint(erl_types:erl_type(), constr_op(), fvar_or_type()) -> #constraint{}.

mk_constraint(Lhs, Op, Rhs) ->
  case t_is_any(Lhs) orelse constraint_opnd_is_any(Rhs) of
    false ->
      Deps = find_constraint_deps([Lhs, Rhs]),
      C0 = mk_constraint_1(Lhs, Op, Rhs),
      C = C0#constraint{deps = Deps},
      case Deps =:= [] of
	true ->
	  %% This constraint is constant. Solve it immediately.
	  case solve_one_c(C, map_new(), []) of
	    error -> throw(error);
	    _ ->
	      %% This is always true, keep it anyway for logistic reasons
	      C
	  end;
	false ->
	  C
      end;
    true ->
      C = mk_constraint_1(t_any(), Op, t_any()),
      C#constraint{deps = []}
  end.

%% the following function is used so that we do not call
%% erl_types:t_is_any/1 with a term other than an erl_type()
-spec constraint_opnd_is_any(fvar_or_type()) -> boolean().

constraint_opnd_is_any(#fun_var{}) -> false;
constraint_opnd_is_any(Type) -> t_is_any(Type).

-ifdef(DEBUG).

-spec mk_fun_var(integer(),
                 fun((_) -> erl_types:erl_type()),
                 [erl_types:erl_type()]) -> #fun_var{}.

mk_fun_var(Line, Fun, Types) ->
  Deps = [t_var_name(Var) || Var <- t_collect_vars(t_product(Types))],
  #fun_var{'fun' = Fun, deps = ordsets:from_list(Deps), origin = Line}.

-else.

-spec mk_fun_var(fun((_) -> erl_types:erl_type()), [erl_types:erl_type()]) -> #fun_var{}.

mk_fun_var(Fun, Types) ->
  Deps = [t_var_name(Var) || Var <- t_collect_vars(t_product(Types))],
  #fun_var{'fun' = Fun, deps = ordsets:from_list(Deps)}.

-endif.

-spec get_deps(constr()) -> [dep()].

get_deps(#constraint{deps = D}) -> D;
get_deps(#constraint_list{deps = D}) -> D;
get_deps(#constraint_ref{deps = D}) -> D.

-spec find_constraint_deps([fvar_or_type()]) -> [dep()].

find_constraint_deps(List) ->
  ordsets:from_list(find_constraint_deps(List, [])).

find_constraint_deps([#fun_var{deps = Deps}|Tail], Acc) ->
  find_constraint_deps(Tail, [Deps|Acc]);
find_constraint_deps([Type|Tail], Acc) ->
  NewAcc = [[t_var_name(D) || D <- t_collect_vars(Type)]|Acc],
  find_constraint_deps(Tail, NewAcc);
find_constraint_deps([], Acc) ->
  lists:flatten(Acc).

mk_constraint_1(Lhs, eq, Rhs) when Lhs < Rhs ->
  #constraint{lhs = Lhs, op = eq, rhs = Rhs};
mk_constraint_1(Lhs, eq, Rhs) ->
  #constraint{lhs = Rhs, op = eq, rhs = Lhs};
mk_constraint_1(Lhs, Op, Rhs) ->
  #constraint{lhs = Lhs, op = Op, rhs = Rhs}.

mk_constraints([Lhs|LhsTail], Op, [Rhs|RhsTail]) ->
  [mk_constraint(Lhs, Op, Rhs)|mk_constraints(LhsTail, Op, RhsTail)];
mk_constraints([], _Op, []) ->
  [].

mk_constraint_ref(Id, Deps) ->
  %% See also solve_ref_or_list(), #constraint_ref{}.
  Ds = ordsets:del_element(t_var_name(Id), Deps),
  #constraint_ref{id = Id, deps = Ds}.

mk_constraint_list(Type, List) ->
  List1 = ordsets:from_list(lift_lists(Type, List)),
  List2 = ordsets:filter(fun(X) -> get_deps(X) =/= [] end, List1),
  Deps = calculate_deps(List2),
  case Deps =:= [] of
    true -> #constraint_list{type = conj,
			     list = [mk_constraint(t_any(), eq, t_any())],
			     deps = []};
    false -> #constraint_list{type = Type, list = List2, deps = Deps}
  end.

lift_lists(Type, List) ->
  lift_lists(Type, List, []).

lift_lists(Type, [#constraint_list{type = Type, list = List}|Tail], Acc) ->
  lift_lists(Type, Tail, List++Acc);
lift_lists(Type, [C|Tail], Acc) ->
  lift_lists(Type, Tail, [C|Acc]);
lift_lists(_Type, [], Acc) ->
  Acc.

update_constraint_list(CL, List) ->
  CL#constraint_list{list = List}.

%% We expand guard constraints into dijunctive normal form to gain
%% precision in simple guards. However, because of the exponential
%% growth of this expansion in the presens of disjunctions we can even
%% get into trouble while expanding.
%%
%% To limit this we only expand when the number of disjunctions are
%% below a certain limit. This limit is currently set based on the
%% behaviour of boolean 'or'.
%%
%%         V1 = V2 or V3
%%
%% Gives us in simplified form the constraints
%%
%%         <Some cs> * ((V1 = true) + (V2 = true) + (V1 = false))
%%
%% and thus a three-parted disjunction. If want to allow for two
%% levels of disjunction we need to have 3^2 = 9 disjunctions. If we
%% want three levels we need 3^3 = 27 disjunctions. More than that
%% seems unnecessary and tends to blow up.
%%
%% Note that by not expanding we lose some precision, but we get a
%% safe over approximation.

-define(DISJ_NORM_FORM_LIMIT, 28).

mk_disj_norm_form(#constraint_list{} = CL) ->
  try
    List1 = expand_to_conjunctions(CL),
    mk_disj_constraint_list(List1)
  catch
    throw:too_many_disj -> CL
  end.

expand_to_conjunctions(#constraint_list{type = conj, list = List}) ->
  List1 = [C || C <- List, is_simple_constraint(C)],
  List2 = [expand_to_conjunctions(C) || #constraint_list{} = C <- List],
  case List2 =:= [] of
    true -> [mk_conj_constraint_list(List1)];
    false ->
      case List2 of
	[JustOneList] ->
	  [mk_conj_constraint_list([L|List1]) || L <- JustOneList];
	_ ->
	  combine_conj_lists(List2, List1)
      end
  end;
expand_to_conjunctions(#constraint_list{type = disj, list = List}) ->
  if length(List) > ?DISJ_NORM_FORM_LIMIT -> throw(too_many_disj);
     true -> ok
  end,
  List1 = [C || C <- List, is_simple_constraint(C)],
  %% Just an assert.
  [] = [C || #constraint{} = C <- List1],
  Expanded = lists:flatten([expand_to_conjunctions(C)
			    || #constraint_list{} = C <- List]),
  ReturnList = Expanded ++ List1,
  if length(ReturnList) > ?DISJ_NORM_FORM_LIMIT -> throw(too_many_disj);
     true -> ReturnList
  end.

is_simple_constraint(#constraint{}) -> true;
is_simple_constraint(#constraint_ref{}) -> true;
is_simple_constraint(#constraint_list{}) -> false.

combine_conj_lists([List1, List2|Left], Prefix) ->
  NewList = [mk_conj_constraint_list([L1, L2]) || L1 <- List1, L2 <- List2],
  if length(NewList) > ?DISJ_NORM_FORM_LIMIT -> throw(too_many_disj);
     true -> ok
  end,
  combine_conj_lists([NewList|Left], Prefix);
combine_conj_lists([List], Prefix) ->
  [mk_conj_constraint_list([mk_conj_constraint_list(Prefix), L]) || L <- List].

calculate_deps(List) ->
  calculate_deps(List, []).

calculate_deps([H|Tail], Acc) ->
  Deps = get_deps(H),
  calculate_deps(Tail, [Deps|Acc]);
calculate_deps([], Acc) ->
  ordsets:from_list(lists:flatten(Acc)).

mk_conj_constraint_list(List) ->
  mk_constraint_list(conj, List).

mk_disj_constraint_list([NotReallyAList]) ->
  NotReallyAList;
mk_disj_constraint_list(List) ->
  %% Make sure each element in the list is either a conjunction or a
  %% ref. Wrap single constraints into conjunctions.
  List1 = [wrap_simple_constr(C) || C <- List],
  mk_constraint_list(disj, List1).

wrap_simple_constr(#constraint{} = C) -> mk_conj_constraint_list([C]);
wrap_simple_constr(#constraint_list{} = C) -> C;
wrap_simple_constr(#constraint_ref{} = C) -> C.

enumerate_constraints(State) ->
  Cs = [mk_constraint_ref(Id, get_deps(state__get_cs(Id, State)))
	|| Id <- state__scc(State)],
  {_, _, NewState} = enumerate_constraints(Cs, 0, [], State),
  NewState.

enumerate_constraints([#constraint_ref{id = Id} = C|Tail], N, Acc, State) ->
  Cs = state__get_cs(Id, State),
  {[NewCs], NewN, NewState1} = enumerate_constraints([Cs], N, [], State),
  NewState2 = state__store_constrs(Id, NewCs, NewState1),
  enumerate_constraints(Tail, NewN+1, [C|Acc], NewState2);
enumerate_constraints([#constraint_list{type = conj, list = List} = C|Tail],
		      N, Acc, State) ->
  %% Separate the flat constraints from the deep ones to make a
  %% separate fixpoint iteration over the flat ones for speed.
  {Flat, Deep} = lists:partition(fun(#constraint{}) -> true;
				    (#constraint_list{}) -> false;
				    (#constraint_ref{}) -> false
				 end, List),
  {NewFlat, N1, State1} = enumerate_constraints(Flat, N, [], State),
  {NewDeep, N2, State2} = enumerate_constraints(Deep, N1, [], State1),
  {NewList, N3} =
    if
      NewFlat =:= [] -> {NewDeep, N2};
      NewDeep =:= [] -> {NewFlat, N2};
      true ->
        TmpCList = mk_conj_constraint_list(NewFlat),
        {[TmpCList#constraint_list{id = {list, N2}}| NewDeep],
         N2 + 1}
    end,
  NewAcc = [C#constraint_list{list = NewList, id = {list, N3}}|Acc],
  enumerate_constraints(Tail, N3+1, NewAcc, State2);
enumerate_constraints([#constraint_list{list = List, type = disj} = C|Tail],
		      N, Acc, State) ->
  {NewList, NewN, NewState} = enumerate_constraints(List, N, [], State),
  NewAcc = [C#constraint_list{list = NewList, id = {list, NewN}}|Acc],
  enumerate_constraints(Tail, NewN+1, NewAcc, NewState);
enumerate_constraints([#constraint{} = C|Tail], N, Acc, State) ->
  enumerate_constraints(Tail, N, [C|Acc], State);
enumerate_constraints([], N, Acc, State) ->
  {lists:reverse(Acc), N, State}.

%% Put the fun ref constraints last in any conjunction since we need
%% to separate the environment from the interior of the function.
order_fun_constraints(State) ->
  Cs = [mk_constraint_ref(Id, get_deps(state__get_cs(Id, State)))
	|| Id <- state__scc(State)],
  order_fun_constraints(Cs, State).

order_fun_constraints([#constraint_ref{id = Id}|Tail], State) ->
  Cs = state__get_cs(Id, State),
  {[NewCs], State1} = order_fun_constraints([Cs], [], [], State),
  NewState = state__store_constrs(Id, NewCs, State1),
  order_fun_constraints(Tail, NewState);
order_fun_constraints([], State) ->
  State.

order_fun_constraints([#constraint_ref{} = C|Tail], Funs, Acc, State) ->
  order_fun_constraints(Tail, [C|Funs], Acc, State);
order_fun_constraints([#constraint_list{list = List, type = Type} = C|Tail],
		      Funs, Acc, State) ->
  {NewList, NewState} =
    case Type of
      conj -> order_fun_constraints(List, [], [], State);
      disj ->
	FoldFun = fun(X, AccState) ->
		      {[NewX], NewAccState} =
			order_fun_constraints([X], [], [], AccState),
		      {NewX, NewAccState}
		  end,
	lists:mapfoldl(FoldFun, State, List)
    end,
  C1 = update_constraint_list(C, NewList),
  Masks = calculate_masks(NewList, 1, []),
  NewAcc = [update_masks(C1, Masks)|Acc],
  order_fun_constraints(Tail, Funs, NewAcc, NewState);
order_fun_constraints([#constraint{} = C|Tail], Funs, Acc, State) ->
  order_fun_constraints(Tail, Funs, [C|Acc], State);
order_fun_constraints([], Funs, Acc, State) ->
  NewState = order_fun_constraints(Funs, State),
  {lists:reverse(Acc)++Funs, NewState}.

update_masks(C, Masks) ->
  C#constraint_list{masks = Masks}.

-define(VARS_LIMIT, 50).

calculate_masks([C|Cs], I, L0) ->
  calculate_masks(Cs, I+1, [{V, I} || V <- get_deps(C)] ++ L0);
calculate_masks([], _I, L) ->
  M = family(L),
  case length(M) > ?VARS_LIMIT of
    true ->
      {d, dict:from_list(M)};
    false ->
      M
  end.

%% ============================================================================
%%
%%  Utilities.
%%
%% ============================================================================

is_singleton_non_number_type(Type) ->
  case t_is_number(Type) of
    true -> false;
    false -> is_singleton_type(Type)
  end.

is_singleton_type(Type) ->
  case t_is_atom(Type) of
    true ->
      case t_atom_vals(Type) of
	unknown -> false;
	[_] -> true;
	[_|_] -> false
      end;
    false ->
      case t_is_integer(Type) of
	true ->
	  case t_number_vals(Type) of
	    unknown -> false;
	    [_] -> true;
	    [_|_] -> false
	  end;
	false ->
	  t_is_nil(Type)
      end
  end.

find_element(Args, Cs) ->
  [Pos, Tuple] = Args,
  case erl_types:t_is_number(Pos) of
    true ->
      case erl_types:t_number_vals(Pos) of
        'unknown' -> 'unknown';
        [I] ->
          case find_constraint(Tuple, Cs) of
            'unknown' -> 'unknown';
            #constraint{lhs = ExTuple} ->
              case erl_types:t_is_tuple(ExTuple) of
                true ->
                  Elems = erl_types:t_tuple_args(ExTuple),
                  Elem = lists:nth(I, Elems),
                  case erl_types:t_is_var(Elem) of
                    true -> Elem;
                    false -> 'unknown'
                  end;
                false -> 'unknown'
              end
          end;
        _ -> 'unknown'
      end;
    false -> 'unknown'
  end.

find_constraint(_Tuple, []) ->
  'unknown';
find_constraint(Tuple, [#constraint{op = 'eq', rhs = Tuple} = C|_]) ->
  C;
find_constraint(Tuple, [#constraint_list{list = List}|Cs]) ->
  find_constraint(Tuple, List ++ Cs);
find_constraint(Tuple, [_|Cs]) ->
  find_constraint(Tuple, Cs).

lookup_record(Records, Tag, Arity) ->
  case erl_types:lookup_record(Tag, Arity, Records) of
    {ok, Fields} ->
      {ok, t_tuple([t_from_term(Tag)|
		    [FieldType || {_FieldName, FieldType} <- Fields]])};
    error ->
      error
  end.

family(L) ->
    sofs:to_external(sofs:rel2fam(sofs:relation(L))).

%% ============================================================================
%%
%%  Pretty printer and debug facilities.
%%
%% ============================================================================

-ifdef(DEBUG_CONSTRAINTS).
-ifndef(DEBUG).
-define(DEBUG, true).
-endif.
-endif.

-ifdef(DEBUG).
format_type(#fun_var{deps = Deps, origin = Origin}) ->
  L = [format_type(t_var(X)) || X <- Deps],
  io_lib:format("Fun@L~p(~s)", [Origin, join_chars(L, ",")]);
format_type(Type) ->
  case cerl:is_literal(Type) of
    true -> io_lib:format("~w", [cerl:concrete(Type)]);
    false -> erl_types:t_to_string(Type)
  end.

join_chars([], _Sep) ->
  [];
join_chars([H|T], Sep) ->
  [H|[[Sep,X] || X <- T]].

debug_lookup_name(Var) ->
  case dict:find(t_var_name(Var), get(dialyzer_typesig_map)) of
    error -> Var;
    {ok, Name} -> Name
  end.
-endif.

-ifdef(DEBUG_NAME_MAP).
debug_make_name_map(Vars, Funs) ->
  Map = get(dialyzer_typesig_map),
  NewMap =
    if Map =:= undefined -> debug_make_name_map(Vars, Funs, dict:new());
       true              -> debug_make_name_map(Vars, Funs, Map)
    end,
  put(dialyzer_typesig_map, NewMap).

debug_make_name_map([Var|VarLeft], [Fun|FunLeft], Map) ->
  Name = {cerl:fname_id(Var), cerl:fname_arity(Var)},
  FunLabel = cerl_trees:get_label(Fun),
  debug_make_name_map(VarLeft, FunLeft, dict:store(FunLabel, Name, Map));
debug_make_name_map([], [], Map) ->
  Map.

-else.
debug_make_name_map(_Vars, _Funs) ->
  ok.
-endif.

-ifdef(DEBUG_CONSTRAINTS).
pp_constrs_scc(SCC, State) ->
  [pp_constrs(Fun, state__get_cs(Fun, State), State) || Fun <- SCC].

pp_constrs(Fun, Cs, State) ->
  io:format("Constraints for fun: ~w", [debug_lookup_name(Fun)]),
  MaxDepth = pp_constraints(Cs, State),
  io:format("Depth: ~w\n", [MaxDepth]).

pp_constraints(Cs, State) ->
  Res = pp_constraints([Cs], 0, 0, State),
  io:nl(),
  Res.

pp_constraints([List|Tail], Level, MaxDepth, State) when is_list(List) ->
  pp_constraints(List++Tail, Level, MaxDepth, State);
pp_constraints([#constraint_ref{id = Id}|Left], Level, MaxDepth, State) ->
  Cs = state__get_cs(Id, State),
  pp_indent(Level),
  io:format("%Ref ~w%", [t_var_name(Id)]),
  pp_constraints([Cs|Left], Level, MaxDepth, State);
pp_constraints([#constraint{}=C], Level, MaxDepth, _State) ->
  pp_op(C, Level),
  erlang:max(Level, MaxDepth);
pp_constraints([#constraint{}=C|Tail], Level, MaxDepth, State) ->
  pp_op(C, Level),
  pp_constraints(Tail, Level, MaxDepth, State);
pp_constraints([#constraint_list{type = Type, list = List, id = Id}],
	       Level, MaxDepth, State) ->
  pp_indent(Level),
  case Type of
    conj -> io:format("Conj ~w (", [Id]);
    disj -> io:format("Disj ~w (", [Id])
  end,
  NewMaxDepth = pp_constraints(List, Level + 1, MaxDepth, State),
  io:format(")", []),
  NewMaxDepth;
pp_constraints([#constraint_list{type = Type, list = List, id = Id}|Tail],
	       Level, MaxDepth, State) ->
  pp_indent(Level),
  case Type of
    conj -> io:format("Conj ~w (", [Id]);
    disj -> io:format("Disj ~w (", [Id])
  end,
  NewMaxDepth = pp_constraints(List, Level+1, MaxDepth, State),
  io:format(")", []),
  pp_constraints(Tail, Level, NewMaxDepth, State).

pp_op(#constraint{lhs = Lhs, op = Op, rhs = Rhs}, Level) ->
  pp_indent(Level),
  io:format("~s ~w ~s", [format_type(Lhs), Op, format_type(Rhs)]).

pp_indent(Level) ->
  io:format("\n~*s", [Level*2, ""]).
-else.
pp_constrs_scc(_SCC, _State) ->
  ok.
-endif.

-ifdef(TO_DOT).

constraints_to_dot_scc(SCC, State) ->
  io:format("SCC: ~p\n", [SCC]),
  Name = lists:flatten([io_lib:format("'~w'", [debug_lookup_name(Fun)])
			|| Fun <- SCC]),
  Cs = [state__get_cs(Fun, State) || Fun <- SCC],
  constraints_to_dot(Cs, Name, State).

constraints_to_dot(Cs0, Name, State) ->
  NofCs = length(Cs0),
  Cs = lists:zip(lists:seq(1, NofCs), Cs0),
  {Graph, Opts, _N} = constraints_to_nodes(Cs, NofCs + 1, 1, [], [], State),
  hipe_dot:translate_list(Graph, "/tmp/cs.dot", "foo", Opts),
  Res = os:cmd("dot -o /tmp/"++ Name ++ ".ps -T ps /tmp/cs.dot"),
  io:format("Res: ~p~n", [Res]),
  ok.

constraints_to_nodes([{Name, #constraint_list{type = Type, list = List, id=Id}}
		      |Left], N, Level, Graph, Opts, State) ->
  N1 = N + length(List),
  NewList = lists:zip(lists:seq(N, N1 - 1), List),
  Names = [SubName || {SubName, _C} <- NewList],
  Edges = [{Name, SubName} || SubName <- Names],
  ThisNode = [{Name, Opt} || Opt <- [{label,
				      lists:flatten(io_lib:format("~w", [Id]))},
				     {shape, get_shape(Type)},
				     {level, Level}]],
  {NewGraph, NewOpts, N2} = constraints_to_nodes(NewList, N1, Level+1,
						 [Edges|Graph],
						 [ThisNode|Opts], State),
  constraints_to_nodes(Left, N2, Level, NewGraph, NewOpts, State);
constraints_to_nodes([{Name, #constraint{lhs = Lhs, op = Op, rhs = Rhs}}|Left],
		     N, Level, Graph, Opts, State) ->
  Label = lists:flatten(io_lib:format("~s ~w ~s",
				      [format_type(Lhs), Op,
				       format_type(Rhs)])),
  ThisNode = [{Name, Opt} || Opt <- [{label, Label}, {level, Level}]],
  NewOpts = [ThisNode|Opts],
  constraints_to_nodes(Left, N, Level, Graph, NewOpts, State);
constraints_to_nodes([{Name, #constraint_ref{id = Id0}}|Left],
		     N, Level, Graph, Opts, State) ->
  Id = debug_lookup_name(Id0),
  CList = state__get_cs(Id0, State),
  ThisNode = [{Name, Opt} || Opt <- [{label,
				      lists:flatten(io_lib:format("~w", [Id]))},
				     {shape, ellipse},
				     {level, Level}]],
  NewList = [{N, CList}],
  {NewGraph, NewOpts, N1} = constraints_to_nodes(NewList, N + 1, Level + 1,
						 [{Name, N}|Graph],
						 [ThisNode|Opts], State),
  constraints_to_nodes(Left, N1, Level, NewGraph, NewOpts, State);
constraints_to_nodes([], N, _Level, Graph, Opts, _State) ->
  {lists:flatten(Graph), lists:flatten(Opts), N}.

get_shape(conj) -> box;
get_shape(disj) -> diamond.

-else.
constraints_to_dot_scc(_SCC, _State) ->
  ok.
-endif.