%% ``The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.''
%%
%% $Id: v3_codegen.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $
%%
%% Purpose : Code generator for Beam.
%% The following assumptions have been made:
%%
%% 1. Matches, i.e. things with {match,M,Ret} wrappers, only return
%% values; no variables are exported. If the match would have returned
%% extra variables then these have been transformed to multiple return
%% values.
%%
%% 2. All BIF's called in guards are gc-safe so there is no need to
%% put thing on the stack in the guard. While this would in principle
%% work it would be difficult to keep track of the stack depth when
%% trimming.
%%
%% The code generation uses variable lifetime information added by
%% the v3_life module to save variables, allocate registers and
%% move registers to the stack when necessary.
%%
%% We try to use a consistent variable name scheme throughout. The
%% StackReg record is always called Bef,Int<n>,Aft.
-module(v3_codegen).
%% The main interface.
-export([module/2]).
-import(lists, [member/2,keymember/3,keysort/2,keysearch/3,append/1,
map/2,flatmap/2,foldl/3,foldr/3,mapfoldl/3,
sort/1,reverse/1,reverse/2]).
-import(v3_life, [vdb_find/2]).
%%-compile([export_all]).
-include("v3_life.hrl").
%% Main codegen structure.
-record(cg, {lcount=1, %Label counter
mod, %Current module
func, %Current function
finfo, %Function info label
fcode, %Function code label
btype, %Type of bif used.
bfail, %Fail label of bif
break, %Break label
recv, %Receive label
is_top_block, %Boolean: top block or not
functable = [], %Table of local functions:
%[{{Name, Arity}, Label}...]
in_catch=false, %Inside a catch or not.
need_frame, %Need a stack frame.
new_funs=true}). %Generate new fun instructions.
%% Stack/register state record.
-record(sr, {reg=[], %Register table
stk=[], %Stack table
res=[]}). %Reserved regs: [{reserved,I,V}]
module({Mod,Exp,Attr,Forms}, Options) ->
NewFunsFlag = not member(no_new_funs, Options),
{Fs,St} = functions(Forms, #cg{mod=Mod,new_funs=NewFunsFlag}),
{ok,{Mod,Exp,Attr,Fs,St#cg.lcount}}.
functions(Forms, St0) ->
mapfoldl(fun (F, St) -> function(F, St) end, St0#cg{lcount=1}, Forms).
function({function,Name,Arity,As0,Vb,Vdb}, St0) ->
%%ok = io:fwrite("cg ~w:~p~n", [?LINE,{Name,Arity}]),
St1 = St0#cg{func={Name,Arity}},
{Fun,St2} = cg_fun(Vb, As0, Vdb, St1),
Func0 = {function,Name,Arity,St2#cg.fcode,Fun},
Func = bs_function(Func0),
{Func,St2}.
%% cg_fun([Lkexpr], [HeadVar], Vdb, State) -> {[Ainstr],State}
cg_fun(Les, Hvs, Vdb, St0) ->
{Name,Arity} = St0#cg.func,
{Fi,St1} = new_label(St0), %FuncInfo label
{Fl,St2} = local_func_label(Name, Arity, St1),
%% Create initial stack/register state, clear unused arguments.
Bef = clear_dead(#sr{reg=foldl(fun ({var,V}, Reg) ->
put_reg(V, Reg)
end, [], Hvs),
stk=[]}, 0, Vdb),
{B2,_Aft,St3} = cg_list(Les, 0, Vdb, Bef, St2#cg{btype=exit,
bfail=Fi,
finfo=Fi,
fcode=Fl,
is_top_block=true}),
A = [{label,Fi},{func_info,{atom,St3#cg.mod},{atom,Name},Arity},
{label,Fl}|B2],
{A,St3}.
%% cg(Lkexpr, Vdb, StackReg, State) -> {[Ainstr],StackReg,State}.
%% Generate code for a kexpr.
%% Split function into two steps for clarity, not efficiency.
cg(Le, Vdb, Bef, St) ->
cg(Le#l.ke, Le, Vdb, Bef, St).
cg({block,Es}, Le, Vdb, Bef, St) ->
block_cg(Es, Le, Vdb, Bef, St);
cg({match,M,Rs}, Le, Vdb, Bef, St) ->
match_cg(M, Rs, Le, Vdb, Bef, St);
cg({match_fail,F}, Le, Vdb, Bef, St) ->
match_fail_cg(F, Le, Vdb, Bef, St);
cg({call,Func,As,Rs}, Le, Vdb, Bef, St) ->
call_cg(Func, As, Rs, Le, Vdb, Bef, St);
cg({enter,Func,As}, Le, Vdb, Bef, St) ->
enter_cg(Func, As, Le, Vdb, Bef, St);
cg({bif,Bif,As,Rs}, Le, Vdb, Bef, St) ->
bif_cg(Bif, As, Rs, Le, Vdb, Bef, St);
cg({receive_loop,Te,Rvar,Rm,Tes,Rs}, Le, Vdb, Bef, St) ->
recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, Vdb, Bef, St);
cg(receive_next, Le, Vdb, Bef, St) ->
recv_next_cg(Le, Vdb, Bef, St);
cg(receive_accept, _Le, _Vdb, Bef, St) -> {[remove_message],Bef,St};
cg({'try',Ta,Vs,Tb,Evs,Th,Rs}, Le, Vdb, Bef, St) ->
try_cg(Ta, Vs, Tb, Evs, Th, Rs, Le, Vdb, Bef, St);
cg({'catch',Cb,R}, Le, Vdb, Bef, St) ->
catch_cg(Cb, R, Le, Vdb, Bef, St);
cg({set,Var,Con}, Le, Vdb, Bef, St) -> set_cg(Var, Con, Le, Vdb, Bef, St);
cg({return,Rs}, Le, Vdb, Bef, St) -> return_cg(Rs, Le, Vdb, Bef, St);
cg({break,Bs}, Le, Vdb, Bef, St) -> break_cg(Bs, Le, Vdb, Bef, St);
cg({need_heap,0}, _Le, _Vdb, Bef, St) ->
{[],Bef,St};
cg({need_heap,H}, _Le, _Vdb, Bef, St) ->
{[{test_heap,H,max_reg(Bef#sr.reg)}],Bef,St}.
%% cg_list([Kexpr], FirstI, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}.
cg_list(Kes, I, Vdb, Bef, St0) ->
{Keis,{Aft,St1}} =
flatmapfoldl(fun (Ke, {Inta,Sta}) ->
% ok = io:fwrite(" %% ~p\n", [Inta]),
% ok = io:fwrite("cgl:~p\n", [Ke]),
{Keis,Intb,Stb} = cg(Ke, Vdb, Inta, Sta),
% ok = io:fwrite(" ~p\n", [Keis]),
% ok = io:fwrite(" %% ~p\n", [Intb]),
{comment(Inta) ++ Keis,{Intb,Stb}}
end, {Bef,St0}, need_heap(Kes, I)),
{Keis,Aft,St1}.
%% need_heap([Lkexpr], I, BifType) -> [Lkexpr].
%% Insert need_heap instructions in Kexpr list. Try to be smart and
%% collect them together as much as possible.
need_heap(Kes0, I) ->
{Kes1,{H,F}} = flatmapfoldr(fun (Ke, {H0,F0}) ->
{Ns,H1,F1} = need_heap_1(Ke, H0, F0),
{[Ke|Ns],{H1,F1}}
end, {0,false}, Kes0),
%% Prepend need_heap if necessary.
Kes2 = need_heap_need(I, H, F) ++ Kes1,
% ok = io:fwrite("need_heap: ~p~n",
% [{{H,F},
% map(fun (#l{ke={match,M,Rs}}) -> match;
% (Lke) -> Lke#l.ke end, Kes2)}]),
Kes2.
need_heap_1(#l{ke={set,_,{binary,_}},i=I}, H, F) ->
{need_heap_need(I, H, F),0,false};
need_heap_1(#l{ke={set,_,Val}}, H, F) ->
%% Just pass through adding to needed heap.
{[],H + case Val of
{cons,_} -> 2;
{tuple,Es} -> 1 + length(Es);
{string,S} -> 2 * length(S);
_Other -> 0
end,F};
need_heap_1(#l{ke={call,_Func,_As,_Rs},i=I}, H, F) ->
%% Calls generate a need if necessary and also force one.
{need_heap_need(I, H, F),0,true};
need_heap_1(#l{ke={bif,dsetelement,_As,_Rs},i=I}, H, F) ->
{need_heap_need(I, H, F),0,true};
need_heap_1(#l{ke={bif,{make_fun,_,_,_,_},_As,_Rs},i=I}, H, F) ->
{need_heap_need(I, H, F),0,true};
need_heap_1(#l{ke={bif,_Bif,_As,_Rs}}, H, F) ->
{[],H,F};
need_heap_1(#l{i=I}, H, F) ->
%% Others kexprs generate a need if necessary but don't force.
{need_heap_need(I, H, F),0,false}.
need_heap_need(_I, 0, false) -> [];
need_heap_need(I, H, _F) -> [#l{ke={need_heap,H},i=I}].
%% match_cg(Match, [Ret], Le, Vdb, StackReg, State) ->
%% {[Ainstr],StackReg,State}.
%% Generate code for a match. First save all variables on the stack
%% that are to survive after the match. We leave saved variables in
%% their registers as they might actually be in the right place.
%% Should test this.
match_cg(M, Rs, Le, Vdb, Bef, St0) ->
I = Le#l.i,
{Sis,Int0} = adjust_stack(Bef, I, I+1, Vdb),
{B,St1} = new_label(St0),
{Mis,Int1,St2} = match_cg(M, none, Int0, St1#cg{break=B}),
%% Put return values in registers.
Reg = load_vars(Rs, Int1#sr.reg),
{Sis ++ Mis ++ [{label,B}],
clear_dead(Int1#sr{reg=Reg}, I, Vdb),
St2#cg{break=St1#cg.break}}.
%% match_cg(Match, Fail, StackReg, State) -> {[Ainstr],StackReg,State}.
%% Generate code for a match tree. N.B. there is no need pass Vdb
%% down as each level which uses this takes its own internal Vdb not
%% the outer one.
match_cg(Le, Fail, Bef, St) ->
match_cg(Le#l.ke, Le, Fail, Bef, St).
match_cg({alt,F,S}, _Le, Fail, Bef, St0) ->
{Tf,St1} = new_label(St0),
{Fis,Faft,St2} = match_cg(F, Tf, Bef, St1),
{Sis,Saft,St3} = match_cg(S, Fail, Bef, St2),
Aft = sr_merge(Faft, Saft),
{Fis ++ [{label,Tf}] ++ Sis,Aft,St3};
match_cg({select,V,Scs}, _Va, Fail, Bef, St) ->
match_fmf(fun (S, F, Sta) ->
select_cg(S, V, F, Fail, Bef, Sta) end,
Fail, St, Scs);
match_cg({guard,Gcs}, _Le, Fail, Bef, St) ->
match_fmf(fun (G, F, Sta) -> guard_clause_cg(G, F, Bef, Sta) end,
Fail, St, Gcs);
match_cg({block,Es}, Le, _Fail, Bef, St) ->
%% Must clear registers and stack of dead variables.
Int = clear_dead(Bef, Le#l.i, Le#l.vdb),
block_cg(Es, Le, Int, St).
%% match_fail_cg(FailReason, Le, Vdb, StackReg, State) ->
%% {[Ainstr],StackReg,State}.
%% Generate code for the match_fail "call". N.B. there is no generic
%% case for when the fail value has been created elsewhere.
match_fail_cg({function_clause,As}, Le, Vdb, Bef, St) ->
%% Must have the args in {x,0}, {x,1},...
{Sis,Int} = cg_setup_call(As, Bef, Le#l.i, Vdb),
{Sis ++ [{jump,{f,St#cg.finfo}}],
Int#sr{reg=clear_regs(Int#sr.reg)},St};
match_fail_cg({badmatch,Term}, Le, Vdb, Bef, St) ->
R = cg_reg_arg(Term, Bef),
Int0 = clear_dead(Bef, Le#l.i, Vdb),
{Sis,Int} = adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb),
{Sis ++ [{badmatch,R}],
Int#sr{reg=clear_regs(Int0#sr.reg)},St};
match_fail_cg({case_clause,Reason}, Le, Vdb, Bef, St) ->
R = cg_reg_arg(Reason, Bef),
Int0 = clear_dead(Bef, Le#l.i, Vdb),
{Sis,Int} = adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb),
{Sis++[{case_end,R}],
Int#sr{reg=clear_regs(Bef#sr.reg)},St};
match_fail_cg(if_clause, Le, Vdb, Bef, St) ->
Int0 = clear_dead(Bef, Le#l.i, Vdb),
{Sis,Int1} = adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb),
{Sis++[if_end],Int1#sr{reg=clear_regs(Int1#sr.reg)},St};
match_fail_cg({try_clause,Reason}, Le, Vdb, Bef, St) ->
R = cg_reg_arg(Reason, Bef),
Int0 = clear_dead(Bef, Le#l.i, Vdb),
{Sis,Int} = adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb),
{Sis ++ [{try_case_end,R}],
Int#sr{reg=clear_regs(Int0#sr.reg)},St}.
%% block_cg([Kexpr], Le, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}.
%% block_cg([Kexpr], Le, StackReg, St) -> {[Ainstr],StackReg,St}.
block_cg(Es, Le, _Vdb, Bef, St) ->
block_cg(Es, Le, Bef, St).
block_cg(Es, Le, Bef, St0) ->
case St0#cg.is_top_block of
false ->
cg_block(Es, Le#l.i, Le#l.vdb, Bef, St0);
true ->
{Keis,Aft,St1} = cg_block(Es, Le#l.i, Le#l.vdb, Bef,
St0#cg{is_top_block=false,
need_frame=false}),
top_level_block(Keis, Aft, max_reg(Bef#sr.reg), St1)
end.
cg_block([], _I, _Vdb, Bef, St0) ->
{[],Bef,St0};
cg_block(Kes0, I, Vdb, Bef, St0) ->
{Kes2,Int1,St1} =
case basic_block(Kes0) of
{Kes1,LastI,Args,Rest} ->
Ke = hd(Kes1),
Fb = Ke#l.i,
cg_basic_block(Kes1, Fb, LastI, Args, Vdb, Bef, St0);
{Kes1,Rest} ->
cg_list(Kes1, I, Vdb, Bef, St0)
end,
{Kes3,Int2,St2} = cg_block(Rest, I, Vdb, Int1, St1),
{Kes2 ++ Kes3,Int2,St2}.
basic_block(Kes) -> basic_block(Kes, []).
basic_block([], Acc) -> {reverse(Acc),[]};
basic_block([Le|Les], Acc) ->
case collect_block(Le#l.ke) of
include -> basic_block(Les, [Le|Acc]);
{block_end,As} -> {reverse(Acc, [Le]),Le#l.i,As,Les};
no_block -> {reverse(Acc, [Le]),Les}
end.
collect_block({set,_,{binary,_}}) -> no_block;
collect_block({set,_,_}) -> include;
collect_block({call,{var,_}=Var,As,_Rs}) -> {block_end,As++[Var]};
collect_block({call,Func,As,_Rs}) -> {block_end,As++func_vars(Func)};
collect_block({enter,{var,_}=Var,As})-> {block_end,As++[Var]};
collect_block({enter,Func,As}) -> {block_end,As++func_vars(Func)};
collect_block({return,Rs}) -> {block_end,Rs};
collect_block({break,Bs}) -> {block_end,Bs};
collect_block({bif,_Bif,_As,_Rs}) -> include;
collect_block(_) -> no_block.
func_vars({remote,M,F}) when element(1, M) == var;
element(1, F) == var ->
[M,F];
func_vars(_) -> [].
%% cg_basic_block([Kexpr], FirstI, LastI, As, Vdb, StackReg, State) ->
%% {[Ainstr],StackReg,State}.
cg_basic_block(Kes, Fb, Lf, As, Vdb, Bef, St0) ->
Res = make_reservation(As, 0),
Regs0 = reserve(Res, Bef#sr.reg, Bef#sr.stk),
Stk = extend_stack(Bef, Lf, Lf+1, Vdb),
Int0 = Bef#sr{reg=Regs0,stk=Stk,res=Res},
X0_v0 = x0_vars(As, Fb, Lf, Vdb),
{Keis,{Aft,_,St1}} =
flatmapfoldl(fun(Ke, St) -> cg_basic_block(Ke, St, Lf, Vdb) end,
{Int0,X0_v0,St0}, need_heap(Kes, Fb)),
{Keis,Aft,St1}.
cg_basic_block(Ke, {Inta,X0v,Sta}, _Lf, Vdb) when element(1, Ke#l.ke) =:= need_heap ->
{Keis,Intb,Stb} = cg(Ke, Vdb, Inta, Sta),
{comment(Inta) ++ Keis, {Intb,X0v,Stb}};
cg_basic_block(Ke, {Inta,X0_v1,Sta}, Lf, Vdb) ->
{Sis,Intb} = save_carefully(Inta, Ke#l.i, Lf+1, Vdb),
{X0_v2,Intc} = allocate_x0(X0_v1, Ke#l.i, Intb),
Intd = reserve(Intc),
{Keis,Inte,Stb} = cg(Ke, Vdb, Intd, Sta),
{comment(Inta) ++ Sis ++ Keis, {Inte,X0_v2,Stb}}.
make_reservation([], _) -> [];
make_reservation([{var,V}|As], I) -> [{I,V}|make_reservation(As, I+1)];
make_reservation([A|As], I) -> [{I,A}|make_reservation(As, I+1)].
reserve(Sr) -> Sr#sr{reg=reserve(Sr#sr.res, Sr#sr.reg, Sr#sr.stk)}.
reserve([{I,V}|Rs], [free|Regs], Stk) -> [{reserved,I,V}|reserve(Rs, Regs, Stk)];
reserve([{I,V}|Rs], [{I,V}|Regs], Stk) -> [{I,V}|reserve(Rs, Regs, Stk)];
reserve([{I,V}|Rs], [{I,Var}|Regs], Stk) ->
case on_stack(Var, Stk) of
true -> [{reserved,I,V}|reserve(Rs, Regs, Stk)];
false -> [{I,Var}|reserve(Rs, Regs, Stk)]
end;
reserve([{I,V}|Rs], [{reserved,I,_}|Regs], Stk) ->
[{reserved,I,V}|reserve(Rs, Regs, Stk)];
%reserve([{I,V}|Rs], [Other|Regs], Stk) -> [Other|reserve(Rs, Regs, Stk)];
reserve([{I,V}|Rs], [], Stk) -> [{reserved,I,V}|reserve(Rs, [], Stk)];
reserve([], Regs, _) -> Regs.
extend_stack(Bef, Fb, Lf, Vdb) ->
Stk0 = clear_dead_stk(Bef#sr.stk, Fb, Vdb),
Saves = [V || {V,F,L} <- Vdb,
F < Fb,
L >= Lf,
not on_stack(V, Stk0)],
Stk1 = foldl(fun (V, Stk) -> put_stack(V, Stk) end, Stk0, Saves),
Bef#sr.stk ++ lists:duplicate(length(Stk1) - length(Bef#sr.stk), free).
save_carefully(Bef, Fb, Lf, Vdb) ->
Stk = Bef#sr.stk,
%% New variables that are in use but not on stack.
New = [ {V,F,L} || {V,F,L} <- Vdb,
F < Fb,
L >= Lf,
not on_stack(V, Stk) ],
Saves = [ V || {V,_,_} <- keysort(2, New) ],
save_carefully(Saves, Bef, []).
save_carefully([], Bef, Acc) -> {reverse(Acc),Bef};
save_carefully([V|Vs], Bef, Acc) ->
case put_stack_carefully(V, Bef#sr.stk) of
error -> {reverse(Acc),Bef};
Stk1 ->
SrcReg = fetch_reg(V, Bef#sr.reg),
Move = {move,SrcReg,fetch_stack(V, Stk1)},
{x,_} = SrcReg, %Assertion - must be X register.
save_carefully(Vs, Bef#sr{stk=Stk1}, [Move|Acc])
end.
x0_vars([], _Fb, _Lf, _Vdb) -> [];
x0_vars([{var,V}|_], Fb, _Lf, Vdb) ->
{V,F,_L} = VFL = vdb_find(V, Vdb),
x0_vars1([VFL], Fb, F, Vdb);
x0_vars([X0|_], Fb, Lf, Vdb) ->
x0_vars1([{X0,Lf,Lf}], Fb, Lf, Vdb).
x0_vars1(X0, Fb, Xf, Vdb) ->
Vs0 = [VFL || {_V,F,L}=VFL <- Vdb,
F >= Fb,
L < Xf],
Vs1 = keysort(3, Vs0),
keysort(2, X0++Vs1).
allocate_x0([], _, Bef) -> {[],Bef#sr{res=[]}};
allocate_x0([{_,_,L}|Vs], I, Bef) when L =< I ->
allocate_x0(Vs, I, Bef);
allocate_x0([{V,_F,_L}=VFL|Vs], _, Bef) ->
{[VFL|Vs],Bef#sr{res=reserve_x0(V, Bef#sr.res)}}.
reserve_x0(V, [_|Res]) -> [{0,V}|Res];
reserve_x0(V, []) -> [{0,V}].
top_level_block(Keis, Bef, _MaxRegs, St0) when St0#cg.need_frame =:= false,
length(Bef#sr.stk) =:= 0 ->
%% This block need no stack frame. However, we still need to turn the
%% stack frame upside down.
MaxY = length(Bef#sr.stk)-1,
Keis1 = flatmap(fun (Tuple) when tuple(Tuple) ->
[turn_yregs(size(Tuple), Tuple, MaxY)];
(Other) ->
[Other]
end, Keis),
{Keis1, Bef, St0#cg{is_top_block=true}};
top_level_block(Keis, Bef, MaxRegs, St0) ->
%% This top block needs an allocate instruction before it, and a
%% deallocate instruction before each return.
FrameSz = length(Bef#sr.stk),
MaxY = FrameSz-1,
Keis1 = flatmap(fun ({call_only,Arity,Func}) ->
[{call_last,Arity,Func,FrameSz}];
({call_ext_only,Arity,Func}) ->
[{call_ext_last,Arity,Func,FrameSz}];
({apply_only,Arity}) ->
[{apply_last,Arity,FrameSz}];
(return) ->
[{deallocate,FrameSz}, return];
(Tuple) when tuple(Tuple) ->
[turn_yregs(size(Tuple), Tuple, MaxY)];
(Other) ->
[Other]
end, Keis),
{[{allocate_zero,FrameSz,MaxRegs}|Keis1], Bef, St0#cg{is_top_block=true}}.
%% turn_yregs(Size, Tuple, MaxY) -> Tuple'
%% Renumber y register so that {y, 0} becomes {y, FrameSize-1},
%% {y, FrameSize-1} becomes {y, 0} and so on. This is to make nested
%% catches work. The code generation algorithm gives a lower register
%% number to the outer catch, which is wrong.
turn_yregs(0, Tp, _) -> Tp;
turn_yregs(El, Tp, MaxY) when element(1, element(El, Tp)) == yy ->
turn_yregs(El-1, setelement(El, Tp, {y,MaxY-element(2, element(El, Tp))}), MaxY);
turn_yregs(El, Tp, MaxY) when list(element(El, Tp)) ->
New = map(fun ({yy,YY}) -> {y,MaxY-YY};
(Other) -> Other end, element(El, Tp)),
turn_yregs(El-1, setelement(El, Tp, New), MaxY);
turn_yregs(El, Tp, MaxY) ->
turn_yregs(El-1, Tp, MaxY).
%% select_cg(Sclause, V, TypeFail, ValueFail, StackReg, State) ->
%% {Is,StackReg,State}.
%% Selecting type and value needs two failure labels, TypeFail is the
%% label to jump to of the next type test when this type fails, and
%% ValueFail is the label when this type is correct but the value is
%% wrong. These are different as in the second case there is no need
%% to try the next type, it will always fail.
select_cg(#l{ke={type_clause,cons,[S]}}, {var,V}, Tf, Vf, Bef, St) ->
select_cons(S, V, Tf, Vf, Bef, St);
select_cg(#l{ke={type_clause,nil,[S]}}, {var,V}, Tf, Vf, Bef, St) ->
select_nil(S, V, Tf, Vf, Bef, St);
select_cg(#l{ke={type_clause,binary,[S]}}, {var,V}, Tf, Vf, Bef, St) ->
select_binary(S, V, Tf, Vf, Bef, St);
select_cg(#l{ke={type_clause,bin_seg,S}}, {var,V}, Tf, Vf, Bef, St) ->
select_bin_segs(S, V, Tf, Vf, Bef, St);
select_cg(#l{ke={type_clause,bin_end,[S]}}, {var,V}, Tf, Vf, Bef, St) ->
select_bin_end(S, V, Tf, Vf, Bef, St);
select_cg(#l{ke={type_clause,Type,Scs}}, {var,V}, Tf, Vf, Bef, St0) ->
{Vis,{Aft,St1}} =
mapfoldl(fun (S, {Int,Sta}) ->
{Val,Is,Inta,Stb} = select_val(S, V, Vf, Bef, Sta),
{{Is,[Val]},{sr_merge(Int, Inta),Stb}}
end, {void,St0}, Scs),
OptVls = combine(lists:sort(combine(Vis))),
{Vls,Sis,St2} = select_labels(OptVls, St1, [], []),
{select_val_cg(Type, fetch_var(V, Bef), Vls, Tf, Vf, Sis), Aft, St2}.
select_val_cg(tuple, R, [Arity,{f,Lbl}], Tf, Vf, [{label,Lbl}|Sis]) ->
[{test,is_tuple,{f,Tf},[R]},{test,test_arity,{f,Vf},[R,Arity]}|Sis];
select_val_cg(tuple, R, Vls, Tf, Vf, Sis) ->
[{test,is_tuple,{f,Tf},[R]},{select_tuple_arity,R,{f,Vf},{list,Vls}}|Sis];
select_val_cg(Type, R, [Val, {f,Lbl}], Fail, Fail, [{label,Lbl}|Sis]) ->
[{test,is_eq_exact,{f,Fail},[R,{Type,Val}]}|Sis];
select_val_cg(Type, R, [Val, {f,Lbl}], Tf, Vf, [{label,Lbl}|Sis]) ->
[{test,select_type_test(Type),{f,Tf},[R]},
{test,is_eq_exact,{f,Vf},[R,{Type,Val}]}|Sis];
select_val_cg(Type, R, Vls0, Tf, Vf, Sis) ->
Vls1 = map(fun ({f,Lbl}) -> {f,Lbl};
(Value) -> {Type,Value}
end, Vls0),
[{test,select_type_test(Type),{f,Tf},[R]}, {select_val,R,{f,Vf},{list,Vls1}}|Sis].
select_type_test(tuple) -> is_tuple;
select_type_test(integer) -> is_integer;
select_type_test(atom) -> is_atom;
select_type_test(float) -> is_float.
combine([{Is,Vs1}, {Is,Vs2}|Vis]) -> combine([{Is,Vs1 ++ Vs2}|Vis]);
combine([V|Vis]) -> [V|combine(Vis)];
combine([]) -> [].
select_labels([{Is,Vs}|Vis], St0, Vls, Sis) ->
{Lbl,St1} = new_label(St0),
select_labels(Vis, St1, add_vls(Vs, Lbl, Vls), [[{label,Lbl}|Is]|Sis]);
select_labels([], St, Vls, Sis) ->
{Vls,append(Sis),St}.
add_vls([V|Vs], Lbl, Acc) ->
add_vls(Vs, Lbl, [V, {f,Lbl}|Acc]);
add_vls([], _, Acc) -> Acc.
select_cons(#l{ke={val_clause,{cons,Es},B},i=I,vdb=Vdb}, V, Tf, Vf, Bef, St0) ->
{Eis,Int,St1} = select_extract_cons(V, Es, I, Vdb, Bef, St0),
{Bis,Aft,St2} = match_cg(B, Vf, Int, St1),
{[{test,is_nonempty_list,{f,Tf},[fetch_var(V, Bef)]}] ++ Eis ++ Bis,Aft,St2}.
select_nil(#l{ke={val_clause,nil,B}}, V, Tf, Vf, Bef, St0) ->
{Bis,Aft,St1} = match_cg(B, Vf, Bef, St0),
{[{test,is_nil,{f,Tf},[fetch_var(V, Bef)]}] ++ Bis,Aft,St1}.
select_binary(#l{ke={val_clause,{old_binary,Var},B}}=L,
V, Tf, Vf, Bef, St) ->
%% Currently handled in the same way as new binaries.
select_binary(L#l{ke={val_clause,{binary,Var},B}}, V, Tf, Vf, Bef, St);
select_binary(#l{ke={val_clause,{binary,{var,Ivar}},B},i=I,vdb=Vdb},
V, Tf, Vf, Bef, St0) ->
Int0 = clear_dead(Bef, I, Vdb),
{Bis,Aft,St1} = match_cg(B, Vf, Int0, St0),
{[{test,bs_start_match,{f,Tf},[fetch_var(V, Bef)]},{bs_save,Ivar}|Bis],
Aft,St1}.
select_bin_segs(Scs, Ivar, Tf, _Vf, Bef, St) ->
match_fmf(fun(S, Fail, Sta) ->
select_bin_seg(S, Ivar, Fail, Bef, Sta) end,
Tf, St, Scs).
select_bin_seg(#l{ke={val_clause,{bin_seg,Size,U,T,Fs,Es},B},i=I,vdb=Vdb},
Ivar, Fail, Bef, St0) ->
{Mis,Int,St1} = select_extract_bin(Es, Size, U, T, Fs, Fail,
I, Vdb, Bef, St0),
{Bis,Aft,St2} = match_cg(B, Fail, Int, St1),
{[{bs_restore,Ivar}|Mis] ++ Bis,Aft,St2}.
select_extract_bin([{var,Hd},{var,Tl}], Size0, Unit, Type, Flags, Vf,
I, Vdb, Bef, St) ->
SizeReg = get_bin_size_reg(Size0, Bef),
{Es,Aft} =
case vdb_find(Hd, Vdb) of
{_,_,Lhd} when Lhd =< I ->
{[{test,bs_skip_bits,{f,Vf},[SizeReg,Unit,{field_flags,Flags}]},
{bs_save,Tl}],Bef};
{_,_,_} ->
Reg0 = put_reg(Hd, Bef#sr.reg),
Int1 = Bef#sr{reg=Reg0},
Rhd = fetch_reg(Hd, Reg0),
Name = get_bits_instr(Type),
{[{test,Name,{f,Vf},[SizeReg,Unit,{field_flags,Flags},Rhd]},
{bs_save,Tl}],Int1}
end,
{Es,clear_dead(Aft, I, Vdb),St}.
get_bin_size_reg({var,V}, Bef) ->
fetch_var(V, Bef);
get_bin_size_reg(Literal, _Bef) ->
Literal.
select_bin_end(#l{ke={val_clause,bin_end,B}},
Ivar, Tf, Vf, Bef, St0) ->
{Bis,Aft,St2} = match_cg(B, Vf, Bef, St0),
{[{bs_restore,Ivar},{test,bs_test_tail,{f,Tf},[0]}|Bis],Aft,St2}.
get_bits_instr(integer) -> bs_get_integer;
get_bits_instr(float) -> bs_get_float;
get_bits_instr(binary) -> bs_get_binary.
select_val(#l{ke={val_clause,{tuple,Es},B},i=I,vdb=Vdb}, V, Vf, Bef, St0) ->
{Eis,Int,St1} = select_extract_tuple(V, Es, I, Vdb, Bef, St0),
{Bis,Aft,St2} = match_cg(B, Vf, Int, St1),
{length(Es),Eis ++ Bis,Aft,St2};
select_val(#l{ke={val_clause,{_,Val},B}}, _V, Vf, Bef, St0) ->
{Bis,Aft,St1} = match_cg(B, Vf, Bef, St0),
{Val,Bis,Aft,St1}.
%% select_extract_tuple(Src, [V], I, Vdb, StackReg, State) ->
%% {[E],StackReg,State}.
%% Extract tuple elements, but only if they do not immediately die.
select_extract_tuple(Src, Vs, I, Vdb, Bef, St) ->
F = fun ({var,V}, {Int0,Elem}) ->
case vdb_find(V, Vdb) of
{V,_,L} when L =< I -> {[], {Int0,Elem+1}};
_Other ->
Reg1 = put_reg(V, Int0#sr.reg),
Int1 = Int0#sr{reg=Reg1},
Rsrc = fetch_var(Src, Int1),
{[{get_tuple_element,Rsrc,Elem,fetch_reg(V, Reg1)}],
{Int1,Elem+1}}
end
end,
{Es,{Aft,_}} = flatmapfoldl(F, {Bef,0}, Vs),
{Es,Aft,St}.
select_extract_cons(Src, [{var,Hd}, {var,Tl}], I, Vdb, Bef, St) ->
{Es,Aft} = case {vdb_find(Hd, Vdb), vdb_find(Tl, Vdb)} of
{{_,_,Lhd}, {_,_,Ltl}} when Lhd =< I, Ltl =< I ->
%% Both head and tail are dead. No need to generate
%% any instruction.
{[], Bef};
_ ->
%% At least one of head and tail will be used,
%% but we must always fetch both. We will call
%% clear_dead/2 to allow reuse of the register
%% in case only of them is used.
Reg0 = put_reg(Tl, put_reg(Hd, Bef#sr.reg)),
Int0 = Bef#sr{reg=Reg0},
Rsrc = fetch_var(Src, Int0),
Rhd = fetch_reg(Hd, Reg0),
Rtl = fetch_reg(Tl, Reg0),
Int1 = clear_dead(Int0, I, Vdb),
{[{get_list,Rsrc,Rhd,Rtl}], Int1}
end,
{Es,Aft,St}.
guard_clause_cg(#l{ke={guard_clause,G,B},vdb=Vdb}, Fail, Bef, St0) ->
{Gis,Int,St1} = guard_cg(G, Fail, Vdb, Bef, St0),
{Bis,Aft,St2} = match_cg(B, Fail, Int, St1),
{Gis ++ Bis,Aft,St2}.
%% guard_cg(Guard, Fail, Vdb, StackReg, State) ->
%% {[Ainstr],StackReg,State}.
%% A guard is a boolean expression of tests. Tests return true or
%% false. A fault in a test causes the test to return false. Tests
%% never return the boolean, instead we generate jump code to go to
%% the correct exit point. Primops and tests all go to the next
%% instruction on success or jump to a failure label.
guard_cg(#l{ke={protected,Ts,Rs},i=I,vdb=Pdb}, Fail, _Vdb, Bef, St) ->
protected_cg(Ts, Rs, Fail, I, Pdb, Bef, St);
guard_cg(#l{ke={block,Ts},i=I,vdb=Bdb}, Fail, _Vdb, Bef, St) ->
guard_cg_list(Ts, Fail, I, Bdb, Bef, St);
guard_cg(#l{ke={test,Test,As},i=I,vdb=_Tdb}, Fail, Vdb, Bef, St) ->
test_cg(Test, As, Fail, I, Vdb, Bef, St);
guard_cg(G, _Fail, Vdb, Bef, St) ->
%%ok = io:fwrite("cg ~w: ~p~n", [?LINE,{G,Fail,Vdb,Bef}]),
{Gis,Aft,St1} = cg(G, Vdb, Bef, St),
%%ok = io:fwrite("cg ~w: ~p~n", [?LINE,{Aft}]),
{Gis,Aft,St1}.
%% protected_cg([Kexpr], [Ret], Fail, I, Vdb, Bef, St) -> {[Ainstr],Aft,St}.
%% Do a protected. Protecteds without return values are just done
%% for effect, the return value is not checked, success passes on to
%% the next instruction and failure jumps to Fail. If there are
%% return values then these must be set to 'false' on failure,
%% control always passes to the next instruction.
protected_cg(Ts, [], Fail, I, Vdb, Bef, St0) ->
%% Protect these calls, revert when done.
{Tis,Aft,St1} = guard_cg_list(Ts, Fail, I, Vdb, Bef,
St0#cg{btype=fail,bfail=Fail}),
{Tis,Aft,St1#cg{btype=St0#cg.btype,bfail=St0#cg.bfail}};
protected_cg(Ts, Rs, _Fail, I, Vdb, Bef, St0) ->
{Pfail,St1} = new_label(St0),
{Psucc,St2} = new_label(St1),
{Tis,Aft,St3} = guard_cg_list(Ts, Pfail, I, Vdb, Bef,
St2#cg{btype=fail,bfail=Pfail}),
%%ok = io:fwrite("cg ~w: ~p~n", [?LINE,{Rs,I,Vdb,Aft}]),
%% Set return values to false.
Mis = map(fun ({var,V}) -> {move,{atom,false},fetch_var(V, Aft)} end, Rs),
Live = {'%live',max_reg(Aft#sr.reg)},
{Tis ++ [Live,{jump,{f,Psucc}},
{label,Pfail}] ++ Mis ++ [Live,{label,Psucc}],
Aft,St3#cg{btype=St0#cg.btype,bfail=St0#cg.bfail}}.
%% test_cg(TestName, Args, Fail, I, Vdb, Bef, St) -> {[Ainstr],Aft,St}.
%% Generate test instruction. Use explicit fail label here.
test_cg(Test, As, Fail, I, Vdb, Bef, St) ->
case test_type(Test, length(As)) of
{cond_op,Op} ->
Ars = cg_reg_args(As, Bef),
Int = clear_dead(Bef, I, Vdb),
{[{test,Op,{f,Fail},Ars}],
clear_dead(Int, I, Vdb),
St};
{rev_cond_op,Op} ->
[S1,S2] = cg_reg_args(As, Bef),
Int = clear_dead(Bef, I, Vdb),
{[{test,Op,{f,Fail},[S2,S1]}],
clear_dead(Int, I, Vdb),
St}
end.
test_type(is_atom, 1) -> {cond_op,is_atom};
test_type(is_boolean, 1) -> {cond_op,is_boolean};
test_type(is_binary, 1) -> {cond_op,is_binary};
test_type(is_constant, 1) -> {cond_op,is_constant};
test_type(is_float, 1) -> {cond_op,is_float};
test_type(is_function, 1) -> {cond_op,is_function};
test_type(is_integer, 1) -> {cond_op,is_integer};
test_type(is_list, 1) -> {cond_op,is_list};
test_type(is_number, 1) -> {cond_op,is_number};
test_type(is_pid, 1) -> {cond_op,is_pid};
test_type(is_port, 1) -> {cond_op,is_port};
test_type(is_reference, 1) -> {cond_op,is_reference};
test_type(is_tuple, 1) -> {cond_op,is_tuple};
test_type('=<', 2) -> {rev_cond_op,is_ge};
test_type('>', 2) -> {rev_cond_op,is_lt};
test_type('<', 2) -> {cond_op,is_lt};
test_type('>=', 2) -> {cond_op,is_ge};
test_type('==', 2) -> {cond_op,is_eq};
test_type('/=', 2) -> {cond_op,is_ne};
test_type('=:=', 2) -> {cond_op,is_eq_exact};
test_type('=/=', 2) -> {cond_op,is_ne_exact};
test_type(internal_is_record, 3) -> {cond_op,internal_is_record}.
%% guard_cg_list([Kexpr], Fail, I, Vdb, StackReg, St) ->
%% {[Ainstr],StackReg,St}.
guard_cg_list(Kes, Fail, I, Vdb, Bef, St0) ->
{Keis,{Aft,St1}} =
flatmapfoldl(fun (Ke, {Inta,Sta}) ->
{Keis,Intb,Stb} =
guard_cg(Ke, Fail, Vdb, Inta, Sta),
{comment(Inta) ++ Keis,{Intb,Stb}}
end, {Bef,St0}, need_heap(Kes, I)),
{Keis,Aft,St1}.
%% match_fmf(Fun, LastFail, State, [Clause]) -> {Is,Aft,State}.
%% This is a special flatmapfoldl for match code gen where we
%% generate a "failure" label for each clause. The last clause uses
%% an externally generated failure label, LastFail. N.B. We do not
%% know or care how the failure labels are used.
match_fmf(F, LastFail, St, [H]) ->
F(H, LastFail, St);
match_fmf(F, LastFail, St0, [H|T]) ->
{Fail,St1} = new_label(St0),
{R,Aft1,St2} = F(H, Fail, St1),
{Rs,Aft2,St3} = match_fmf(F, LastFail, St2, T),
{R ++ [{label,Fail}] ++ Rs,sr_merge(Aft1, Aft2),St3};
match_fmf(_, _, St, []) -> {[],void,St}.
%% call_cg(Func, [Arg], [Ret], Le, Vdb, StackReg, State) ->
%% {[Ainstr],StackReg,State}.
%% enter_cg(Func, [Arg], Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}.
%% Call and enter first put the arguments into registers and save any
%% other registers, then clean up and compress the stack and set the
%% frame size. Finally the actual call is made. Call then needs the
%% return values filled in.
call_cg({var,V}, As, Rs, Le, Vdb, Bef, St0) ->
{Sis,Int} = cg_setup_call(As++[{var,V}], Bef, Le#l.i, Vdb),
%% Put return values in registers.
Reg = load_vars(Rs, clear_regs(Int#sr.reg)),
%% Build complete code and final stack/register state.
Arity = length(As),
{Frees,Aft} = free_dead(clear_dead(Int#sr{reg=Reg}, Le#l.i, Vdb)),
{comment({call_fun,{var,V},As}) ++ Sis ++ Frees ++ [{call_fun,Arity}],
Aft,need_stack_frame(St0)};
call_cg({remote,Mod,Name}, As, Rs, Le, Vdb, Bef, St0)
when element(1, Mod) == var;
element(1, Name) == var ->
{Sis,Int} = cg_setup_call(As++[Mod,Name], Bef, Le#l.i, Vdb),
%% Put return values in registers.
Reg = load_vars(Rs, clear_regs(Int#sr.reg)),
%% Build complete code and final stack/register state.
Arity = length(As),
Call = {apply,Arity},
St = need_stack_frame(St0),
%%{Call,St1} = build_call(Func, Arity, St0),
{Frees,Aft} = free_dead(clear_dead(Int#sr{reg=Reg}, Le#l.i, Vdb)),
{Sis ++ Frees ++ [Call],Aft,St};
call_cg(Func, As, Rs, Le, Vdb, Bef, St0) ->
{Sis,Int} = cg_setup_call(As, Bef, Le#l.i, Vdb),
%% Put return values in registers.
Reg = load_vars(Rs, clear_regs(Int#sr.reg)),
%% Build complete code and final stack/register state.
Arity = length(As),
{Call,St1} = build_call(Func, Arity, St0),
{Frees,Aft} = free_dead(clear_dead(Int#sr{reg=Reg}, Le#l.i, Vdb)),
{comment({call,Func,As}) ++ Sis ++ Frees ++ Call,Aft,St1}.
build_call({remote,{atom,erlang},{atom,'!'}}, 2, St0) ->
{[send],need_stack_frame(St0)};
build_call({remote,{atom,Mod},{atom,Name}}, Arity, St0) ->
{[{call_ext,Arity,{extfunc,Mod,Name,Arity}}],need_stack_frame(St0)};
build_call(Name, Arity, St0) when atom(Name) ->
{Lbl,St1} = local_func_label(Name, Arity, need_stack_frame(St0)),
{[{call,Arity,{f,Lbl}}],St1}.
free_dead(#sr{stk=Stk0}=Aft) ->
{Instr,Stk} = free_dead(Stk0, 0, [], []),
{Instr,Aft#sr{stk=Stk}}.
free_dead([dead|Stk], Y, Instr, StkAcc) ->
%% Note: kill/1 is equivalent to init/1 (translated by beam_asm).
%% We use kill/1 to help further optimisation passes.
free_dead(Stk, Y+1, [{kill,{yy,Y}}|Instr], [free|StkAcc]);
free_dead([Any|Stk], Y, Instr, StkAcc) ->
free_dead(Stk, Y+1, Instr, [Any|StkAcc]);
free_dead([], _, Instr, StkAcc) -> {Instr,reverse(StkAcc)}.
enter_cg({var,V}, As, Le, Vdb, Bef, St0) ->
{Sis,Int} = cg_setup_call(As++[{var,V}], Bef, Le#l.i, Vdb),
%% Build complete code and final stack/register state.
Arity = length(As),
{comment({call_fun,{var,V},As}) ++ Sis ++ [{call_fun,Arity},return],
clear_dead(Int#sr{reg=clear_regs(Int#sr.reg)}, Le#l.i, Vdb),
need_stack_frame(St0)};
enter_cg({remote,Mod,Name}=Func, As, Le, Vdb, Bef, St0)
when element(1, Mod) == var;
element(1, Name) == var ->
{Sis,Int} = cg_setup_call(As++[Mod,Name], Bef, Le#l.i, Vdb),
%% Build complete code and final stack/register state.
Arity = length(As),
Call = {apply_only,Arity},
St = need_stack_frame(St0),
{comment({enter,Func,As}) ++ Sis ++ [Call],
clear_dead(Int#sr{reg=clear_regs(Int#sr.reg)}, Le#l.i, Vdb),
St};
enter_cg(Func, As, Le, Vdb, Bef, St0) ->
{Sis,Int} = cg_setup_call(As, Bef, Le#l.i, Vdb),
%% Build complete code and final stack/register state.
Arity = length(As),
{Call,St1} = build_enter(Func, Arity, St0),
{comment({enter,Func,As}) ++ Sis ++ Call,
clear_dead(Int#sr{reg=clear_regs(Int#sr.reg)}, Le#l.i, Vdb),
St1}.
build_enter({remote,{atom,erlang},{atom,'!'}}, 2, St0) ->
{[send,return],need_stack_frame(St0)};
build_enter({remote,{atom,Mod},{atom,Name}}, Arity, St0) ->
St1 = case trap_bif(Mod, Name, Arity) of
true -> need_stack_frame(St0);
false -> St0
end,
{[{call_ext_only,Arity,{extfunc,Mod,Name,Arity}}],St1};
build_enter(Name, Arity, St0) when is_atom(Name) ->
{Lbl,St1} = local_func_label(Name, Arity, St0),
{[{call_only,Arity,{f,Lbl}}],St1}.
%% local_func_label(Name, Arity, State) -> {Label,State'}
%% Get the function entry label for a local function.
local_func_label(Name, Arity, St0) ->
Key = {Name,Arity},
case keysearch(Key, 1, St0#cg.functable) of
{value,{Key,Label}} ->
{Label,St0};
false ->
{Label,St1} = new_label(St0),
{Label,St1#cg{functable=[{Key,Label}|St1#cg.functable]}}
end.
%% need_stack_frame(State) -> State'
%% Make a note in the state that this function will need a stack frame.
need_stack_frame(#cg{need_frame=true}=St) -> St;
need_stack_frame(St) -> St#cg{need_frame=true}.
%% trap_bif(Mod, Name, Arity) -> true|false
%% Trap bifs that need a stack frame.
trap_bif(erlang, '!', 2) -> true;
trap_bif(erlang, link, 1) -> true;
trap_bif(erlang, unlink, 1) -> true;
trap_bif(erlang, monitor_node, 2) -> true;
trap_bif(erlang, group_leader, 2) -> true;
trap_bif(erlang, exit, 2) -> true;
trap_bif(_, _, _) -> false.
%% bif_cg(Bif, [Arg], [Ret], Le, Vdb, StackReg, State) ->
%% {[Ainstr],StackReg,State}.
bif_cg(dsetelement, [Index0,Tuple0,New0], _Rs, Le, Vdb, Bef, St0) ->
[New,Tuple,{integer,Index1}] = cg_reg_args([New0,Tuple0,Index0], Bef),
Index = Index1-1,
{[{set_tuple_element,New,Tuple,Index}],
clear_dead(Bef, Le#l.i, Vdb), St0};
bif_cg({make_fun,Func,Arity,Index,Uniq}, As, Rs, Le, Vdb, Bef, St0) ->
%% This behaves more like a function call.
{Sis,Int} = cg_setup_call(As, Bef, Le#l.i, Vdb),
Reg = load_vars(Rs, clear_regs(Int#sr.reg)),
{FuncLbl,St1} = local_func_label(Func, Arity, St0),
MakeFun = case St0#cg.new_funs of
true -> {make_fun2,{f,FuncLbl},Index,Uniq,length(As)};
false -> {make_fun,{f,FuncLbl},Uniq,length(As)}
end,
{comment({make_fun,{Func,Arity,Uniq},As}) ++ Sis ++
[MakeFun],
clear_dead(Int#sr{reg=Reg}, Le#l.i, Vdb),
St1};
bif_cg(Bif, As, [{var,V}], Le, Vdb, Bef, St0) ->
Ars = cg_reg_args(As, Bef),
%% If we are inside a catch, we must save everything that will
%% be alive after the catch (because the BIF might fail and there
%% will be a jump to the code after the catch).
%% Currently, we are somewhat pessimistic in
%% that we save any variable that will be live after this BIF call.
{Sis,Int0} =
case St0#cg.in_catch of
true -> adjust_stack(Bef, Le#l.i, Le#l.i+1, Vdb);
false -> {[],Bef}
end,
Int1 = clear_dead(Int0, Le#l.i, Vdb),
Reg = put_reg(V, Int1#sr.reg),
Int = Int1#sr{reg=Reg},
Dst = fetch_reg(V, Reg),
{Sis ++ [{bif,Bif,bif_fail(St0#cg.btype, St0#cg.bfail, length(Ars)),Ars,Dst}],
clear_dead(Int, Le#l.i, Vdb), St0}.
bif_fail(_, _, 0) -> nofail;
bif_fail(exit, _, _) -> {f,0};
bif_fail(fail, Fail, _) -> {f,Fail}.
%% recv_loop_cg(TimeOut, ReceiveVar, ReceiveMatch, TimeOutExprs,
%% [Ret], Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}.
recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, Vdb, Bef, St0) ->
{Sis,Int0} = adjust_stack(Bef, Le#l.i, Le#l.i, Vdb),
Int1 = Int0#sr{reg=clear_regs(Int0#sr.reg)},
%% Get labels.
{Rl,St1} = new_label(St0),
{Tl,St2} = new_label(St1),
{Bl,St3} = new_label(St2),
St4 = St3#cg{break=Bl,recv=Rl}, %Set correct receive labels
{Ris,Raft,St5} = cg_recv_mesg(Rvar, Rm, Tl, Int1, St4),
{Wis,Taft,St6} = cg_recv_wait(Te, Tes, Le#l.i, Int1, St5),
Int2 = sr_merge(Raft, Taft), %Merge stack/registers
Reg = load_vars(Rs, Int2#sr.reg),
{Sis ++ Ris ++ [{label,Tl}] ++ Wis ++ [{label,Bl}],
clear_dead(Int2#sr{reg=Reg}, Le#l.i, Vdb),
St6#cg{break=St0#cg.break,recv=St0#cg.recv}}.
%% cg_recv_mesg( ) -> {[Ainstr],Aft,St}.
cg_recv_mesg({var,R}, Rm, Tl, Bef, St0) ->
Int0 = Bef#sr{reg=put_reg(R, Bef#sr.reg)},
Ret = fetch_reg(R, Int0#sr.reg),
%% Int1 = clear_dead(Int0, I, Rm#l.vdb),
Int1 = Int0,
{Mis,Int2,St1} = match_cg(Rm, none, Int1, St0),
{[{'%live',0},{label,St1#cg.recv},{loop_rec,{f,Tl},Ret}|Mis],Int2,St1}.
%% cg_recv_wait(Te, Tes, I, Vdb, Int2, St3) -> {[Ainstr],Aft,St}.
cg_recv_wait({atom,infinity}, Tes, I, Bef, St0) ->
%% We know that the 'after' body will never be executed.
%% But to keep the stack and register information up to date,
%% we will generate the code for the 'after' body, and then discard it.
Int1 = clear_dead(Bef, I, Tes#l.vdb),
{_,Int2,St1} = cg_block(Tes#l.ke, Tes#l.i, Tes#l.vdb,
Int1#sr{reg=clear_regs(Int1#sr.reg)}, St0),
{[{wait,{f,St1#cg.recv}}],Int2,St1};
cg_recv_wait({integer,0}, Tes, _I, Bef, St0) ->
{Tis,Int,St1} = cg_block(Tes#l.ke, Tes#l.i, Tes#l.vdb, Bef, St0),
{[timeout|Tis],Int,St1};
cg_recv_wait(Te, Tes, I, Bef, St0) ->
Reg = cg_reg_arg(Te, Bef),
%% Must have empty registers here! Bug if anything in registers.
Int0 = clear_dead(Bef, I, Tes#l.vdb),
{Tis,Int,St1} = cg_block(Tes#l.ke, Tes#l.i, Tes#l.vdb,
Int0#sr{reg=clear_regs(Int0#sr.reg)}, St0),
{[{wait_timeout,{f,St1#cg.recv},Reg},timeout] ++ Tis,Int,St1}.
%% recv_next_cg(Le, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}.
%% Use adjust stack to clear stack, but only need it for Aft.
recv_next_cg(Le, Vdb, Bef, St) ->
{Sis,Aft} = adjust_stack(Bef, Le#l.i, Le#l.i+1, Vdb),
{[{loop_rec_end,{f,St#cg.recv}}] ++ Sis,Aft,St}. %Joke
%% try_cg(TryBlock, [BodyVar], TryBody, [ExcpVar], TryHandler, [Ret],
%% Le, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}.
try_cg(Ta, Vs, Tb, Evs, Th, Rs, Le, Vdb, Bef, St0) ->
{B,St1} = new_label(St0), %Body label
{H,St2} = new_label(St1), %Handler label
{E,St3} = new_label(St2), %End label
TryTag = Ta#l.i,
Int1 = Bef#sr{stk=put_catch(TryTag, Bef#sr.stk)},
TryReg = fetch_stack({catch_tag,TryTag}, Int1#sr.stk),
{Ais,Int2,St4} = cg(Ta, Vdb, Int1, St3#cg{break=B,in_catch=true}),
Int3 = Int2#sr{stk=drop_catch(TryTag, Int2#sr.stk)},
St5 = St4#cg{break=E,in_catch=St3#cg.in_catch},
{Bis,Baft,St6} = cg(Tb, Vdb, Int3#sr{reg=load_vars(Vs, Int3#sr.reg)}, St5),
{His,Haft,St7} = cg(Th, Vdb, Int3#sr{reg=load_vars(Evs, Int3#sr.reg)}, St6),
Int4 = sr_merge(Baft, Haft), %Merge stack/registers
Aft = Int4#sr{reg=load_vars(Rs, Int4#sr.reg)},
{[{'try',TryReg,{f,H}}] ++ Ais ++
[{label,B},{try_end,TryReg}] ++ Bis ++
[{label,H},{try_case,TryReg}] ++ His ++
[{label,E}],
clear_dead(Aft, Le#l.i, Vdb),
St7#cg{break=St0#cg.break}}.
%% catch_cg(CatchBlock, Ret, Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}.
catch_cg(C, {var,R}, Le, Vdb, Bef, St0) ->
{B,St1} = new_label(St0),
CatchTag = Le#l.i,
Int1 = Bef#sr{stk=put_catch(CatchTag, Bef#sr.stk)},
CatchReg = fetch_stack({catch_tag,CatchTag}, Int1#sr.stk),
{Cis,Int2,St2} = cg_block(C, Le#l.i, Le#l.vdb, Int1,
St1#cg{break=B,in_catch=true}),
Aft = Int2#sr{reg=load_reg(R, 0, Int2#sr.reg),
stk=drop_catch(CatchTag, Int2#sr.stk)},
{[{'catch',CatchReg,{f,B}}] ++ Cis ++
[{label,B},{catch_end,CatchReg}],
clear_dead(Aft, Le#l.i, Vdb),
St2#cg{break=St1#cg.break,in_catch=St1#cg.in_catch}}.
%% set_cg([Var], Constr, Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}.
%% We have to be careful how a 'set' works. First the structure is
%% built, then it is filled and finally things can be cleared. The
%% annotation must reflect this and make sure that the return
%% variable is allocated first.
%%
%% put_list for constructing a cons is an atomic instruction
%% which can safely resuse one of the source registers as target.
%% Also binaries can reuse a source register as target.
set_cg([{var,R}], {cons,Es}, Le, Vdb, Bef, St) ->
[S1,S2] = map(fun ({var,V}) -> fetch_var(V, Bef);
(Other) -> Other
end, Es),
Int0 = clear_dead(Bef, Le#l.i, Vdb),
Int1 = Int0#sr{reg=put_reg(R, Int0#sr.reg)},
Ret = fetch_reg(R, Int1#sr.reg),
{[{put_list,S1,S2,Ret}], Int1, St};
set_cg([{var,R}], {old_binary,Segs}, Le, Vdb, Bef, St) ->
Fail = bif_fail(St#cg.btype, St#cg.bfail, 42),
PutCode = cg_bin_put(Segs, Fail, Bef),
Code = cg_binary_old(PutCode),
Int0 = clear_dead(Bef, Le#l.i, Vdb),
Aft = Int0#sr{reg=put_reg(R, Int0#sr.reg)},
Ret = fetch_reg(R, Aft#sr.reg),
{Code ++ [{bs_final,Fail,Ret}],Aft,St};
set_cg([{var,R}], {binary,Segs}, Le, Vdb, Bef, #cg{in_catch=InCatch}=St) ->
Int0 = Bef#sr{reg=put_reg(R, Bef#sr.reg)},
Target = fetch_reg(R, Int0#sr.reg),
Fail = bif_fail(St#cg.btype, St#cg.bfail, 42),
Temp = find_scratch_reg(Int0#sr.reg),
PutCode = cg_bin_put(Segs, Fail, Bef),
{Sis,Int1} =
case InCatch of
true -> adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb);
false -> {[],Int0}
end,
Aft = clear_dead(Int1, Le#l.i, Vdb),
Code = cg_binary(PutCode, Target, Temp, Fail, Aft),
{Sis++Code,Aft,St};
set_cg([{var,R}], Con, Le, Vdb, Bef, St) ->
%% Find a place for the return register first.
Int = Bef#sr{reg=put_reg(R, Bef#sr.reg)},
Ret = fetch_reg(R, Int#sr.reg),
Ais = case Con of
{tuple,Es} ->
[{put_tuple,length(Es),Ret}] ++ cg_build_args(Es, Bef);
{var,V} -> % Normally removed by kernel optimizer.
[{move,fetch_var(V, Int),Ret}];
{string,Str} ->
[{put_string,length(Str),{string,Str},Ret}];
Other ->
[{move,Other,Ret}]
end,
{Ais,clear_dead(Int, Le#l.i, Vdb),St};
set_cg([], {binary,Segs}, Le, Vdb, Bef, St) ->
Fail = bif_fail(St#cg.btype, St#cg.bfail, 42),
Target = find_scratch_reg(Bef#sr.reg),
Temp = find_scratch_reg(put_reg(Target, Bef#sr.reg)),
PutCode = cg_bin_put(Segs, Fail, Bef),
Code = cg_binary(PutCode, Target, Temp, Fail, Bef),
Aft = clear_dead(Bef, Le#l.i, Vdb),
{Code,Aft,St};
set_cg([], {old_binary,Segs}, Le, Vdb, Bef, St) ->
Fail = bif_fail(St#cg.btype, St#cg.bfail, 42),
PutCode = cg_bin_put(Segs, Fail, Bef),
Ais0 = cg_binary_old(PutCode),
Ret = find_scratch_reg(Bef#sr.reg),
Ais = Ais0 ++ [{bs_final,Fail,Ret}],
{Ais,clear_dead(Bef, Le#l.i, Vdb),St};
set_cg([], _, Le, Vdb, Bef, St) ->
%% This should have been stripped by compiler, just cleanup.
{[],clear_dead(Bef, Le#l.i, Vdb), St}.
%%%
%%% Code generation for constructing binaries.
%%%
cg_binary(PutCode, Target, Temp, Fail, Bef) ->
SzCode = cg_binary_size(PutCode, Target, Temp, Fail),
MaxRegs = max_reg(Bef#sr.reg),
Code = SzCode ++ [{bs_init2,Fail,Target,MaxRegs,{field_flags,[]},Target}|PutCode],
cg_bin_opt(Code).
cg_binary_size(PutCode, Target, Temp, Fail) ->
Szs = cg_binary_size_1(PutCode, 0, []),
cg_binary_size_expr(Szs, Target, Temp, Fail).
cg_binary_size_1([{_Put,_Fail,S,U,_Flags,Src}|T], Bits, Acc) ->
cg_binary_size_2(S, U, Src, T, Bits, Acc);
cg_binary_size_1([], Bits, Acc) ->
Bytes = Bits div 8,
RemBits = Bits rem 8,
Res = sort([{1,{integer,RemBits}},{8,{integer,Bytes}}|Acc]),
cg_binary_size_3(Res).
cg_binary_size_2({integer,N}, U, _, Next, Bits, Acc) ->
cg_binary_size_1(Next, Bits+N*U, Acc);
cg_binary_size_2({atom,all}, 8, E, Next, Bits, Acc) ->
cg_binary_size_1(Next, Bits, [{8,{size,E}}|Acc]);
cg_binary_size_2(Reg, 1, _, Next, Bits, Acc) ->
cg_binary_size_1(Next, Bits, [{1,Reg}|Acc]);
cg_binary_size_2(Reg, 8, _, Next, Bits, Acc) ->
cg_binary_size_1(Next, Bits, [{8,Reg}|Acc]);
cg_binary_size_2(Reg, U, _, Next, Bits, Acc) ->
cg_binary_size_1(Next, Bits, [{1,{'*',Reg,U}}|Acc]).
cg_binary_size_3([{_,{integer,0}}|T]) ->
cg_binary_size_3(T);
cg_binary_size_3([{U,S1},{U,S2}|T]) ->
{L0,Rest} = cg_binary_size_4(T, U, []),
L = [S1,S2|L0],
[{U,L}|cg_binary_size_3(Rest)];
cg_binary_size_3([{U,S}|T]) ->
[{U,[S]}|cg_binary_size_3(T)];
cg_binary_size_3([]) -> [].
cg_binary_size_4([{U,S}|T], U, Acc) ->
cg_binary_size_4(T, U, [S|Acc]);
cg_binary_size_4(T, _, Acc) ->
{Acc,T}.
%% cg_binary_size_expr/4
%% Generate code for calculating the resulting size of a binary.
cg_binary_size_expr(Sizes, Target, Temp, Fail) ->
cg_binary_size_expr_1(Sizes, Target, Temp, Fail,
[{move,{integer,0},Target}]).
cg_binary_size_expr_1([{1,E0}|T], Target, Temp, Fail, Acc) ->
E1 = cg_gen_binsize(E0, Target, Temp, Fail, Acc),
E = [{bs_bits_to_bytes,Fail,Target,Target}|E1],
cg_binary_size_expr_1(T, Target, Temp, Fail, E);
cg_binary_size_expr_1([{8,E0}], Target, Temp, Fail, Acc) ->
E = cg_gen_binsize(E0, Target, Temp, Fail, Acc),
reverse(E);
cg_binary_size_expr_1([], _, _, _, Acc) -> reverse(Acc).
cg_gen_binsize([{'*',A,B}|T], Target, Temp, Fail, Acc) ->
cg_gen_binsize(T, Target, Temp, Fail,
[{bs_add,Fail,[Target,A,B],Target}|Acc]);
cg_gen_binsize([{size,B}|T], Target, Temp, Fail, Acc) ->
cg_gen_binsize([Temp|T], Target, Temp, Fail,
[{bif,size,Fail,[B],Temp}|Acc]);
cg_gen_binsize([E0|T], Target, Temp, Fail, Acc) ->
cg_gen_binsize(T, Target, Temp, Fail,
[{bs_add,Fail,[Target,E0,1],Target}|Acc]);
cg_gen_binsize([], _, _, _, Acc) -> Acc.
%% cg_bin_opt(Code0) -> Code
%% Optimize the size calculations for binary construction.
cg_bin_opt([{move,{integer,0},D},{bs_add,_,[D,{integer,_}=S,1],Dst}|Is]) ->
cg_bin_opt([{move,S,Dst}|Is]);
cg_bin_opt([{move,{integer,0},D},{bs_add,Fail,[D,S,U],Dst}|Is]) ->
cg_bin_opt([{bs_add,Fail,[{integer,0},S,U],Dst}|Is]);
cg_bin_opt([{move,{integer,Bytes},D},{bs_init2,Fail,D,Regs0,Flags,D}|Is]) ->
Regs = cg_bo_newregs(Regs0, D),
cg_bin_opt([{bs_init2,Fail,Bytes,Regs,Flags,D}|Is]);
cg_bin_opt([{move,Src,D},{bs_init2,Fail,D,Regs0,Flags,D}|Is]) ->
Regs = cg_bo_newregs(Regs0, D),
cg_bin_opt([{bs_init2,Fail,Src,Regs,Flags,D}|Is]);
cg_bin_opt([{move,Src,Dst},{bs_bits_to_bytes,Fail,Dst,Dst}|Is]) ->
cg_bin_opt([{bs_bits_to_bytes,Fail,Src,Dst}|Is]);
cg_bin_opt([{move,Src1,Dst},{bs_add,Fail,[Dst,Src2,U],Dst}|Is]) ->
cg_bin_opt([{bs_add,Fail,[Src1,Src2,U],Dst}|Is]);
cg_bin_opt([{bs_bits_to_bytes,Fail,{integer,N},_}|Is0]) when N rem 8 =/= 0 ->
case Fail of
{f,0} ->
Is = [{move,{atom,badarg},{x,0}},
{call_ext_only,1,{extfunc,erlang,error,1}}|Is0],
cg_bin_opt(Is);
_ ->
cg_bin_opt([{jump,Fail}|Is0])
end;
cg_bin_opt([I|Is]) ->
[I|cg_bin_opt(Is)];
cg_bin_opt([]) -> [].
cg_bo_newregs(R, {x,X}) when R-1 =:= X -> R-1;
cg_bo_newregs(R, _) -> R.
%% Common for new and old binary code generation.
cg_bin_put({bin_seg,S0,U,T,Fs,[E0,Next]}, Fail, Bef) ->
S1 = case S0 of
{var,Sv} -> fetch_var(Sv, Bef);
_ -> S0
end,
E1 = case E0 of
{var,V} -> fetch_var(V, Bef);
Other -> Other
end,
Op = case T of
integer -> bs_put_integer;
binary -> bs_put_binary;
float -> bs_put_float
end,
[{Op,Fail,S1,U,{field_flags,Fs},E1}|cg_bin_put(Next, Fail, Bef)];
cg_bin_put(bin_end, _, _) -> [].
%% Old style.
cg_binary_old(PutCode) ->
[cg_bs_init(PutCode)] ++ need_bin_buf(PutCode).
cg_bs_init(Code) ->
{Size,Fs} = foldl(fun ({_,_,{integer,N},U,_,_}, {S,Fs}) ->
{S + N*U,Fs};
(_, {S,_}) ->
{S,[]}
end, {0,[exact]}, Code),
{bs_init,(Size+7) div 8,{field_flags,Fs}}.
need_bin_buf(Code0) ->
{Code1,F,H} = foldr(fun ({_,_,{integer,N},U,_,_}=Bs, {Code,F,H}) ->
{[Bs|Code],F,H + N*U};
({_,_,_,_,_,_}=Bs, {Code,F,H}) ->
{[Bs|need_bin_buf_need(H, F, Code)],true,0}
end, {[],false,0}, Code0),
need_bin_buf_need(H, F, Code1).
need_bin_buf_need(0, false, Rest) -> Rest;
need_bin_buf_need(H, _, Rest) -> [{bs_need_buf,H}|Rest].
cg_build_args(As, Bef) ->
map(fun ({var,V}) -> {put,fetch_var(V, Bef)};
(Other) -> {put,Other}
end, As).
%% return_cg([Val], Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}.
%% break_cg([Val], Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}.
%% These are very simple, just put return/break values in registers
%% from 0, then return/break. Use the call setup to clean up stack,
%% but must clear registers to ensure sr_merge works correctly.
return_cg(Rs, Le, Vdb, Bef, St) ->
{Ms,Int} = cg_setup_call(Rs, Bef, Le#l.i, Vdb),
{comment({return,Rs}) ++ Ms ++ [return],
Int#sr{reg=clear_regs(Int#sr.reg)},St}.
break_cg(Bs, Le, Vdb, Bef, St) ->
{Ms,Int} = cg_setup_call(Bs, Bef, Le#l.i, Vdb),
{comment({break,Bs}) ++ Ms ++ [{jump,{f,St#cg.break}}],
Int#sr{reg=clear_regs(Int#sr.reg)},St}.
%% cg_reg_arg(Arg0, Info) -> Arg
%% cg_reg_args([Arg0], Info) -> [Arg]
%% Convert argument[s] into registers. Literal values are returned unchanged.
cg_reg_args(As, Bef) -> [cg_reg_arg(A, Bef) || A <- As].
cg_reg_arg({var,V}, Bef) -> fetch_var(V, Bef);
cg_reg_arg(Literal, _) -> Literal.
%% cg_setup_call([Arg], Bef, Cur, Vdb) -> {[Instr],Aft}.
%% Do the complete setup for a call/enter.
cg_setup_call(As, Bef, I, Vdb) ->
{Ms,Int0} = cg_call_args(As, Bef, I, Vdb),
%% Have set up arguments, can now clean up, compress and save to stack.
Int1 = Int0#sr{stk=clear_dead_stk(Int0#sr.stk, I, Vdb),res=[]},
{Sis,Int2} = adjust_stack(Int1, I, I+1, Vdb),
{Ms ++ Sis ++ [{'%live',length(As)}],Int2}.
%% cg_call_args([Arg], SrState) -> {[Instr],SrState}.
%% Setup the arguments to a call/enter/bif. Put the arguments into
%% consecutive registers starting at {x,0} moving any data which
%% needs to be saved. Return a modified SrState structure with the
%% new register contents. N.B. the resultant register info will
%% contain non-variable values when there are non-variable values.
%%
%% This routine is complicated by unsaved values in x registers.
%% We'll move away any unsaved values that are in the registers
%% to be overwritten by the arguments.
cg_call_args(As, Bef, I, Vdb) ->
Regs0 = load_arg_regs(Bef#sr.reg, As),
Unsaved = unsaved_registers(Regs0, Bef#sr.stk, I, I+1, Vdb),
{UnsavedMoves,Regs} = move_unsaved(Unsaved, Bef#sr.reg, Regs0),
Moves0 = gen_moves(As, Bef),
Moves = order_moves(Moves0, find_scratch_reg(Regs)),
{UnsavedMoves ++ Moves,Bef#sr{reg=Regs}}.
%% load_arg_regs([Reg], Arguments) -> [Reg]
%% Update the register descriptor to include the arguments (from {x,0}
%% and upwards). Values in argument register are overwritten.
%% Values in x registers above the arguments are preserved.
load_arg_regs(Regs, As) -> load_arg_regs(Regs, As, 0).
load_arg_regs([_|Rs], [{var,V}|As], I) -> [{I,V}|load_arg_regs(Rs, As, I+1)];
load_arg_regs([_|Rs], [A|As], I) -> [{I,A}|load_arg_regs(Rs, As, I+1)];
load_arg_regs([], [{var,V}|As], I) -> [{I,V}|load_arg_regs([], As, I+1)];
load_arg_regs([], [A|As], I) -> [{I,A}|load_arg_regs([], As, I+1)];
load_arg_regs(Rs, [], _) -> Rs.
%% Returns the variables must be saved and are currently in the
%% x registers that are about to be overwritten by the arguments.
unsaved_registers(Regs, Stk, Fb, Lf, Vdb) ->
[V || {V,F,L} <- Vdb,
F < Fb,
L >= Lf,
not on_stack(V, Stk),
not in_reg(V, Regs)].
in_reg(V, Regs) -> keymember(V, 2, Regs).
%% Move away unsaved variables from the registers that are to be
%% overwritten by the arguments.
move_unsaved(Vs, OrigRegs, NewRegs) ->
move_unsaved(Vs, OrigRegs, NewRegs, []).
move_unsaved([V|Vs], OrigRegs, NewRegs0, Acc) ->
NewRegs = put_reg(V, NewRegs0),
Src = fetch_reg(V, OrigRegs),
Dst = fetch_reg(V, NewRegs),
move_unsaved(Vs, OrigRegs, NewRegs, [{move,Src,Dst}|Acc]);
move_unsaved([], _, Regs, Acc) -> {Acc,Regs}.
%% gen_moves(As, Sr)
%% Generate the basic move instruction to move the arguments
%% to their proper registers. The list will be sorted on
%% destinations. (I.e. the move to {x,0} will be first --
%% see the comment to order_moves/2.)
gen_moves(As, Sr) -> gen_moves(As, Sr, 0, []).
gen_moves([{var,V}|As], Sr, I, Acc) ->
case fetch_var(V, Sr) of
{x,I} -> gen_moves(As, Sr, I+1, Acc);
Reg -> gen_moves(As, Sr, I+1, [{move,Reg,{x,I}}|Acc])
end;
gen_moves([A|As], Sr, I, Acc) ->
gen_moves(As, Sr, I+1, [{move,A,{x,I}}|Acc]);
gen_moves([], _, _, Acc) -> lists:keysort(3, Acc).
%% order_moves([Move], ScratchReg) -> [Move]
%% Orders move instruction so that source registers are not
%% destroyed before they are used. If there are cycles
%% (such as {move,{x,0},{x,1}}, {move,{x,1},{x,1}}),
%% the scratch register is used to break up the cycle.
%% If possible, the first move of the input list is placed
%% last in the result list (to make the move to {x,0} occur
%% just before the call to allow the Beam loader to coalesce
%% the instructions).
order_moves(Ms, Scr) -> order_moves(Ms, Scr, []).
order_moves([{move,_,_}=M|Ms0], ScrReg, Acc0) ->
{Chain,Ms} = collect_chain(Ms0, [M], ScrReg),
Acc = reverse(Chain, Acc0),
order_moves(Ms, ScrReg, Acc);
order_moves([], _, Acc) -> Acc.
collect_chain(Ms, Path, ScrReg) ->
collect_chain(Ms, Path, [], ScrReg).
collect_chain([{move,Src,Same}=M|Ms0], [{move,Same,_}|_]=Path, Others, ScrReg) ->
case keysearch(Src, 3, Path) of
{value,_} -> %We have a cycle.
{break_up_cycle(M, Path, ScrReg),reverse(Others, Ms0)};
false ->
collect_chain(reverse(Others, Ms0), [M|Path], [], ScrReg)
end;
collect_chain([M|Ms], Path, Others, ScrReg) ->
collect_chain(Ms, Path, [M|Others], ScrReg);
collect_chain([], Path, Others, _) ->
{Path,Others}.
break_up_cycle({move,Src,_}=M, Path, ScrReg) ->
[{move,ScrReg,Src},M|break_up_cycle1(Src, Path, ScrReg)].
break_up_cycle1(Dst, [{move,Src,Dst}|Path], ScrReg) ->
[{move,Src,ScrReg}|Path];
break_up_cycle1(Dst, [M|Path], LastMove) ->
[M|break_up_cycle1(Dst, Path, LastMove)].
%% clear_dead(Sr, Until, Vdb) -> Aft.
%% Remove all variables in Sr which have died AT ALL so far.
clear_dead(Sr, Until, Vdb) ->
Sr#sr{reg=clear_dead_reg(Sr, Until, Vdb),
stk=clear_dead_stk(Sr#sr.stk, Until, Vdb)}.
clear_dead_reg(Sr, Until, Vdb) ->
Reg = map(fun ({I,V}) ->
case vdb_find(V, Vdb) of
{V,_,L} when L > Until -> {I,V};
_ -> free %Remove anything else
end;
({reserved,I,V}) -> {reserved,I,V};
(free) -> free
end, Sr#sr.reg),
reserve(Sr#sr.res, Reg, Sr#sr.stk).
clear_dead_stk(Stk, Until, Vdb) ->
map(fun ({V}) ->
case vdb_find(V, Vdb) of
{V,_,L} when L > Until -> {V};
_ -> dead %Remove anything else
end;
(free) -> free;
(dead) -> dead
end, Stk).
%% sr_merge(Sr1, Sr2) -> Sr.
%% Merge two stack/register states keeping the longest of both stack
%% and register. Perform consistency check on both, elements must be
%% the same. Allow frame size 'void' to make easy creation of
%% "empty" frame.
sr_merge(#sr{reg=R1,stk=S1,res=[]}, #sr{reg=R2,stk=S2,res=[]}) ->
#sr{reg=longest(R1, R2),stk=longest(S1, S2),res=[]};
sr_merge(void, S2) -> S2#sr{res=[]};
sr_merge(S1, void) -> S1#sr{res=[]}.
longest([H|T1], [H|T2]) -> [H|longest(T1, T2)];
longest([dead|T1], [free|T2]) -> [dead|longest(T1, T2)];
longest([free|T1], [dead|T2]) -> [dead|longest(T1, T2)];
longest([dead|T1], []) -> [dead|T1];
longest([], [dead|T2]) -> [dead|T2];
longest([free|T1], []) -> [free|T1];
longest([], [free|T2]) -> [free|T2];
longest([], []) -> [].
%% adjust_stack(Bef, FirstBefore, LastFrom, Vdb) -> {[Ainstr],Aft}.
%% Do complete stack adjustment by compressing stack and adding
%% variables to be saved. Try to optimise ordering on stack by
%% having reverse order to their lifetimes.
%%
%% In Beam, there is a fixed stack frame and no need to do stack compression.
adjust_stack(Bef, Fb, Lf, Vdb) ->
Stk0 = Bef#sr.stk,
{Stk1,Saves} = save_stack(Stk0, Fb, Lf, Vdb),
{saves(Saves, Bef#sr.reg, Stk1),
Bef#sr{stk=Stk1}}.
%% save_stack(Stack, FirstBefore, LastFrom, Vdb) -> {[SaveVar],NewStack}.
%% Save variables which are used past current point and which are not
%% already on the stack.
save_stack(Stk0, Fb, Lf, Vdb) ->
%% New variables that are in use but not on stack.
New = [ {V,F,L} || {V,F,L} <- Vdb,
F < Fb,
L >= Lf,
not on_stack(V, Stk0) ],
%% Add new variables that are not just dropped immediately.
%% N.B. foldr works backwards from the end!!
Saves = [ V || {V,_,_} <- keysort(3, New) ],
Stk1 = foldr(fun (V, Stk) -> put_stack(V, Stk) end, Stk0, Saves),
{Stk1,Saves}.
%% saves([SaveVar], Reg, Stk) -> [{move,Reg,Stk}].
%% Generate move instructions to save variables onto stack. The
%% stack/reg info used is that after the new stack has been made.
saves(Ss, Reg, Stk) ->
Res = map(fun (V) ->
{move,fetch_reg(V, Reg),fetch_stack(V, Stk)}
end, Ss),
Res.
%% comment(C) -> ['%'{C}].
%comment(C) -> [{'%',C}].
comment(_) -> [].
%% fetch_var(VarName, StkReg) -> r{R} | sp{Sp}.
%% find_var(VarName, StkReg) -> ok{r{R} | sp{Sp}} | error.
%% Fetch/find a variable in either the registers or on the
%% stack. Fetch KNOWS it's there.
fetch_var(V, Sr) ->
case find_reg(V, Sr#sr.reg) of
{ok,R} -> R;
error -> fetch_stack(V, Sr#sr.stk)
end.
% find_var(V, Sr) ->
% case find_reg(V, Sr#sr.reg) of
% {ok,R} -> {ok,R};
% error ->
% case find_stack(V, Sr#sr.stk) of
% {ok,S} -> {ok,S};
% error -> error
% end
% end.
load_vars(Vs, Regs) ->
foldl(fun ({var,V}, Rs) -> put_reg(V, Rs) end, Regs, Vs).
%% put_reg(Val, Regs) -> Regs.
%% load_reg(Val, Reg, Regs) -> Regs.
%% free_reg(Val, Regs) -> Regs.
%% find_reg(Val, Regs) -> ok{r{R}} | error.
%% fetch_reg(Val, Regs) -> r{R}.
%% Functions to interface the registers.
%% put_reg puts a value into a free register,
%% load_reg loads a value into a fixed register
%% free_reg frees a register containing a specific value.
% put_regs(Vs, Rs) -> foldl(fun put_reg/2, Rs, Vs).
put_reg(V, Rs) -> put_reg_1(V, Rs, 0).
put_reg_1(V, [free|Rs], I) -> [{I,V}|Rs];
put_reg_1(V, [{reserved,I,V}|Rs], I) -> [{I,V}|Rs];
put_reg_1(V, [R|Rs], I) -> [R|put_reg_1(V, Rs, I+1)];
put_reg_1(V, [], I) -> [{I,V}].
load_reg(V, R, Rs) -> load_reg_1(V, R, Rs, 0).
load_reg_1(V, I, [_|Rs], I) -> [{I,V}|Rs];
load_reg_1(V, I, [R|Rs], C) -> [R|load_reg_1(V, I, Rs, C+1)];
load_reg_1(V, I, [], I) -> [{I,V}];
load_reg_1(V, I, [], C) -> [free|load_reg_1(V, I, [], C+1)].
% free_reg(V, [{I,V}|Rs]) -> [free|Rs];
% free_reg(V, [R|Rs]) -> [R|free_reg(V, Rs)];
% free_reg(V, []) -> [].
fetch_reg(V, [{I,V}|_]) -> {x,I};
fetch_reg(V, [_|SRs]) -> fetch_reg(V, SRs).
find_reg(V, [{I,V}|_]) -> {ok,{x,I}};
find_reg(V, [_|SRs]) -> find_reg(V, SRs);
find_reg(_, []) -> error.
%% For the bit syntax, we need a scratch register if we are constructing
%% a binary that will not be used.
find_scratch_reg(Rs) -> find_scratch_reg(Rs, 0).
find_scratch_reg([free|_], I) -> {x,I};
find_scratch_reg([_|Rs], I) -> find_scratch_reg(Rs, I+1);
find_scratch_reg([], I) -> {x,I}.
%%copy_reg(Val, R, Regs) -> load_reg(Val, R, Regs).
%%move_reg(Val, R, Regs) -> load_reg(Val, R, free_reg(Val, Regs)).
%%clear_regs(Regs) -> map(fun (R) -> free end, Regs).
clear_regs(_) -> [].
max_reg(Regs) ->
foldl(fun ({I,_}, _) -> I;
(_, Max) -> Max end,
-1, Regs) + 1.
%% put_stack(Val, [{Val}]) -> [{Val}].
%% fetch_stack(Var, Stk) -> sp{S}.
%% find_stack(Var, Stk) -> ok{sp{S}} | error.
%% Functions to interface the stack.
put_stack(Val, []) -> [{Val}];
put_stack(Val, [dead|Stk]) -> [{Val}|Stk];
put_stack(Val, [free|Stk]) -> [{Val}|Stk];
put_stack(Val, [NotFree|Stk]) -> [NotFree|put_stack(Val, Stk)].
put_stack_carefully(Val, Stk0) ->
case catch put_stack_carefully1(Val, Stk0) of
error -> error;
Stk1 when list(Stk1) -> Stk1
end.
put_stack_carefully1(_, []) -> throw(error);
put_stack_carefully1(Val, [dead|Stk]) -> [{Val}|Stk];
put_stack_carefully1(Val, [free|Stk]) -> [{Val}|Stk];
put_stack_carefully1(Val, [NotFree|Stk]) ->
[NotFree|put_stack_carefully1(Val, Stk)].
fetch_stack(Var, Stk) -> fetch_stack(Var, Stk, 0).
fetch_stack(V, [{V}|_], I) -> {yy,I};
fetch_stack(V, [_|Stk], I) -> fetch_stack(V, Stk, I+1).
% find_stack(Var, Stk) -> find_stack(Var, Stk, 0).
% find_stack(V, [{V}|Stk], I) -> {ok,{yy,I}};
% find_stack(V, [O|Stk], I) -> find_stack(V, Stk, I+1);
% find_stack(V, [], I) -> error.
on_stack(V, Stk) -> keymember(V, 1, Stk).
%% put_catch(CatchTag, Stack) -> Stack'
%% drop_catch(CatchTag, Stack) -> Stack'
%% Special interface for putting and removing catch tags, to ensure that
%% catches nest properly. Also used for try tags.
put_catch(Tag, Stk0) -> put_catch(Tag, reverse(Stk0), []).
put_catch(Tag, [], Stk) ->
put_stack({catch_tag,Tag}, Stk);
put_catch(Tag, [{{catch_tag,_}}|_]=RevStk, Stk) ->
reverse(RevStk, put_stack({catch_tag,Tag}, Stk));
put_catch(Tag, [Other|Stk], Acc) ->
put_catch(Tag, Stk, [Other|Acc]).
drop_catch(Tag, [{{catch_tag,Tag}}|Stk]) -> [free|Stk];
drop_catch(Tag, [Other|Stk]) -> [Other|drop_catch(Tag, Stk)].
%%%
%%% Finish the code generation for the bit syntax matching.
%%%
bs_function({function,Name,Arity,CLabel,Asm0}=Func) ->
case bs_needed(Asm0, 0, false, []) of
{false,[]} -> Func;
{true,Dict} ->
Asm = bs_replace(Asm0, Dict, []),
{function,Name,Arity,CLabel,Asm}
end.
%%%
%%% Pass 1: Found out which bs_restore's that are needed. For now we assume
%%% that a bs_restore is needed unless it is directly preceeded by a bs_save.
%%%
bs_needed([{bs_save,Name},{bs_restore,Name}|T], N, _BsUsed, Dict) ->
bs_needed(T, N, true, Dict);
bs_needed([{bs_save,_Name}|T], N, _BsUsed, Dict) ->
bs_needed(T, N, true, Dict);
bs_needed([{bs_restore,Name}|T], N, _BsUsed, Dict) ->
case keysearch(Name, 1, Dict) of
{value,{Name,_}} -> bs_needed(T, N, true, Dict);
false -> bs_needed(T, N+1, true, [{Name,N}|Dict])
end;
bs_needed([{bs_init,_,_}|T], N, _, Dict) ->
bs_needed(T, N, true, Dict);
bs_needed([{bs_init2,_,_,_,_,_}|T], N, _, Dict) ->
bs_needed(T, N, true, Dict);
bs_needed([{bs_start_match,_,_}|T], N, _, Dict) ->
bs_needed(T, N, true, Dict);
bs_needed([_|T], N, BsUsed, Dict) ->
bs_needed(T, N, BsUsed, Dict);
bs_needed([], _, BsUsed, Dict) -> {BsUsed,Dict}.
%%%
%%% Pass 2: Only needed if there were some bs_* instructions found.
%%%
%%% Remove any bs_save with a name that never were found to be restored
%%% in the first pass.
%%%
bs_replace([{bs_save,Name}=Save,{bs_restore,Name}|T], Dict, Acc) ->
bs_replace([Save|T], Dict, Acc);
bs_replace([{bs_save,Name}|T], Dict, Acc) ->
case keysearch(Name, 1, Dict) of
{value,{Name,N}} ->
bs_replace(T, Dict, [{bs_save,N}|Acc]);
false ->
bs_replace(T, Dict, Acc)
end;
bs_replace([{bs_restore,Name}|T], Dict, Acc) ->
case keysearch(Name, 1, Dict) of
{value,{Name,N}} ->
bs_replace(T, Dict, [{bs_restore,N}|Acc]);
false ->
bs_replace(T, Dict, Acc)
end;
bs_replace([{bs_init2,Fail,Bytes,Regs,Flags,Dst}|T0], Dict, Acc) ->
case bs_find_test_heap(T0) of
none ->
bs_replace(T0, Dict, [{bs_init2,Fail,Bytes,0,Regs,Flags,Dst}|Acc]);
{T,Words} ->
bs_replace(T, Dict, [{bs_init2,Fail,Bytes,Words,Regs,Flags,Dst}|Acc])
end;
bs_replace([H|T], Dict, Acc) ->
bs_replace(T, Dict, [H|Acc]);
bs_replace([], _, Acc) -> reverse(Acc).
bs_find_test_heap(Is) ->
bs_find_test_heap_1(Is, []).
bs_find_test_heap_1([{bs_put_integer,_,_,_,_,_}=I|Is], Acc) ->
bs_find_test_heap_1(Is, [I|Acc]);
bs_find_test_heap_1([{bs_put_float,_,_,_,_,_}=I|Is], Acc) ->
bs_find_test_heap_1(Is, [I|Acc]);
bs_find_test_heap_1([{bs_put_binary,_,_,_,_,_}=I|Is], Acc) ->
bs_find_test_heap_1(Is, [I|Acc]);
bs_find_test_heap_1([{test_heap,Words,_}|Is], Acc) ->
{reverse(Acc, Is),Words};
bs_find_test_heap_1(_, _) -> none.
%% new_label(St) -> {L,St}.
new_label(St) ->
L = St#cg.lcount,
{L,St#cg{lcount=L+1}}.
flatmapfoldl(F, Accu0, [Hd|Tail]) ->
{R,Accu1} = F(Hd, Accu0),
{Rs,Accu2} = flatmapfoldl(F, Accu1, Tail),
{R++Rs,Accu2};
flatmapfoldl(_, Accu, []) -> {[],Accu}.
flatmapfoldr(F, Accu0, [Hd|Tail]) ->
{Rs,Accu1} = flatmapfoldr(F, Accu0, Tail),
{R,Accu2} = F(Hd, Accu1),
{R++Rs,Accu2};
flatmapfoldr(_, Accu, []) -> {[],Accu}.