<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE cref SYSTEM "cref.dtd">
<cref>
<header>
<copyright>
<year>2001</year><year>2017</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>ei</title>
<prepared>Jakob Cederlund</prepared>
<responsible>Kent Boortz</responsible>
<docno>1</docno>
<approved>Kenneth Lundin</approved>
<checked></checked>
<date>2000-11-27</date>
<rev>PA1</rev>
<file>ei.xml</file>
</header>
<lib>ei</lib>
<libsummary>Routines for handling the Erlang binary term format.</libsummary>
<description>
<note><p>The support for VxWorks is deprecated as of OTP 22, and
will be removed in OTP 23.</p></note>
<p>The library <c>ei</c> contains macros and functions to encode
and decode the Erlang binary term format.</p>
<p><c>ei</c> allows you to convert atoms, lists, numbers, and
binaries to and from the binary format. This is useful when
writing port programs and drivers. <c>ei</c> uses a given
buffer, no dynamic memory (except
<c>ei_decode_fun()</c>) and is often quite fast.</p>
<p><c>ei</c> also handles C-nodes, C-programs that talks Erlang
distribution with Erlang nodes (or other C-nodes) using the
Erlang distribution format. The difference between <c>ei</c>
and <c>erl_interface</c> is that <c>ei</c> uses
the binary format directly when sending and receiving terms. It is also
thread safe, and using threads, one process can handle multiple
C-nodes. The <c>erl_interface</c> library is built on top of
<c>ei</c>, but of legacy reasons, it does not allow for
multiple C-nodes. In general, <c>ei</c> is the preferred way
of doing C-nodes.</p>
<p>The decode and encode functions use a buffer and an index into the
buffer, which points at the point where to encode and
decode. The index is updated to point right after the term
encoded/decoded. No checking is done whether the term fits in
the buffer or not. If encoding goes outside the buffer, the
program can crash.</p>
<p>All functions take two parameters:</p>
<list type="bulleted">
<item><p><c>buf</c> is a pointer to
the buffer where the binary data is or will be.</p>
</item>
<item><p><c>index</c> is a pointer to an index into the
buffer. This parameter is incremented with the size of the term
decoded/encoded.</p>
</item>
</list>
<p>The data is thus at <c>buf[*index]</c> when an
<c>ei</c> function is called.</p>
<p>All encode functions assume that the <c>buf</c> and
<c>index</c> parameters point to a buffer large enough for
the data. To get the size of an encoded term, without encoding it,
pass <c>NULL</c> instead of a buffer pointer. Parameter
<c>index</c> is incremented, but nothing will be encoded. This
is the way in <c>ei</c> to "preflight" term encoding.</p>
<p>There are also encode functions that use a dynamic buffer. It
is often more convenient to use these to encode data. All encode
functions comes in two versions; those starting with
<c>ei_x</c> use a dynamic buffer.</p>
<p>All functions return <c>0</c> if successful, otherwise
<c>-1</c> (for example, if a term is not of the expected
type, or the data to decode is an invalid Erlang term).</p>
<p>Some of the decode functions need a pre-allocated buffer. This
buffer must be allocated large enough, and for non-compound types
the <c>ei_get_type()</c>
function returns the size required (notice that for strings an
extra byte is needed for the <c>NULL</c>-terminator).</p>
</description>
<section>
<title>Data Types</title>
<taglist>
<tag><marker id="erlang_char_encoding"/>erlang_char_encoding</tag>
<item>
<code type="none">
typedef enum {
ERLANG_ASCII = 1,
ERLANG_LATIN1 = 2,
ERLANG_UTF8 = 4
} erlang_char_encoding;</code>
<p>The character encodings used for atoms. <c>ERLANG_ASCII</c>
represents 7-bit ASCII. Latin-1 and UTF-8 are different extensions
of 7-bit ASCII. All 7-bit ASCII characters are valid Latin-1 and
UTF-8 characters. ASCII and Latin-1 both represent each character
by one byte. An UTF-8 character can consist of 1-4 bytes.
Notice that these constants are bit-flags and can be combined with
bitwise OR.</p>
</item>
</taglist>
</section>
<funcs>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_atom(const char *buf, int *index, char *p)</nametext></name>
<fsummary>Decode an atom.</fsummary>
<desc>
<p>Decodes an atom from the binary format. The <c>NULL</c>-terminated
name of the atom is placed at <c>p</c>. At most
<c>MAXATOMLEN</c> bytes can be placed in the buffer.</p>
</desc>
</func>
<func>
<name since="OTP R16B"><ret>int</ret><nametext>ei_decode_atom_as(const char *buf, int *index, char *p, int plen, erlang_char_encoding want, erlang_char_encoding* was, erlang_char_encoding* result)</nametext></name>
<fsummary>Decode an atom.</fsummary>
<desc>
<p>Decodes an atom from the binary format. The <c>NULL</c>-terminated
name of the atom is placed in buffer at <c>p</c> of length <c>plen</c>
bytes.</p>
<p>The wanted string encoding is specified by
<seealso marker="#erlang_char_encoding"><c>want</c></seealso>.
The original encoding used in the binary format (Latin-1 or UTF-8) can
be obtained from <c>*was</c>. The encoding of the resulting string
(7-bit ASCII, Latin-1, or UTF-8) can be obtained from <c>*result</c>.
Both <c>was</c> and <c>result</c> can be <c>NULL</c>. <c>*result</c>
can differ from <c>want</c> if <c>want</c> is a bitwise OR'd
combination like <c>ERLANG_LATIN1|ERLANG_UTF8</c> or if
<c>*result</c> turns out to be pure 7-bit ASCII
(compatible with both Latin-1 and UTF-8).</p>
<p>This function fails if the atom is too long for the buffer
or if it cannot be represented with encoding <c>want</c>.</p>
<p>This function was introduced in Erlang/OTP R16 as part of a first
step to support UTF-8 atoms.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_bignum(const char *buf, int *index, mpz_t obj)</nametext></name>
<fsummary>Decode a GMP arbitrary precision integer.</fsummary>
<desc>
<p>Decodes an integer in the binary format to a GMP
<c>mpz_t</c> integer. To use this function, the <c>ei</c>
library must be configured and compiled to use the GMP library.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_binary(const char *buf, int *index, void *p, long *len)</nametext></name>
<fsummary>Decode a binary.</fsummary>
<desc>
<p>Decodes a binary from the binary format. Parameter
<c>len</c> is set to the actual size of the
binary. Notice that <c>ei_decode_binary()</c> assumes that
there is enough room for the binary. The size required can be
fetched by <c>ei_get_type()</c>.</p>
</desc>
</func>
<func>
<name since="OTP 22.0"><ret>int</ret><nametext>ei_decode_bitstring(const char *buf, int *index, const char **pp, unsigned int *bitoffsp, size_t *nbitsp)</nametext></name>
<fsummary>Decode a bitstring.</fsummary>
<desc>
<p>Decodes a bit string from the binary format.</p>
<taglist>
<tag><c>pp</c></tag>
<item><p>Either <c>NULL</c> or <c>*pp</c> returns a pointer to
the first byte of the bit string. The returned bit string is
readable as long as the buffer pointed to by <c>buf</c> is
readable and not written to.</p>
</item>
<tag><c>bitoffsp</c></tag>
<item><p>Either <c>NULL</c> or <c>*bitoffsp</c> returns the
number of unused bits in the first byte pointed to by
<c>*pp</c>. The value of <c>*bitoffsp</c> is between 0 and 7.
Unused bits in the first byte are the most significant bits.</p>
</item>
<tag><c>nbitsp</c></tag>
<item><p>Either <c>NULL</c> or <c>*nbitsp</c> returns the length
of the bit string in <em>bits</em>.</p>
</item>
</taglist>
<p>Returns <c>0</c> if it was a bit string term.</p>
<p>The number of <em>bytes</em> pointed to by <c>*pp</c>, which are
part of the bit string, is <c>(*bitoffsp + *nbitsp + 7)/8</c>. If
<c>(*bitoffsp + *bitsp)%8 > 0</c> then only <c>(*bitoffsp +
*bitsp)%8</c> bits of the last byte are used. Unused bits in
the last byte are the least significant bits.</p>
<p>The values of unused bits in the first and last byte are undefined
and cannot be relied on.</p>
<p>Number of bits may be divisible by 8, which means a binary
decodable by <c>ei_decode_binary</c> is also decodable by
<c>ei_decode_bitstring</c>.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_boolean(const char *buf, int *index, int *p)</nametext></name>
<fsummary>Decode a boolean.</fsummary>
<desc>
<p>Decodes a boolean value from the binary format.
A boolean is actually an atom, <c>true</c> decodes 1
and <c>false</c> decodes 0.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_char(const char *buf, int *index, char *p)</nametext></name>
<fsummary>Decode an 8-bit integer between 0-255.</fsummary>
<desc>
<p>Decodes a char (8-bit) integer between 0-255 from the binary format.
For historical reasons the returned integer is of
type <c>char</c>. Your C code is to consider the
returned value to be of type <c>unsigned char</c> even if
the C compilers and system can define <c>char</c> to be
signed.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_double(const char *buf, int *index, double *p)</nametext></name>
<fsummary>Decode a double.</fsummary>
<desc>
<p>Decodes a double-precision (64-bit) floating
point number from the binary format.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_ei_term(const char* buf, int* index, ei_term* term)</nametext></name>
<fsummary>Decode a term, without previous knowledge of type.</fsummary>
<desc>
<p>Decodes any term, or at least tries to. If the term
pointed at by <c>*index</c> in <c>buf</c> fits
in the <c>term</c> union, it is decoded, and the
appropriate field in <c>term->value</c> is set, and
<c>*index</c> is incremented by the term size.</p>
<p>The function returns <c>1</c> on successful decoding, <c>-1</c> on
error, and <c>0</c> if the term seems alright, but does not fit in the
<c>term</c> structure. If <c>1</c> is returned, the
<c>index</c> is incremented, and <c>term</c>
contains the decoded term.</p>
<p>The <c>term</c> structure contains the arity for a tuple
or list, size for a binary, string, or atom. It contains
a term if it is any of the following: integer, float, atom,
pid, port, or ref.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_fun(const char *buf, int *index, erlang_fun *p)</nametext></name>
<name since=""><ret>void</ret><nametext>free_fun(erlang_fun* f)</nametext></name>
<fsummary>Decode a fun.</fsummary>
<desc>
<p>Decodes a fun from the binary format. Parameter
<c>p</c> is to be <c>NULL</c> or point to an
<c>erlang_fun</c> structure. This is the only decode
function that allocates memory. When the <c>erlang_fun</c>
is no longer needed, it is to be freed with
<c>free_fun</c>. (This has to do with the arbitrary size
of the environment for a fun.)</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_list_header(const char *buf, int *index, int *arity)</nametext></name>
<fsummary>Decode a list.</fsummary>
<desc>
<p>Decodes a list header from the binary
format. The number of elements is returned in
<c>arity</c>. The <c>arity+1</c> elements
follow (the last one is the tail of the list, normally an empty list).
If <c>arity</c> is <c>0</c>, it is an empty
list.</p>
<p>Notice that lists are encoded as strings if they consist
entirely of integers in the range 0..255. This function do
not decode such strings, use <c>ei_decode_string()</c>
instead.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_long(const char *buf, int *index, long *p)</nametext></name>
<fsummary>Decode integer.</fsummary>
<desc>
<p>Decodes a long integer from the binary format.
If the code is 64 bits, the function <c>ei_decode_long()</c> is
the same as <c>ei_decode_longlong()</c>.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_longlong(const char *buf, int *index, long long *p)</nametext></name>
<fsummary>Decode integer.</fsummary>
<desc>
<p>Decodes a GCC <c>long long</c> or Visual C++
<c>__int64</c>
(64-bit) integer from the binary format. This
function is missing in the VxWorks port.</p>
</desc>
</func>
<func>
<name since="OTP 17.0"><ret>int</ret><nametext>ei_decode_map_header(const char *buf, int *index, int *arity)</nametext></name>
<fsummary>Decode a map.</fsummary>
<desc>
<p>Decodes a map header from the binary
format. The number of key-value pairs is returned in
<c>*arity</c>. Keys and values follow in this order:
<c>K1, V1, K2, V2, ..., Kn, Vn</c>. This makes a total of
<c>arity*2</c> terms. If <c>arity</c> is zero, it is an empty map.
A correctly encoded map does not have duplicate keys.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_pid(const char *buf, int *index, erlang_pid *p)</nametext></name>
<fsummary>Decode a <c>pid</c>.</fsummary>
<desc>
<p>Decodes a process identifier (pid) from the binary format.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_port(const char *buf, int *index, erlang_port *p)</nametext></name>
<fsummary>Decode a port.</fsummary>
<desc>
<p>Decodes a port identifier from the binary format.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_ref(const char *buf, int *index, erlang_ref *p)</nametext></name>
<fsummary>Decode a reference.</fsummary>
<desc>
<p>Decodes a reference from the binary format.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_string(const char *buf, int *index, char *p)</nametext></name>
<fsummary>Decode a string.</fsummary>
<desc>
<p>Decodes a string from the binary format. A
string in Erlang is a list of integers between 0 and
255. Notice that as the string is just a list, sometimes
lists are encoded as strings by <c>term_to_binary/1</c>,
even if it was not intended.</p>
<p>The string is copied to <c>p</c>, and enough space must
be allocated. The returned string is <c>NULL</c>-terminated, so you
must add an extra byte to the memory requirement.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_term(const char *buf, int *index, void *t)</nametext></name>
<fsummary>Decode a <c>ETERM</c>.</fsummary>
<desc>
<p>Decodes a term from the binary format. The term
is return in <c>t</c> as a <c>ETERM*</c>, so
<c>t</c> is actually an <c>ETERM**</c> (see
<seealso marker="erl_eterm"><c>erl_eterm</c></seealso>).
The term is later to be deallocated.</p>
<note><p>This function is deprecated as of OTP 22 and will be removed in
OTP 23 together with the old legacy <c>erl_interface</c> library (functions
with prefix <c>erl_</c>).</p>
</note>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_trace(const char *buf, int *index, erlang_trace *p)</nametext></name>
<fsummary>Decode a trace token.</fsummary>
<desc>
<p>Decodes an Erlang trace token from the binary format.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_tuple_header(const char *buf, int *index, int *arity)</nametext></name>
<fsummary>Decode a tuple.</fsummary>
<desc>
<p>Decodes a tuple header, the number of elements
is returned in <c>arity</c>. The tuple elements follow
in order in the buffer.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_ulong(const char *buf, int *index, unsigned long *p)</nametext></name>
<fsummary>Decode unsigned integer.</fsummary>
<desc>
<p>Decodes an unsigned long integer from the binary format.
If the code is 64 bits, the function <c>ei_decode_ulong()</c> is
the same as <c>ei_decode_ulonglong()</c>.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_ulonglong(const char *buf, int *index, unsigned long long *p)</nametext></name>
<fsummary>Decode unsigned integer.</fsummary>
<desc>
<p>Decodes a GCC <c>unsigned long long</c> or Visual C++
<c>unsigned __int64</c> (64-bit) integer from the binary
format. This function is missing in the VxWorks port.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_decode_version(const char *buf, int *index, int *version)</nametext></name>
<fsummary>Decode an empty list (<c>nil</c>).</fsummary>
<desc>
<p>Decodes the version magic number for the
Erlang binary term format. It must be the first token in a
binary term.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_atom(char *buf, int *index, const char *p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_encode_atom_len(char *buf, int *index, const char *p, int len)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_atom(ei_x_buff* x, const char *p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_atom_len(ei_x_buff* x, const char *p, int len)</nametext></name>
<fsummary>Encode an atom.</fsummary>
<desc>
<p>Encodes an atom in the binary format. Parameter <c>p</c>
is the name of the atom in Latin-1 encoding. Only up to
<c>MAXATOMLEN-1</c> bytes
are encoded. The name is to be <c>NULL</c>-terminated, except for
the <c>ei_x_encode_atom_len()</c> function.</p>
</desc>
</func>
<func>
<name since="OTP R16B"><ret>int</ret><nametext>ei_encode_atom_as(char *buf, int *index, const char *p, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name>
<name since="OTP R16B"><ret>int</ret><nametext>ei_encode_atom_len_as(char *buf, int *index, const char *p, int len, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name>
<name since="OTP R16B"><ret>int</ret><nametext>ei_x_encode_atom_as(ei_x_buff* x, const char *p, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name>
<name since="OTP R16B"><ret>int</ret><nametext>ei_x_encode_atom_len_as(ei_x_buff* x, const char *p, int len, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name>
<fsummary>Encode an atom.</fsummary>
<desc>
<p>Encodes an atom in the binary format. Parameter <c>p</c> is the name of the atom with
character encoding
<seealso marker="#erlang_char_encoding"><c>from_enc</c></seealso>
(ASCII, Latin-1, or UTF-8). The name must either be <c>NULL</c>-terminated or
a function variant with a <c>len</c> parameter must be used.</p>
<p>The encoding fails if <c>p</c> is not a valid string in encoding
<c>from_enc</c>.</p>
<p>Argument <c>to_enc</c> is ignored. As from Erlang/OTP 20 the encoding is always
done in UTF-8 which is readable by nodes as old as Erlang/OTP R16.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_bignum(char *buf, int *index, mpz_t obj)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_bignum(ei_x_buff *x, mpz_t obj)</nametext></name>
<fsummary>Encode an arbitrary precision integer.</fsummary>
<desc>
<p>Encodes a GMP <c>mpz_t</c> integer to binary format.
To use this function, the <c>ei</c> library must be configured and
compiled to use the GMP library.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_binary(char *buf, int *index, const void *p, long len)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_binary(ei_x_buff* x, const void *p, long len)</nametext></name>
<fsummary>Encode a binary.</fsummary>
<desc>
<p>Encodes a binary in the binary format. The data is at
<c>p</c>, of <c>len</c> bytes length.</p>
</desc>
</func>
<func>
<name since="OTP 22.0"><ret>int</ret>
<nametext>ei_encode_bitstring(char *buf, int *index, const char *p, size_t bitoffs, size_t nbits)</nametext></name>
<name since="OTP 22.0"><ret>int</ret>
<nametext>ei_x_encode_bitstring(ei_x_buff* x, const char *p, size_t bitoffs, size_t nbits)</nametext></name>
<fsummary>Encode a bitstring.</fsummary>
<desc>
<p>Encodes a bit string in the binary format.</p>
<p>The data is at <c>p</c>. The length of the bit string is <c>nbits</c>
bits. The first <c>bitoffs</c> bits of the data at <c>p</c> are unused.
The first byte which is part of the bit string is
<c>p[bitoffs/8]</c>. The <c>bitoffs%8</c> most significant bits of
the first byte <c>p[bitoffs/8]</c> are unused.</p>
<p>The number of bytes which is part of the bit string is <c>(bitoffs +
nbits + 7)/8</c>. If <c>(bitoffs + nbits)%8 > 0</c> then only <c>(bitoffs +
nbits)%8</c> bits of the last byte are used. Unused bits in
the last byte are the least significant bits.</p>
<p>The values of unused bits are disregarded and does not need to be
cleared.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_boolean(char *buf, int *index, int p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_boolean(ei_x_buff* x, int p)</nametext></name>
<fsummary>Encode a boolean.</fsummary>
<desc>
<p>Encodes a boolean value as the atom <c>true</c> if
<c>p</c> is not zero, or <c>false</c> if <c>p</c> is
zero.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_char(char *buf, int *index, char p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_char(ei_x_buff* x, char p)</nametext></name>
<fsummary>Encode an 8-bit integer between 0-255.</fsummary>
<desc>
<p>Encodes a char (8-bit) as an integer between 0-255 in the binary
format. For historical reasons the integer argument is of
type <c>char</c>. Your C code is to consider the specified
argument to be of type <c>unsigned char</c> even if
the C compilers and system may define <c>char</c> to be
signed.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_double(char *buf, int *index, double p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_double(ei_x_buff* x, double p)</nametext></name>
<fsummary>Encode a double float.</fsummary>
<desc>
<p>Encodes a double-precision (64-bit) floating point number in
the binary format.</p>
<p>Returns <c>-1</c> if the floating point
number is not finite.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_empty_list(char* buf, int* index)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_empty_list(ei_x_buff* x)</nametext></name>
<fsummary>Encode an empty list (<c>nil</c>).</fsummary>
<desc>
<p>Encodes an empty list. It is often used at the tail of a list.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_fun(char *buf, int *index, const erlang_fun *p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_fun(ei_x_buff* x, const erlang_fun* fun)</nametext></name>
<fsummary>Encode a fun.</fsummary>
<desc>
<p>Encodes a fun in the binary format. Parameter <c>p</c>
points to an <c>erlang_fun</c> structure. The
<c>erlang_fun</c> is not freed automatically, the
<c>free_fun</c> is to be called if the fun is not needed
after encoding.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_list_header(char *buf, int *index, int arity)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_list_header(ei_x_buff* x, int arity)</nametext></name>
<fsummary>Encode a list.</fsummary>
<desc>
<p>Encodes a list header, with a specified
arity. The next <c>arity+1</c> terms are the elements
(actually its <c>arity</c> cons cells) and the tail of the
list. Lists and tuples are encoded recursively, so that a
list can contain another list or tuple.</p>
<p>For example, to encode the list
<c>[c, d, [e | f]]</c>:</p>
<pre>
ei_encode_list_header(buf, &i, 3);
ei_encode_atom(buf, &i, "c");
ei_encode_atom(buf, &i, "d");
ei_encode_list_header(buf, &i, 1);
ei_encode_atom(buf, &i, "e");
ei_encode_atom(buf, &i, "f");
ei_encode_empty_list(buf, &i);</pre>
<note>
<p>It may seem that there is no way to create a list without
knowing the number of elements in advance. But indeed
there is a way. Notice that the list <c>[a, b, c]</c>
can be written as <c>[a | [b | [c]]]</c>.
Using this, a list can be written as conses.</p>
</note>
<p>To encode a list, without knowing the arity in advance:</p>
<pre>
while (something()) {
ei_x_encode_list_header(&x, 1);
ei_x_encode_ulong(&x, i); /* just an example */
}
ei_x_encode_empty_list(&x);</pre>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_long(char *buf, int *index, long p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_long(ei_x_buff* x, long p)</nametext></name>
<fsummary>Encode integer.</fsummary>
<desc>
<p>Encodes a long integer in the binary format.
If the code is 64 bits, the function <c>ei_encode_long()</c> is
the same as <c>ei_encode_longlong()</c>.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_longlong(char *buf, int *index, long long p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_longlong(ei_x_buff* x, long long p)</nametext></name>
<fsummary>Encode integer.</fsummary>
<desc>
<p>Encodes a GCC <c>long long</c> or Visual C++
<c>__int64</c> (64-bit) integer in the binary format.
This function is missing in the VxWorks port.</p>
</desc>
</func>
<func>
<name since="OTP 17.0"><ret>int</ret><nametext>ei_encode_map_header(char *buf, int *index, int arity)</nametext></name>
<name since="OTP 17.0"><ret>int</ret><nametext>ei_x_encode_map_header(ei_x_buff* x, int arity)</nametext></name>
<fsummary>Encode a map.</fsummary>
<desc>
<p>Encodes a map header, with a specified arity. The next
<c>arity*2</c> terms encoded will be the keys and values of the map
encoded in the following order: <c>K1, V1, K2, V2, ..., Kn, Vn</c>.
</p>
<p>For example, to encode the map <c>#{a => "Apple", b =>
"Banana"}</c>:</p>
<pre>
ei_x_encode_map_header(&x, 2);
ei_x_encode_atom(&x, "a");
ei_x_encode_string(&x, "Apple");
ei_x_encode_atom(&x, "b");
ei_x_encode_string(&x, "Banana");</pre>
<p>A correctly encoded map cannot have duplicate keys.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_pid(char *buf, int *index, const erlang_pid *p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_pid(ei_x_buff* x, const erlang_pid *p)</nametext></name>
<fsummary>Encode a pid.</fsummary>
<desc>
<p>Encodes an Erlang process identifier (pid) in the binary
format. Parameter <c>p</c> points to an
<c>erlang_pid</c> structure (which should have been
obtained earlier with <c>ei_decode_pid()</c>).</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_port(char *buf, int *index, const erlang_port *p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_port(ei_x_buff* x, const erlang_port *p)</nametext></name>
<fsummary>Encode a port.</fsummary>
<desc>
<p>Encodes an Erlang port in the binary format. Parameter
<c>p</c> points to a <c>erlang_port</c>
structure (which should have been obtained earlier with
<c>ei_decode_port()</c>).</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_ref(char *buf, int *index, const erlang_ref *p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_ref(ei_x_buff* x, const erlang_ref *p)</nametext></name>
<fsummary>Encode a ref.</fsummary>
<desc>
<p>Encodes an Erlang reference in the binary format. Parameter
<c>p</c> points to a <c>erlang_ref</c>
structure (which should have been obtained earlier with
<c>ei_decode_ref()</c>).</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_string(char *buf, int *index, const char *p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_encode_string_len(char *buf, int *index, const char *p, int len)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_string(ei_x_buff* x, const char *p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_string_len(ei_x_buff* x, const char* s, int len)</nametext></name>
<fsummary>Encode a string.</fsummary>
<desc>
<p>Encodes a string in the binary format. (A string in Erlang
is a list, but is encoded as a character array in the binary
format.) The string is to be <c>NULL</c>-terminated, except for
the <c>ei_x_encode_string_len()</c> function.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_term(char *buf, int *index, void *t)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_term(ei_x_buff* x, void *t)</nametext></name>
<fsummary>Encode an <c>erl_interface</c> term.</fsummary>
<desc>
<p>Encodes an <c>ETERM</c>, as obtained from
<c>erl_interface</c>. Parameter <c>t</c> is
actually an <c>ETERM</c> pointer. This function
does not free the <c>ETERM</c>.</p>
<note><p>These functions are deprecated as of OTP 22 and will be removed in
OTP 23 together with the old legacy <c>erl_interface</c> library
(functions with prefix <c>erl_</c>).</p>
</note>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_trace(char *buf, int *index, const erlang_trace *p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_trace(ei_x_buff* x, const erlang_trace *p)</nametext></name>
<fsummary>Encode a trace token.</fsummary>
<desc>
<p>Encodes an Erlang trace token in the binary format.
Parameter <c>p</c> points to a
<c>erlang_trace</c> structure (which should have been
obtained earlier with <c>ei_decode_trace()</c>).</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_tuple_header(char *buf, int *index, int arity)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_tuple_header(ei_x_buff* x, int arity)</nametext></name>
<fsummary>Encode a tuple.</fsummary>
<desc>
<p>Encodes a tuple header, with a specified
arity. The next <c>arity</c> terms encoded will be the
elements of the tuple. Tuples and lists are encoded
recursively, so that a tuple can contain another tuple or list.</p>
<p>For example, to encode the tuple <c>{a, {b, {}}}</c>:</p>
<pre>
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "a");
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "b");
ei_encode_tuple_header(buf, &i, 0);</pre>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_ulong(char *buf, int *index, unsigned long p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_ulong(ei_x_buff* x, unsigned long p)</nametext></name>
<fsummary>Encode unsigned integer.</fsummary>
<desc>
<p>Encodes an unsigned long integer in the binary format.
If the code is 64 bits, the function <c>ei_encode_ulong()</c> is
the same as <c>ei_encode_ulonglong()</c>.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_ulonglong(char *buf, int *index, unsigned long long p)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_ulonglong(ei_x_buff* x, unsigned long long p)</nametext></name>
<fsummary>Encode unsigned integer.</fsummary>
<desc>
<p>Encodes a GCC <c>unsigned long long</c> or Visual C++
<c>unsigned __int64</c> (64-bit) integer in the binary
format. This function is missing in the VxWorks port.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_encode_version(char *buf, int *index)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_encode_version(ei_x_buff* x)</nametext></name>
<fsummary>Encode version.</fsummary>
<desc>
<p>Encodes a version magic number for the binary format. Must
be the first token in a binary term.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_get_type(const char *buf, const int *index, int *type, int *size)</nametext></name>
<fsummary>Fetch the type and size of an encoded term.</fsummary>
<desc>
<p>Returns the type in <c>*type</c> and size in
<c>*size</c> of the encoded term. For strings and atoms,
size is the number of characters <em>not</em> including the
terminating <c>NULL</c>. For binaries and bitstrings, <c>*size</c> is
the number of bytes. For lists, tuples and maps, <c>*size</c> is the
arity of the object. For other types, <c>*size</c> is 0. In all
cases, <c>index</c> is left unchanged.</p>
</desc>
</func>
<func>
<name since="OTP 21.3"><ret>int</ret><nametext>ei_init(void)</nametext></name>
<fsummary>Initialize the ei library.</fsummary>
<desc>
<p>Initialize the <c>ei</c> library. This function should be called once
(and only once) before calling any other functionality in the <c>ei</c>
library. However, note the exception below.</p>
<p>If the <c>ei</c> library is used together with the <c>erl_interface</c>
library, this function should <em>not</em> be called directly. It will be
called by the <c>erl_init()</c> function which should be used to initialize
the combination of the two libraries instead.</p>
<p>On success zero is returned. On failure a posix error code is returned.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_print_term(FILE* fp, const char* buf, int* index)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_s_print_term(char** s, const char* buf, int* index)</nametext></name>
<fsummary>Print a term in clear text.</fsummary>
<desc>
<p>Prints a term, in clear text, to the file
specified by <c>fp</c>, or the buffer pointed to by
<c>s</c>. It
tries to resemble the term printing in the Erlang shell.</p>
<p>In <c>ei_s_print_term()</c>, parameter
<c>s</c> is to
point to a dynamically (malloc) allocated string of
<c>BUFSIZ</c> bytes or a <c>NULL</c> pointer. The string
can be reallocated (and <c>*s</c> can be updated) by this
function if the result is more than <c>BUFSIZ</c>
characters. The string returned is <c>NULL</c>-terminated.</p>
<p>The return value is the number of characters written to the file
or string, or <c>-1</c> if <c>buf[index]</c> does not
contain a valid term.
Unfortunately, I/O errors on <c>fp</c> is not checked.</p>
<p>Argument <c>index</c> is updated, that is, this function
can be viewed as a decode function that decodes a term into a
human-readable format.</p>
</desc>
</func>
<func>
<name since=""><ret>void</ret><nametext>ei_set_compat_rel(release_number)</nametext></name>
<fsummary>Set the ei library in compatibility mode.</fsummary>
<type>
<v>unsigned release_number;</v>
</type>
<desc>
<marker id="ei_set_compat_rel"></marker>
<p>In general, the <c>ei</c> library is guaranteed
to be compatible with other Erlang/OTP components that are 2 major
releases older or newer than the <c>ei</c> library itself.</p>
<p>Sometimes an exception to the above rule has to be made to make new
features (or even bug fixes) possible. A call to
<c>ei_set_compat_rel(release_number)</c> sets
the <c>ei</c> library in compatibility mode of OTP release
<c>release_number</c>.</p>
<p>The only useful value for <c>release_number</c> is currently
<c>21</c>. This will only be useful and have an effect if <em>bit
strings</em> or <em>export funs</em> are received from a connected
node. Before OTP 22, bit strings and export funs were not supported by
<c>ei</c>. They were instead encoded using an undocumented fallback
tuple format when sent from the emulator to <c>ei</c>:</p>
<taglist>
<tag><c>Bit string</c></tag>
<item><p>The term <c><<42, 1:1>></c> was encoded as
<c>{<<42, 128>>, 1}</c>. The first element of the tuple is a
binary and the second element denotes how many bits of the last bytes
are part of the bit string. In this example only the most significant
bit of the last byte (128) is part of the bit string.</p>
</item>
<tag><c>Export fun</c></tag>
<item><p>The term <c>fun lists:map/2</c> was encoded as
<c>{lists,map}</c>. A tuple with the module, function and a missing
arity.</p>
</item>
</taglist>
<p>If <c>ei_set_compat_rel(21)</c> is <em>not</em> called then a connected
emulator will send bit strings and export funs correctly encoded. The
functions <seealso marker="#ei_decode_bitstring"><c>ei_decode_bitstring</c></seealso>
and <seealso marker="#ei_decode_fun"><c>ei_decode_fun</c></seealso>
has to be used to decode such terms. Calling
<c>ei_set_compat_rel(21)</c> should only be done as a workaround to
keep an old implementation alive, which expects to receive the
undocumented tuple formats for bit strings and/or export funs.
</p>
<note>
<p>If this function is called, it can only be called once
and must be called before any other functions in the
<c>ei</c> library are called.</p>
</note>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_skip_term(const char* buf, int* index)</nametext></name>
<fsummary>Skip a term.</fsummary>
<desc>
<p>Skips a term in the specified buffer;
recursively skips elements of lists and tuples, so that a
full term is skipped. This is a way to get the size of an
Erlang term.</p>
<p><c>buf</c> is the buffer.</p>
<p><c>index</c> is updated to point right after the term
in the buffer.</p>
<note>
<p>This can be useful when you want to hold arbitrary
terms: skip them and copy the binary term data to some
buffer.</p>
</note>
<p>Returns <c>0</c> on success, otherwise
<c>-1</c>.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_x_append(ei_x_buff* x, const ei_x_buff* x2)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_append_buf(ei_x_buff* x, const char* buf, int len)</nametext></name>
<fsummary>Append a buffer at the end.</fsummary>
<desc>
<p>Appends data at the end of buffer <c>x</c>.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_x_format(ei_x_buff* x, const char* fmt, ...)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_format_wo_ver(ei_x_buff* x, const char *fmt, ... )</nametext></name>
<fsummary>Format a term from a format string and parameters.</fsummary>
<desc>
<p>Formats a term, given as a string, to a buffer.
Works like a sprintf for Erlang terms.
<c>fmt</c> contains a format string, with arguments like
<c>~d</c>, to insert terms from variables. The following
formats are supported (with the C types given):</p>
<pre>
~a An atom, char*
~c A character, char
~s A string, char*
~i An integer, int
~l A long integer, long int
~u A unsigned long integer, unsigned long int
~f A float, float
~d A double float, double float
~p An Erlang pid, erlang_pid*</pre>
<p>For example, to encode a tuple with some stuff:</p>
<pre>
ei_x_format("{~a,~i,~d}", "numbers", 12, 3.14159)
encodes the tuple {numbers,12,3.14159}</pre>
<p><c>ei_x_format_wo_ver()</c> formats into a buffer,
without the initial version byte.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_x_free(ei_x_buff* x)</nametext></name>
<fsummary>Free a buffer.</fsummary>
<desc>
<p>Frees an <c>ei_x_buff</c> buffer.
The memory used by the buffer is returned to the OS.</p>
</desc>
</func>
<func>
<name since=""><ret>int</ret><nametext>ei_x_new(ei_x_buff* x)</nametext></name>
<name since=""><ret>int</ret><nametext>ei_x_new_with_version(ei_x_buff* x)</nametext></name>
<fsummary>Allocate a new buffer.</fsummary>
<desc>
<p>Allocates a new <c>ei_x_buff</c> buffer. The
fields of the structure pointed to by parameter <c>x</c>
is filled in, and a default buffer is allocated.
<c>ei_x_new_with_version()</c> also puts an initial
version byte, which is used in the binary format (so that
<c>ei_x_encode_version()</c> will not be needed.)</p>
</desc>
</func>
</funcs>
<section>
<title>Debug Information</title>
<p>Some tips on what to check when the emulator does not seem to
receive the terms that you send:</p>
<list type="bulleted">
<item>Be careful with the version header, use
<c>ei_x_new_with_version()</c> when appropriate.</item>
<item>Turn on distribution tracing on the Erlang node.</item>
<item>Check the result codes from <c>ei_decode_-calls</c>.</item>
</list>
</section>
<section>
<title>See Also</title>
<p><seealso marker="erl_eterm"><c>erl_eterm</c></seealso></p>
</section>
</cref>