aboutsummaryrefslogblamecommitdiffstats
path: root/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_validator.erl
blob: 8fe43163f6163fdbeb10f52f4e175a9157a88718 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11


                                                                    
  






                                                                           
  


                                                                         




























                                                                    
                     

























                                                                   
                                                   









                                                                       
   















































































































































































































































                                                                            
                                          


                                               
                                          




                                                                            
                                                

































































































































































































                                                                            
                                           
                          
                                               

































                                                                       
                               















                                                                  
 









                                                               
                                                         




                                                          
                                                                     

































































































                                                                                
                                   

                                        
                                   








                                           
                                       

                                                                  
                                                              


                                                                  
                                       













































                                                                  
                                                          





























































                                                                    
                               



                                                      
                             

                                        
                             














                                        
 












































































































                                                           
               


























































                                                                     
%% ``Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.''
%%     $Id: beam_validator.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $

-module(beam_validator).

-export([file/1,files/1]).

%% Interface for compiler.
-export([module/2,format_error/1]).

-import(lists, [reverse/1,foldl/3]).

-define(MAXREG, 1024).

-define(DEBUG, 1).
-undef(DEBUG).
-ifdef(DEBUG).
-define(DBG_FORMAT(F, D), (io:format((F), (D)))).
-else.
-define(DBG_FORMAT(F, D), ok).
-endif.

%%%
%%% API functions.
%%%

files([F|Fs]) ->
    ?DBG_FORMAT("# Verifying: ~p~n", [F]),
    case file(F) of
	ok -> ok;
	{error,Es} ->
	    io:format("~p:~n~s~n", [F,format_error(Es)])
    end,
    files(Fs);
files([]) -> ok.

file(Name) when is_list(Name) ->
    case case filename:extension(Name) of
	     ".S" -> s_file(Name);
	     ".beam" -> beam_file(Name)
	 end of
	[] -> ok;
	Es -> {error,Es}
    end.

%% To be called by the compiler.
module({Mod,Exp,Attr,Fs,Lc}=Code, _Opts)
  when is_atom(Mod), is_list(Exp), is_list(Attr), is_integer(Lc) ->
    case validate(Fs) of
	[] -> {ok,Code};
	Es0 ->
	    Es = [{?MODULE,E} || E <- Es0],
	    {error,[{atom_to_list(Mod),Es}]}
    end.

format_error([]) -> [];
format_error([{{M,F,A},{I,Off,Desc}}|Es]) ->
    [io_lib:format("  ~p:~p/~p+~p:~n    ~p - ~p~n",
		   [M,F,A,Off,I,Desc])|format_error(Es)];
format_error({{_M,F,A},{I,Off,Desc}}) ->
    io_lib:format(
      "function ~p/~p+~p:~n"
      "  Internal consistency check failed - please report this bug.~n"
      "  Instruction: ~p~n"
      "  Error:       ~p:~n", [F,A,Off,I,Desc]).

%%%
%%% Local functions follow.
%%%

s_file(Name) ->
    {ok,Is} = file:consult(Name),
    Fs = find_functions(Is),
    validate(Fs).

find_functions(Fs) ->
    find_functions_1(Fs, none, [], []).

find_functions_1([{function,Name,Arity,Entry}|Is], Func, FuncAcc, Acc0) ->
    Acc = add_func(Func, FuncAcc, Acc0),
    find_functions_1(Is, {Name,Arity,Entry}, [], Acc);
find_functions_1([I|Is], Func, FuncAcc, Acc) ->
    find_functions_1(Is, Func, [I|FuncAcc], Acc);
find_functions_1([], Func, FuncAcc, Acc) ->
    reverse(add_func(Func, FuncAcc, Acc)).

add_func(none, _, Acc) -> Acc;
add_func({Name,Arity,Entry}, Is, Acc) ->
    [{function,Name,Arity,Entry,reverse(Is)}|Acc].

beam_file(Name) ->
    try beam_disasm:file(Name) of
	{error,beam_lib,Reason} -> [{beam_lib,Reason}];
	{beam_file,L} ->
	    {value,{code,Code0}} = lists:keysearch(code, 1, L),
	    Code = beam_file_1(Code0, []),
	    validate(Code)
    catch _:_ -> [disassembly_failed]
    end.

beam_file_1([F0|Fs], Acc) ->
    F = conv_func(F0),
    beam_file_1(Fs, [F|Acc]);
beam_file_1([], Acc) -> reverse(Acc).

%% Convert from the disassembly format to the internal format
%% used by the compiler (as passed to the assembler).

conv_func(Is) ->
    conv_func_1(labels(Is)).

conv_func_1({Ls,[{func_info,[{atom,M},{atom,F},Ar]},
		 {label,Entry}=Le|Is]}) ->
    %% The entry label gets maybe not correct here
    {function,F,Ar,Entry,
     [{label,L}||L<-Ls]++[{func_info,{atom,M},{atom,F},Ar},Le|Is]}.

%%%
%%% The validator follows.
%%%
%%% The purpose of the validator is find errors in the generated code
%%% that may cause the emulator to crash or behave strangely.
%%% We don't care about type errors in the user's code that will
%%% cause a proper exception at run-time.
%%%

%%% Things currently not checked. XXX
%%%
%%% - That floating point registers are initialized before used.
%%% - That fclearerror and fcheckerror are used properly.
%%% - Heap allocation for floating point numbers.
%%% - Heap allocation for binaries.
%%% - That a catchtag or trytag is not overwritten by the wrong
%%%   type of instruction (such as move/2).
%%% - Make sure that all catchtags and trytags have been removed
%%%   from the stack at return/tail call.
%%% - Verify get_list instructions.
%%%

%% validate([Function]) -> [] | [Error]
%%  A list of functions with their code. The code is in the same
%%  format as used in the compiler and in .S files.
validate([]) -> [];
validate([{function,Name,Ar,Entry,Code}|Fs]) ->
    try validate_1(Code, Name, Ar, Entry) of
	_ -> validate(Fs)
    catch
	Error ->
	    [Error|validate(Fs)];
	  error:Error ->
	    [validate_error(Error, Name, Ar)|validate(Fs)]
    end.

-ifdef(DEBUG).
validate_error(Error, Name, Ar) ->
    exit(validate_error_1(Error, Name, Ar)).
-else.
validate_error(Error, Name, Ar) ->
    validate_error_1(Error, Name, Ar).
-endif.
validate_error_1(Error, Name, Ar) ->
    {{'_',Name,Ar},
     {internal_error,'_',{Error,erlang:get_stacktrace()}}}.

-record(st,				%Emulation state
	{x=init_regs(0, term),		%x register info.
	 y=init_regs(0, initialized),	%y register info.
	 numy=none,			%Number of y registers.
	 h=0,				%Available heap size.
	 ct=[]				%List of hot catch/try labels
	}).

-record(vst,				%Validator state
	{current=none,			%Current state
	 branched=gb_trees:empty()	%States at jumps
	}).

-ifdef(DEBUG).
print_st(#st{x=Xs,y=Ys,numy=NumY,h=H,ct=Ct}) ->
    io:format("  #st{x=~p~n"
	      "      y=~p~n"
	      "      numy=~p,h=~p,ct=~w~n",
	      [gb_trees:to_list(Xs),gb_trees:to_list(Ys),NumY,H,Ct]).
-endif.

validate_1(Is, Name, Arity, Entry) ->
    validate_2(labels(Is), Name, Arity, Entry).

validate_2({Ls1,[{func_info,{atom,Mod},{atom,Name},Arity}=_F|Is]},
	   Name, Arity, Entry) ->
    lists:foreach(fun (_L) -> ?DBG_FORMAT("  ~p.~n", [_L]) end, Ls1),
    ?DBG_FORMAT("  ~p.~n", [_F]),
    validate_3(labels(Is), Name, Arity, Entry, Mod, Ls1);
validate_2({Ls1,Is}, Name, Arity, _Entry) ->
    error({{'_',Name,Arity},{first(Is),length(Ls1),illegal_instruction}}).

validate_3({Ls2,Is}, Name, Arity, Entry, Mod, Ls1) ->
    lists:foreach(fun (_L) -> ?DBG_FORMAT("  ~p.~n", [_L]) end, Ls2),
    Offset = 1 + length(Ls2),
    case lists:member(Entry, Ls2) of
	true ->
	    St = init_state(Arity),
	    Vst = #vst{current=St,
		       branched=gb_trees_from_list([{L,St} || L <- Ls1])},
	    valfun(Is, {Mod,Name,Arity}, Offset, Vst);
	false ->
	    error({{Mod,Name,Arity},{first(Is),Offset,no_entry_label}})
    end.

first([X|_]) -> X;
first([]) -> [].

labels(Is) ->
    labels_1(Is, []).

labels_1([{label,L}|Is], R) ->
    labels_1(Is, [L|R]);
labels_1(Is, R) ->
    {lists:reverse(R),Is}.

init_state(Arity) ->
    Xs = init_regs(Arity, term),
    Ys = init_regs(0, initialized),
    #st{x=Xs,y=Ys,numy=none,h=0,ct=[]}.

init_regs(0, _) ->
    gb_trees:empty();
init_regs(N, Type) ->
    gb_trees_from_list([{R,Type} || R <- lists:seq(0, N-1)]).

valfun([], _MFA, _Offset, Vst) -> Vst;
valfun([I|Is], MFA, Offset, Vst) ->
    ?DBG_FORMAT("    ~p.\n", [I]),
    valfun(Is, MFA, Offset+1,
	   try valfun_1(I, Vst)
	   catch Error ->
		   error({MFA,{I,Offset,Error}})
	   end).

%% Instructions that are allowed in dead code or when failing,
%% that is while the state is undecided in some way.
valfun_1({label,Lbl}, #vst{current=St0,branched=B}=Vst) ->
    St = merge_states(Lbl, St0, B),
    Vst#vst{current=St,branched=gb_trees:enter(Lbl, St, B)};
valfun_1(_I, #vst{current=none}=Vst) ->
    %% Ignore instructions after erlang:error/1,2, which
    %% the original R10B compiler thought would return.
    ?DBG_FORMAT("Ignoring ~p\n", [_I]),
    Vst;
valfun_1({badmatch,Src}, Vst) ->
    assert_term(Src, Vst),
    kill_state(Vst);
valfun_1({case_end,Src}, Vst) ->
    assert_term(Src, Vst),
    kill_state(Vst);
valfun_1(if_end, Vst) ->
    kill_state(Vst);
valfun_1({try_case_end,Src}, Vst) ->
    assert_term(Src, Vst),
    kill_state(Vst);
%% Instructions that can not cause exceptions
valfun_1({move,Src,Dst}, Vst) ->
    Type = get_term_type(Src, Vst),
    set_type_reg(Type, Dst, Vst);
valfun_1({fmove,Src,{fr,_}}, Vst) ->
    assert_type(float, Src, Vst);
valfun_1({fmove,{fr,_},Dst}, Vst) ->
    set_type_reg({float,[]}, Dst, Vst);
valfun_1({kill,{y,_}=Reg}, Vst) ->
    set_type_y(initialized, Reg, Vst);
valfun_1({test_heap,Heap,Live}, Vst) ->
    test_heap(Heap, Live, Vst);
valfun_1({bif,_Op,nofail,Src,Dst}, Vst) ->
    validate_src(Src, Vst),
    set_type_reg(term, Dst, Vst);
%% Put instructions.
valfun_1({put_list,A,B,Dst}, Vst0) ->
    assert_term(A, Vst0),
    assert_term(B, Vst0),
    Vst = eat_heap(2, Vst0),
    set_type_reg(cons, Dst, Vst);
valfun_1({put_tuple,Sz,Dst}, Vst0) when is_integer(Sz) ->
    Vst = eat_heap(1, Vst0),
    set_type_reg({tuple,Sz}, Dst, Vst);
valfun_1({put,Src}, Vst) ->
    assert_term(Src, Vst),
    eat_heap(1, Vst);
valfun_1({put_string,Sz,_,Dst}, Vst0) when is_integer(Sz) ->
    Vst = eat_heap(2*Sz, Vst0),
    set_type_reg(cons, Dst, Vst);
%% Allocate and deallocate, et.al
valfun_1({allocate,Stk,Live}, Vst) ->
    allocate(false, Stk, 0, Live, Vst);
valfun_1({allocate_heap,Stk,Heap,Live}, Vst) ->
    allocate(false, Stk, Heap, Live, Vst);
valfun_1({allocate_zero,Stk,Live}, Vst) ->
    allocate(true, Stk, 0, Live, Vst);
valfun_1({allocate_heap_zero,Stk,Heap,Live}, Vst) ->
    allocate(true, Stk, Heap, Live, Vst);
valfun_1({init,{y,_}=Reg}, Vst) ->
    set_type_y(initialized, Reg, Vst);
valfun_1({deallocate,StkSize}, #vst{current=#st{numy=StkSize,ct=[]}}=Vst) ->
    deallocate(Vst);
valfun_1({deallocate,_}, #vst{current=#st{numy=NumY,ct=[]}}) ->
    error({allocated,NumY});
valfun_1({deallocate,_}, #vst{current=#st{ct=Fails}}) ->
    error({catch_try_stack,Fails});
%% Catch & try.
valfun_1({'catch',Dst,{f,Fail}}, Vst0) when Fail /= none ->
    Vst = #vst{current=#st{ct=Fails}=St} =
	set_type_y({catchtag,Fail}, Dst, Vst0),
    Vst#vst{current=St#st{ct=[Fail|Fails]}};
valfun_1({'try',Dst,{f,Fail}}, Vst0) ->
    Vst = #vst{current=#st{ct=Fails}=St} =
	set_type_y({trytag,Fail}, Dst, Vst0),
    Vst#vst{current=St#st{ct=[Fail|Fails]}};
%% Do a postponed state branch if necessary and try next set of instructions
valfun_1(I, #vst{current=#st{ct=[]}}=Vst) ->
    valfun_2(I, Vst);
valfun_1(I, #vst{current=#st{ct=Fails}}=Vst0) ->
    %% Perform a postponed state branch
    Vst = #vst{current=St} = lists:foldl(fun branch_state/2, Vst0, Fails),
    valfun_2(I, Vst#vst{current=St#st{ct=[]}}).

%% Instructions that can cause exceptions.
valfun_2({apply,Live}, Vst) ->
    call(Live+2, Vst);
valfun_2({apply_last,Live,_}, Vst) ->
    tail_call(Live+2, Vst);
valfun_2({call_fun,Live}, Vst) ->
    call(Live, Vst);
valfun_2({call,Live,_}, Vst) ->
    call(Live, Vst);
valfun_2({call_ext,Live,Func}, Vst) ->
    call(Func, Live, Vst);
valfun_2({call_only,Live,_}, Vst) ->
    tail_call(Live, Vst);
valfun_2({call_ext_only,Live,_}, Vst) ->
    tail_call(Live, Vst);
valfun_2({call_last,Live,_,_}, Vst) ->
    tail_call(Live, Vst);
valfun_2({call_ext_last,Live,_,_}, Vst) ->
    tail_call(Live, Vst);
valfun_2({make_fun,_,_,Live}, Vst) ->
    call(Live, Vst);
valfun_2({make_fun2,_,_,_,Live}, Vst) ->
    call(Live, Vst);
%% Floating point.
valfun_2({fconv,Src,{fr,_}}, Vst) ->
    assert_term(Src, Vst);
valfun_2({bif,fadd,_,[{fr,_},{fr,_}],{fr,_}}, Vst) ->
    Vst;
valfun_2({bif,fdiv,_,[{fr,_},{fr,_}],{fr,_}}, Vst) ->
    Vst;
valfun_2({bif,fmul,_,[{fr,_},{fr,_}],{fr,_}}, Vst) ->
    Vst;
valfun_2({bif,fnegate,_,[{fr,_}],{fr,_}}, Vst) ->
    Vst;
valfun_2({bif,fsub,_,[{fr,_},{fr,_}],{fr,_}}, Vst) ->
    Vst;
valfun_2(fclearerror, Vst) ->
    Vst;
valfun_2({fcheckerror,_}, Vst) ->
    Vst;
%% Other BIFs
valfun_2({bif,element,{f,Fail},[Pos,Tuple],Dst}, Vst0) ->
    TupleType0 = get_term_type(Tuple, Vst0),
    PosType = get_term_type(Pos, Vst0),
    Vst1 = branch_state(Fail, Vst0),
    TupleType = upgrade_type({tuple,[get_tuple_size(PosType)]}, TupleType0),
    Vst = set_type(TupleType, Tuple, Vst1),
    set_type_reg(term, Dst, Vst);
valfun_2({bif,Op,{f,Fail},Src,Dst}, Vst0) ->
    validate_src(Src, Vst0),
    Vst = branch_state(Fail, Vst0),
    Type = bif_type(Op, Src, Vst),
    set_type_reg(Type, Dst, Vst);
valfun_2(return, #vst{current=#st{numy=none}}=Vst) ->
    kill_state(Vst);
valfun_2(return, #vst{current=#st{numy=NumY}}) ->
    error({stack_frame,NumY});
valfun_2({jump,{f,_}}, #vst{current=none}=Vst) ->
    %% Must be an unreachable jump which was not optimized away.
    %% Do nothing.
    Vst;
valfun_2({jump,{f,Lbl}}, Vst) ->
    kill_state(branch_state(Lbl, Vst));
valfun_2({loop_rec,{f,Fail},Dst}, Vst0) ->
    Vst = branch_state(Fail, Vst0),
    set_type_reg(term, Dst, Vst);
valfun_2(remove_message, Vst) ->
    Vst;
valfun_2({wait,_}, Vst) ->
    kill_state(Vst);
valfun_2({wait_timeout,_,Src}, Vst) ->
    assert_term(Src, Vst);
valfun_2({loop_rec_end,_}, Vst) ->
    kill_state(Vst);
valfun_2(timeout, #vst{current=St}=Vst) ->
    Vst#vst{current=St#st{x=init_regs(0, term)}};
valfun_2(send, Vst) ->
    call(2, Vst);
%% Catch & try.
valfun_2({catch_end,Reg}, Vst0) ->
    case get_type(Reg, Vst0) of
	{catchtag,_} ->
	    Vst = #vst{current=St} = set_type_reg(initialized, Reg, Vst0),
	    Xs = gb_trees_from_list([{0,term}]),
	    Vst#vst{current=St#st{x=Xs}};
	Type ->
	    error({bad_type,Type})
    end;
valfun_2({try_end,Reg}, Vst) ->
    case get_type(Reg, Vst) of
	{trytag,_} ->
	    set_type_reg(initialized, Reg, Vst);
	Type ->
	    error({bad_type,Type})
    end;
valfun_2({try_case,Reg}, Vst0) ->
    case get_type(Reg, Vst0) of
	{trytag,_} ->
	    Vst = #vst{current=St} = set_type_reg(initialized, Reg, Vst0),
	    Xs = gb_trees_from_list([{0,{atom,[]}},{1,term},{2,term}]),
	    Vst#vst{current=St#st{x=Xs}};
	Type ->
	    error({bad_type,Type})
    end;
valfun_2({set_tuple_element,Src,Tuple,I}, Vst) ->
    assert_term(Src, Vst),
    assert_type({tuple_element,I+1}, Tuple, Vst);
%% Match instructions.
valfun_2({select_val,Src,{f,Fail},{list,Choices}}, Vst) ->
    assert_term(Src, Vst),
    Lbls = [L || {f,L} <- Choices]++[Fail],
    kill_state(foldl(fun(L, S) -> branch_state(L, S) end, Vst, Lbls));
valfun_2({select_tuple_arity,Tuple,{f,Fail},{list,Choices}}, Vst) ->
    assert_type(tuple, Tuple, Vst),
    kill_state(branch_arities(Choices, Tuple, branch_state(Fail, Vst)));
valfun_2({get_list,Src,D1,D2}, Vst0) ->
    assert_term(Src, Vst0),
    Vst = set_type_reg(term, D1, Vst0),
    set_type_reg(term, D2, Vst);
valfun_2({get_tuple_element,Src,I,Dst}, Vst) ->
    assert_type({tuple_element,I+1}, Src, Vst),
    set_type_reg(term, Dst, Vst);
valfun_2({bs_restore,_}, Vst) ->
    Vst;
valfun_2({bs_save,_}, Vst) ->
    Vst;
valfun_2({bs_start_match,{f,Fail},Src}, Vst) ->
    assert_term(Src, Vst),
    branch_state(Fail, Vst);
valfun_2({test,bs_skip_bits,{f,Fail},[Src,_,_]}, Vst) ->
    assert_term(Src, Vst),
    branch_state(Fail, Vst);
valfun_2({test,_,{f,Fail},[_,_,_,Dst]}, Vst0) ->
    Vst = branch_state(Fail, Vst0),
    set_type_reg({integer,[]}, Dst, Vst);
valfun_2({test,bs_test_tail,{f,Fail},_}, Vst) ->
    branch_state(Fail, Vst);
%% Other test instructions.
valfun_2({test,is_float,{f,Lbl},[Float]}, Vst0) ->
    assert_term(Float, Vst0),
    Vst = branch_state(Lbl, Vst0),
    set_type({float,[]}, Float, Vst);
valfun_2({test,is_tuple,{f,Lbl},[Tuple]}, Vst0) ->
    assert_term(Tuple, Vst0),
    Vst = branch_state(Lbl, Vst0),
    set_type({tuple,[0]}, Tuple, Vst);
valfun_2({test,test_arity,{f,Lbl},[Tuple,Sz]}, Vst0) when is_integer(Sz) ->
    assert_type(tuple, Tuple, Vst0),
    Vst = branch_state(Lbl, Vst0),
    set_type_reg({tuple,Sz}, Tuple, Vst);
valfun_2({test,_Op,{f,Lbl},Src}, Vst) ->
    validate_src(Src, Vst),
    branch_state(Lbl, Vst);
valfun_2({bs_add,{f,Fail},[A,B,_],Dst}, Vst0) ->
    assert_term(A, Vst0),
    assert_term(B, Vst0),
    Vst = branch_state(Fail, Vst0),
    set_type_reg({integer,[]}, Dst, Vst);
valfun_2({bs_bits_to_bytes,{f,Fail},Src,Dst}, Vst0) ->
    assert_term(Src, Vst0),
    Vst = branch_state(Fail, Vst0),
    set_type_reg({integer,[]}, Dst, Vst);
valfun_2({bs_init2,{f,Fail},_,Heap,_,_,Dst}, Vst0) ->
    Vst1 = heap_alloc(Heap, Vst0),
    Vst = branch_state(Fail, Vst1),
    set_type_reg(binary, Dst, Vst);
valfun_2({bs_put_string,Sz,_}, Vst) when is_integer(Sz) ->
    Vst;
valfun_2({bs_put_binary,{f,Fail},_,_,_,Src}, Vst0) ->
    assert_term(Src, Vst0),
    branch_state(Fail, Vst0);
valfun_2({bs_put_float,{f,Fail},_,_,_,Src}, Vst0) ->
    assert_term(Src, Vst0),
    branch_state(Fail, Vst0);
valfun_2({bs_put_integer,{f,Fail},_,_,_,Src}, Vst0) ->
    assert_term(Src, Vst0),
    branch_state(Fail, Vst0);
%% Old bit syntax construction (before R10B).
valfun_2({bs_init,_,_}, Vst) -> Vst;
valfun_2({bs_need_buf,_}, Vst) -> Vst;
valfun_2({bs_final,{f,Fail},Dst}, Vst0) ->
    Vst = branch_state(Fail, Vst0),
    set_type_reg(binary, Dst, Vst);
%% Misc.
valfun_2({'%live',Live}, Vst) ->
    verify_live(Live, Vst),
    Vst;
valfun_2(_, _) ->
    error(unknown_instruction).

kill_state(#vst{current=#st{ct=[]}}=Vst) ->
    Vst#vst{current=none};
kill_state(#vst{current=#st{ct=Fails}}=Vst0) ->
    Vst = lists:foldl(fun branch_state/2, Vst0, Fails),
    Vst#vst{current=none}.

%% A "plain" call.
%%  The stackframe must have a known size and be initialized.
%%  The instruction will return to the instruction following the call.
call(Live, #vst{current=St}=Vst) ->
    verify_live(Live, Vst),
    verify_y_init(Vst),
    Xs = gb_trees_from_list([{0,term}]),
    Vst#vst{current=St#st{x=Xs}}.

%% A "plain" call.
%%  The stackframe must have a known size and be initialized.
%%  The instruction will return to the instruction following the call.
call(Name, Live, #vst{current=St}=Vst) ->
    verify_live(Live, Vst),
    case return_type(Name, Vst) of
	exception ->
	    kill_state(Vst);
	Type ->
	    verify_y_init(Vst),
	    Xs = gb_trees_from_list([{0,Type}]),
	    Vst#vst{current=St#st{x=Xs}}
    end.

%% Tail call.
%%  The stackframe must have a known size and be initialized.
%%  Does not return to the instruction following the call.
tail_call(Live, Vst) ->
    kill_state(call(Live, Vst)).

allocate(Zero, Stk, Heap, Live, #vst{current=#st{numy=none}=St}=Vst) ->
    verify_live(Live, Vst),
    Ys = init_regs(case Zero of
		       true -> Stk;
		       false -> 0
		   end, initialized),
    Vst#vst{current=St#st{y=Ys,numy=Stk,h=heap_alloc_1(Heap)}};
allocate(_, _, _, _, #vst{current=#st{numy=Numy}}) ->
    error({existing_stack_frame,{size,Numy}}).

deallocate(#vst{current=St}=Vst) ->
    Vst#vst{current=St#st{y=init_regs(0, initialized),numy=none}}.

test_heap(Heap, Live, Vst) ->
    verify_live(Live, Vst),
    heap_alloc(Heap, Vst).

heap_alloc(Heap, #vst{current=St}=Vst) ->
    Vst#vst{current=St#st{h=heap_alloc_1(Heap)}}.

heap_alloc_1({alloc,Alloc}) ->
    {value,{_,Heap}} = lists:keysearch(words, 1, Alloc),
    Heap;
heap_alloc_1(Heap) when is_integer(Heap) -> Heap.


set_type(Type, {x,_}=Reg, Vst) -> set_type_reg(Type, Reg, Vst);
set_type(Type, {y,_}=Reg, Vst) -> set_type_y(Type, Reg, Vst);
set_type(_, _, #vst{}=Vst) -> Vst.

set_type_reg(Type, {x,X}, #vst{current=#st{x=Xs}=St}=Vst)
  when 0 =< X, X < ?MAXREG ->
    Vst#vst{current=St#st{x=gb_trees:enter(X, Type, Xs)}};
set_type_reg(Type, Reg, Vst) ->
    set_type_y(Type, Reg, Vst).

set_type_y(Type, {y,Y}=Reg, #vst{current=#st{y=Ys,numy=NumY}=St}=Vst)
  when is_integer(Y), 0 =< Y, Y < ?MAXREG ->
    case {Y,NumY} of
	{_,none} ->
	    error({no_stack_frame,Reg});
	{_,_} when Y > NumY ->
	    error({y_reg_out_of_range,Reg,NumY});
	{_,_} ->
	    Vst#vst{current=St#st{y=gb_trees:enter(Y, Type, Ys)}}
    end;
set_type_y(Type, Reg, #vst{}) -> error({invalid_store,Reg,Type}).

assert_term(Src, Vst) ->
    get_term_type(Src, Vst),
    Vst.

%% The possible types.
%%
%% First non-term types:
%%
%% initialized		Only for Y registers. Means that the Y register
%%			has been initialized with some valid term so that
%%			it is safe to pass to the garbage collector.
%%			NOT safe to use in any other way (will not crash the
%%			emulator, but clearly points to a bug in the compiler).
%%
%% {catchtag,Lbl}	A special term used within a catch. Must only be used
%%			by the catch instructions; NOT safe to use in other
%%			instructions.
%%
%% {trytag,Lbl}		A special term used within a try block. Must only be
%%			used by the catch instructions; NOT safe to use in other
%%			instructions.
%%
%% exception		Can only be used as a type returned by return_type/2
%%			(which gives the type of the value returned by a BIF).
%%			Thus 'exception' is never stored as type descriptor
%%			for a register.
%%
%% Normal terms:
%%
%% term			Any valid Erlang (but not of the special types above).
%%
%% bool			The atom 'true' or the atom 'false'.
%%
%% cons         	Cons cell: [_|_]
%%
%% nil			Empty list: []
%%
%% {tuple,[Sz]}		Tuple. An element has been accessed using
%%              	element/2 or setelement/3 so that it is known that
%%              	the type is a tuple of size at least Sz.
%%
%% {tuple,Sz}		Tuple. A test_arity instruction has been seen
%%           		so that it is known that the size is exactly Sz.
%%
%% {atom,[]}		Atom.
%% {atom,Atom}
%%
%% {integer,[]}		Integer.
%% {integer,Integer}
%%
%% {float,[]}		Float.
%% {float,Float}
%%
%% number		Integer or Float of unknown value
%%

assert_type(WantedType, Term, Vst) ->
    assert_type(WantedType, get_type(Term, Vst)),
    Vst.

assert_type(float, {float,_}) -> ok;
assert_type(tuple, {tuple,_}) -> ok;
assert_type({tuple_element,I}, {tuple,[Sz]})
  when 1 =< I, I =< Sz ->
    ok;
assert_type({tuple_element,I}, {tuple,Sz})
  when is_integer(Sz), 1 =< I, I =< Sz ->
    ok;
assert_type(Needed, Actual) ->
    error({bad_type,{needed,Needed},{actual,Actual}}).

%% upgrade_type/2 is used when linear code finds out more and
%% more information about a type, so the type gets "narrower"
%% or perhaps inconsistent. In the case of inconsistency
%% we mostly widen the type to 'term' to make subsequent
%% code fail if it assumes anything about the type.

upgrade_type(Same, Same) -> Same;
upgrade_type(term, OldT) -> OldT;
upgrade_type(NewT, term) -> NewT;
upgrade_type({Type,New}=NewT, {Type,Old}=OldT)
  when Type == atom; Type == integer; Type == float ->
    if New =:= Old -> OldT;
       New =:= [] -> OldT;
       Old =:= [] -> NewT;
       true -> term
    end;
upgrade_type({Type,_}=NewT, number)
  when Type == integer; Type == float ->
    NewT;
upgrade_type(number, {Type,_}=OldT)
  when Type == integer; Type == float ->
    OldT;
upgrade_type(bool, {atom,A}) ->
    upgrade_bool(A);
upgrade_type({atom,A}, bool) ->
    upgrade_bool(A);
upgrade_type({tuple,[Sz]}, {tuple,[OldSz]})
  when is_integer(Sz) ->
    {tuple,[max(Sz, OldSz)]};
upgrade_type({tuple,Sz}=T, {tuple,[_]})
  when is_integer(Sz) ->
    %% This also takes care of the user error when a tuple element
    %% is accesed outside the known exact tuple size; there is
    %% no more type information, just a runtime error which is not
    %% our problem.
    T;
upgrade_type({tuple,[Sz]}, {tuple,_}=T)
  when is_integer(Sz) ->
    %% Same as the previous clause but mirrored.
    T;
upgrade_type(_A, _B) ->
    %%io:format("upgrade_type: ~p ~p\n", [_A,_B]),
    term.

upgrade_bool([]) -> bool;
upgrade_bool(true) -> {atom,true};
upgrade_bool(false) -> {atom,false};
upgrade_bool(_) -> term.

get_tuple_size({integer,[]}) -> 0;
get_tuple_size({integer,Sz}) -> Sz;
get_tuple_size(_) -> 0.

validate_src(Ss, Vst) when is_list(Ss) ->
    foldl(fun(S, _) -> get_type(S, Vst) end, ok, Ss).

get_term_type(Src, Vst) ->
    case get_type(Src, Vst) of
	initialized -> error({not_assigned,Src});
	exception -> error({exception,Src});
	{catchtag,_} -> error({catchtag,Src});
	{trytag,_} -> error({trytag,Src});
	Type -> Type
    end.

get_type(nil=T, _) -> T;
get_type({atom,A}=T, _) when is_atom(A) -> T;
get_type({float,F}=T, _) when is_float(F) -> T;
get_type({integer,I}=T, _) when is_integer(I) -> T;
get_type({x,X}=Reg, #vst{current=#st{x=Xs}}) when is_integer(X) ->
    case gb_trees:lookup(X, Xs) of
	{value,Type} -> Type;
	none -> error({uninitialized_reg,Reg})
    end;
get_type({y,Y}=Reg, #vst{current=#st{y=Ys}}) when is_integer(Y) ->
    case gb_trees:lookup(Y, Ys) of
	{value,initialized} -> error({unassigned_reg,Reg});
	{value,Type} -> Type;
	none -> error({uninitialized_reg,Reg})
    end;
get_type(Src, _) -> error({bad_source,Src}).

branch_arities([], _, #vst{}=Vst) -> Vst;
branch_arities([Sz,{f,L}|T], Tuple, #vst{current=St}=Vst0)
  when is_integer(Sz) ->
    Vst1 = set_type_reg({tuple,Sz}, Tuple, Vst0),
    Vst = branch_state(L, Vst1),
    branch_arities(T, Tuple, Vst#vst{current=St}).

branch_state(0, #vst{}=Vst) -> Vst;
branch_state(L, #vst{current=St,branched=B}=Vst) ->
    Vst#vst{
      branched=case gb_trees:is_defined(L, B) of
		   false ->
		       gb_trees:insert(L, St#st{ct=[]}, B);
		   true ->
		       MergedSt = merge_states(L, St, B),
		       gb_trees:update(L, MergedSt#st{ct=[]}, B)
	       end}.

%% merge_states/3 is used when there are more than one way to arrive
%% at this point, and the type states for the different paths has
%% to be merged. The type states are downgraded to the least common
%% subset for the subsequent code.

merge_states(0, St, _Branched) -> St;
merge_states(L, St, Branched) ->
    case gb_trees:lookup(L, Branched) of
	none -> St;
	{value,OtherSt} when St == none -> OtherSt;
	{value,OtherSt} ->
	    merge_states_1(St, OtherSt)
    end.

merge_states_1(#st{x=Xs0,y=Ys0,numy=NumY0,h=H0}=St,
	       #st{x=Xs1,y=Ys1,numy=NumY1,h=H1}) ->
    NumY = merge_stk(NumY0, NumY1),
    Xs = merge_regs(Xs0, Xs1),
    Ys = merge_regs(Ys0, Ys1),
    St#st{x=Xs,y=Ys,numy=NumY,h=min(H0, H1)}.

merge_stk(S, S) -> S;
merge_stk(_, _) -> undecided.

merge_regs(Rs0, Rs1) ->
    Rs = merge_regs_1(gb_trees:to_list(Rs0), gb_trees:to_list(Rs1)),
    gb_trees_from_list(Rs).

merge_regs_1([Same|Rs1], [Same|Rs2]) ->
    [Same|merge_regs_1(Rs1, Rs2)];
merge_regs_1([{R1,_}|Rs1], [{R2,_}|_]=Rs2) when R1 < R2 ->
    merge_regs_1(Rs1, Rs2);
merge_regs_1([{R1,_}|_]=Rs1, [{R2,_}|Rs2]) when R1 > R2 ->
    merge_regs_1(Rs1, Rs2);
merge_regs_1([{R,Type1}|Rs1], [{R,Type2}|Rs2]) ->
    [{R,merge_types(Type1, Type2)}|merge_regs_1(Rs1, Rs2)];
merge_regs_1([], []) -> [];
merge_regs_1([], [_|_]) -> [];
merge_regs_1([_|_], []) -> [].

merge_types(T, T) -> T;
merge_types(initialized=I, _) -> I;
merge_types(_, initialized=I) -> I;
merge_types({tuple,Same}=T, {tuple,Same}) -> T;
merge_types({tuple,A}, {tuple,B}) ->
    {tuple,[min(tuple_sz(A), tuple_sz(B))]};
merge_types({Type,A}, {Type,B})
  when Type == atom; Type == integer; Type == float ->
    if A =:= B -> {Type,A};
       true -> {Type,[]}
    end;
merge_types({Type,_}, number)
  when Type == integer; Type == float ->
    number;
merge_types(number, {Type,_})
  when Type == integer; Type == float ->
    number;
merge_types(bool, {atom,A}) ->
    merge_bool(A);
merge_types({atom,A}, bool) ->
    merge_bool(A);
merge_types(_, _) -> term.

tuple_sz([Sz]) -> Sz;
tuple_sz(Sz) -> Sz.

merge_bool([]) -> {atom,[]};
merge_bool(true) -> bool;
merge_bool(false) -> bool;
merge_bool(_) -> {atom,[]}.

verify_y_init(#vst{current=#st{numy=none}}) -> ok;
verify_y_init(#vst{current=#st{numy=undecided}}) ->
    error(unknown_size_of_stackframe);
verify_y_init(#vst{current=#st{y=Ys,numy=NumY}}) ->
    verify_y_init_1(NumY, Ys).

verify_y_init_1(0, _) -> ok;
verify_y_init_1(N, Ys) ->
    Y = N-1,
    case gb_trees:is_defined(Y, Ys) of
	false -> error({{y,Y},not_initialized});
	true -> verify_y_init_1(Y, Ys)
    end.

verify_live(0, #vst{}) -> ok;
verify_live(N, #vst{current=#st{x=Xs}}) ->
    verify_live_1(N, Xs).

verify_live_1(0, _) -> ok;
verify_live_1(N, Xs) ->
    X = N-1,
    case gb_trees:is_defined(X, Xs) of
	false -> error({{x,X},not_live});
	true -> verify_live_1(X, Xs)
    end.

eat_heap(N, #vst{current=#st{h=Heap0}=St}=Vst) ->
    case Heap0-N of
	Neg when Neg < 0 ->
	    error({heap_overflow,{left,Heap0},{wanted,N}});
	Heap ->
	    Vst#vst{current=St#st{h=Heap}}
    end.

bif_type('-', Src, Vst) ->
    arith_type(Src, Vst);
bif_type('+', Src, Vst) ->
    arith_type(Src, Vst);
bif_type('*', Src, Vst) ->
    arith_type(Src, Vst);
bif_type(abs, [Num], Vst) ->
    case get_type(Num, Vst) of
	{float,_}=T -> T;
	{integer,_}=T -> T;
	_ -> number
    end;
bif_type(float, _, _) -> {float,[]};
bif_type('/', _, _) -> {float,[]};
%% Integer operations.
bif_type('div', [_,_], _) -> {integer,[]};
bif_type('rem', [_,_], _) -> {integer,[]};
bif_type(length, [_], _) -> {integer,[]};
bif_type(size, [_], _) -> {integer,[]};
bif_type(trunc, [_], _) -> {integer,[]};
bif_type(round, [_], _) -> {integer,[]};
bif_type('band', [_,_], _) -> {integer,[]};
bif_type('bor', [_,_], _) -> {integer,[]};
bif_type('bxor', [_,_], _) -> {integer,[]};
bif_type('bnot', [_], _) -> {integer,[]};
bif_type('bsl', [_,_], _) -> {integer,[]};
bif_type('bsr', [_,_], _) -> {integer,[]};
%% Booleans.
bif_type('==', [_,_], _) -> bool;
bif_type('/=', [_,_], _) -> bool;
bif_type('=<', [_,_], _) -> bool;
bif_type('<', [_,_], _) -> bool;
bif_type('>=', [_,_], _) -> bool;
bif_type('>', [_,_], _) -> bool;
bif_type('=:=', [_,_], _) -> bool;
bif_type('=/=', [_,_], _) -> bool;
bif_type('not', [_], _) -> bool;
bif_type('and', [_,_], _) -> bool;
bif_type('or', [_,_], _) -> bool;
bif_type('xor', [_,_], _) -> bool;
bif_type(is_atom, [_], _) -> bool;
bif_type(is_boolean, [_], _) -> bool;
bif_type(is_binary, [_], _) -> bool;
bif_type(is_constant, [_], _) -> bool;
bif_type(is_float, [_], _) -> bool;
bif_type(is_function, [_], _) -> bool;
bif_type(is_integer, [_], _) -> bool;
bif_type(is_list, [_], _) -> bool;
bif_type(is_number, [_], _) -> bool;
bif_type(is_pid, [_], _) -> bool;
bif_type(is_port, [_], _) -> bool;
bif_type(is_reference, [_], _) -> bool;
bif_type(is_tuple, [_], _) -> bool;
%% Misc.
bif_type(node, [], _) -> {atom,[]};
bif_type(node, [_], _) -> {atom,[]};
bif_type(hd, [_], _) -> term;
bif_type(tl, [_], _) -> term;
bif_type(get, [_], _) -> term;
bif_type(raise, [_,_], _) -> exception;
bif_type(_, _, _) -> term.

arith_type([A,B], Vst) ->
    case {get_type(A, Vst),get_type(B, Vst)} of
	{{float,_},_} -> {float,[]};
	{_,{float,_}} -> {float,[]};
	{_,_} -> number
    end;
arith_type(_, _) -> number.

return_type({extfunc,M,F,A}, Vst) ->
    return_type_1(M, F, A, Vst).

return_type_1(erlang, setelement, 3, Vst) ->
    Tuple = {x,1},
    TupleType =
	case get_type(Tuple, Vst) of
	    {tuple,_}=TT -> TT;
	    _ -> {tuple,[0]}
	end,
    case get_type({x,0}, Vst) of
	{integer,[]} -> TupleType;
	{integer,I} -> upgrade_type({tuple,[I]}, TupleType);
	_ -> TupleType
    end;
return_type_1(erlang, F, A, _) ->
    return_type_erl(F, A);
return_type_1(math, F, A, _) ->
    return_type_math(F, A);
return_type_1(_, _, _, _) -> term.

return_type_erl(exit, 1) -> exception;
return_type_erl(throw, 1) -> exception;
return_type_erl(fault, 1) -> exception;
return_type_erl(fault, 2) -> exception;
return_type_erl(error, 1) -> exception;
return_type_erl(error, 2) -> exception;
return_type_erl(_, _) -> term.

return_type_math(cos, 1) -> {float,[]};
return_type_math(cosh, 1) -> {float,[]};
return_type_math(sin, 1) -> {float,[]};
return_type_math(sinh, 1) -> {float,[]};
return_type_math(tan, 1) -> {float,[]};
return_type_math(tanh, 1) -> {float,[]};
return_type_math(acos, 1) -> {float,[]};
return_type_math(acosh, 1) -> {float,[]};
return_type_math(asin, 1) -> {float,[]};
return_type_math(asinh, 1) -> {float,[]};
return_type_math(atan, 1) -> {float,[]};
return_type_math(atanh, 1) -> {float,[]};
return_type_math(erf, 1) -> {float,[]};
return_type_math(erfc, 1) -> {float,[]};
return_type_math(exp, 1) -> {float,[]};
return_type_math(log, 1) -> {float,[]};
return_type_math(log10, 1) -> {float,[]};
return_type_math(sqrt, 1) -> {float,[]};
return_type_math(atan2, 2) -> {float,[]};
return_type_math(pow, 2) -> {float,[]};
return_type_math(pi, 0) -> {float,[]};
return_type_math(_, _) -> term.

min(A, B) when is_integer(A), is_integer(B), A < B -> A;
min(A, B) when is_integer(A), is_integer(B) -> B.

max(A, B) when is_integer(A), is_integer(B), A > B -> A;
max(A, B) when is_integer(A), is_integer(B) -> B.

gb_trees_from_list(L) -> gb_trees:from_orddict(orddict:from_list(L)).

-ifdef(DEBUG).
error(Error) -> exit(Error).
-else.
error(Error) -> throw(Error).
-endif.