%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% @author Richard Carlsson <[email protected]>
%% @copyright 2000-2004 Richard Carlsson
%% @doc Closure conversion of Core Erlang modules. This is done as a
%% step in the translation from Core Erlang down to HiPE Icode, and is
%% very much tied to the calling conventions used in HiPE native code.
%% @see cerl_to_icode
%% Some information about function closures in Beam and HiPE:
%%
%% - In Beam, each fun-expression is lifted to a top-level function such
%% that the arity of the new function is equal to the arity of the fun
%% *plus* the number of free variables. The original fun-expression is
%% replaced by a call to 'make_fun' which takes the *label* of the new
%% function and the number of free variables as arguments (the arity
%% of the fun can be found via the label). When a call is made through
%% the closure, the free variables are extracted from the closure by
%% the 'call_fun' operation and are placed in the X registers
%% following the ones used for the normal parameters; then the call is
%% made to the function label.
%%
%% - In HiPE (when compiling from Beam bytecode), the Beam-to-Icode
%% translation rewrites the fun-functions (those referenced by
%% 'make_fun' operations) so that the code expects only the normal
%% parameters, plus *one* extra parameter containing the closure
%% itself, and then immediately extracts the free variables from the
%% closure - the code knows how many free variables it expects.
%% However, the arity part of the function name is *not* changed;
%% thus, the native code and the Beam code still use the same
%% fun-table entry. The arity value used in native-code 'make_fun'
%% operations should therefore be the same as in Beam, i.e., the sum
%% of the number of parameters and the number of free variables.
-module(cerl_cconv).
-export([transform/2]).
-export([core_transform/2]).
-include("cerl_hipe_primops.hrl").
%% A descriptor for top-level and letrec-bound functions. (Top-level
%% functions always have an empty list of free variables.) The 'name'
%% field is the name of the lifted function, and is thus unique over the
%% whole module.
-record(function, {name :: {atom(), arity()}, free}).
%% A record for holding fun-information (if such information is attached
%% as an annotation on a fun, it should preferably be preserved).
-record(fun_info, {name :: atom(),
id = 0 :: integer(),
hash = 0 :: integer()}).
%% @spec core_transform(Module::cerl_records(), Options::[term()]) ->
%% cerl_records()
%%
%% @doc Transforms a module represented by records. See
%% <code>transform/2</code> for details.
%%
%% <p>Use the compiler option <code>{core_transform, cerl_cconv}</code>
%% to insert this function as a compilation pass.</p>
%%
%% @see transform/2
-spec core_transform(cerl:cerl(), [term()]) -> cerl:cerl().
core_transform(M, Opts) ->
cerl:to_records(transform(cerl:from_records(M), Opts)).
%% @spec transform(Module::cerl(), Options::[term()]) -> cerl()
%%
%% cerl() = cerl:cerl()
%%
%% @doc Rewrites a Core Erlang module so that all fun-expressions
%% (lambda expressions) in the code are in top level function
%% definitions, and the operators of all `apply'-expressions are names
%% of such top-level functions. The primitive operations `make_fun' and
%% `call_fun' are inserted in the code to create and apply functional
%% values; this transformation is known as "Closure Conversion"
%%
%% <p>See the module {@link cerl_to_icode} for details.</p>
-spec transform(cerl:c_module(), [term()]) -> cerl:c_module().
transform(E, _Options) ->
M = cerl:module_name(E),
S0 = s__new(cerl:atom_val(M)),
{Defs1, S1} = module_defs(cerl:module_defs(E), env__new(),
ren__new(), S0),
Defs2 = lists:reverse(s__get_defs(S1) ++ Defs1),
cerl:update_c_module(E, M, cerl:module_exports(E),
cerl:module_attrs(E), Defs2).
%% Note that the environment is defined on the renamed variables.
expr(E, Env, Ren, S0) ->
case cerl:type(E) of
literal ->
{E, S0};
var ->
var(E, Env, Ren, S0);
values ->
{Es, S1} = expr_list(cerl:values_es(E), Env, Ren, S0),
{cerl:update_c_values(E, Es), S1};
cons ->
{E1, S1} = expr(cerl:cons_hd(E), Env, Ren, S0),
{E2, S2} = expr(cerl:cons_tl(E), Env, Ren, S1),
{cerl:update_c_cons(E, E1, E2), S2};
tuple ->
{Es, S1} = expr_list(cerl:tuple_es(E), Env, Ren, S0),
{cerl:update_c_tuple(E, Es), S1};
'let' ->
{A, S1} = expr(cerl:let_arg(E), Env, Ren, S0),
Vs = cerl:let_vars(E),
{Vs1, Env1, Ren1} = bind_vars(Vs, Env, Ren),
{B, S2} = expr(cerl:let_body(E), Env1, Ren1, S1),
{cerl:update_c_let(E, Vs1, A, B), S2};
seq ->
{A, S1} = expr(cerl:seq_arg(E), Env, Ren, S0),
{B, S2} = expr(cerl:seq_body(E), Env, Ren, S1),
{cerl:update_c_seq(E, A, B), S2};
apply ->
apply_expr(E, Env, Ren, S0);
call ->
{M, S1} = expr(cerl:call_module(E), Env, Ren, S0),
{N, S2} = expr(cerl:call_name(E), Env, Ren, S1),
{As, S3} = expr_list(cerl:call_args(E), Env, Ren, S2),
{cerl:update_c_call(E, M, N, As), S3};
primop ->
{As, S1} = expr_list(cerl:primop_args(E), Env, Ren, S0),
N = cerl:primop_name(E),
{cerl:update_c_primop(E, N, As), S1};
'case' ->
{A, S1} = expr(cerl:case_arg(E), Env, Ren, S0),
{Cs, S2} = expr_list(cerl:case_clauses(E), Env, Ren, S1),
{cerl:update_c_case(E, A, Cs), S2};
clause ->
Vs = cerl:clause_vars(E),
{_, Env1, Ren1} = bind_vars(Vs, Env, Ren),
%% Visit patterns to rename variables.
Ps = pattern_list(cerl:clause_pats(E), Env1, Ren1),
{G, S1} = expr(cerl:clause_guard(E), Env1, Ren1, S0),
{B, S2} = expr(cerl:clause_body(E), Env1, Ren1, S1),
{cerl:update_c_clause(E, Ps, G, B), S2};
'fun' ->
fun_expr(E, Env, Ren, S0);
'receive' ->
{Cs, S1} = expr_list(cerl:receive_clauses(E), Env, Ren, S0),
{T, S2} = expr(cerl:receive_timeout(E), Env, Ren, S1),
{A, S3} = expr(cerl:receive_action(E), Env, Ren, S2),
{cerl:update_c_receive(E, Cs, T, A), S3};
'try' ->
{A, S1} = expr(cerl:try_arg(E), Env, Ren, S0),
Vs = cerl:try_vars(E),
{Vs1, Env1, Ren1} = bind_vars(Vs, Env, Ren),
{B, S2} = expr(cerl:try_body(E), Env1, Ren1, S1),
Evs = cerl:try_evars(E),
{Evs1, Env2, Ren2} = bind_vars(Evs, Env, Ren),
{H, S3} = expr(cerl:try_handler(E), Env2, Ren2, S2),
{cerl:update_c_try(E, A, Vs1, B, Evs1, H), S3};
'catch' ->
{B, S1} = expr(cerl:catch_body(E), Env, Ren, S0),
{cerl:update_c_catch(E, B), S1};
letrec ->
{Env1, Ren1, S1} = letrec_defs(cerl:letrec_defs(E), Env,
Ren, S0),
expr(cerl:letrec_body(E), Env1, Ren1, S1);
binary ->
{Segs, S1} = expr_list(cerl:binary_segments(E), Env, Ren, S0),
{cerl:update_c_binary(E, Segs),S1};
bitstr ->
{E1,S1} = expr(cerl:bitstr_val(E), Env, Ren, S0),
{E2,S2} = expr(cerl:bitstr_size(E), Env, Ren, S1),
E3 = cerl:bitstr_unit(E),
E4 = cerl:bitstr_type(E),
E5 = cerl:bitstr_flags(E),
{cerl:update_c_bitstr(E, E1, E2, E3, E4, E5), S2}
end.
expr_list([E | Es], Env, Ren, S0) ->
{E1, S1} = expr(E, Env, Ren, S0),
{Es1, S2} = expr_list(Es, Env, Ren, S1),
{[E1 | Es1], S2};
expr_list([], _, _, S) ->
{[], S}.
pattern(E, Env, Ren) ->
case cerl:type(E) of
literal ->
E;
var ->
cerl:update_c_var(E, ren__map(cerl:var_name(E), Ren));
values ->
Es = pattern_list(cerl:values_es(E), Env, Ren),
cerl:update_c_values(E, Es);
cons ->
E1 = pattern(cerl:cons_hd(E), Env, Ren),
E2 = pattern(cerl:cons_tl(E), Env, Ren),
cerl:update_c_cons(E, E1, E2);
tuple ->
Es = pattern_list(cerl:tuple_es(E), Env, Ren),
cerl:update_c_tuple(E, Es);
binary ->
Es = pattern_list(cerl:binary_segments(E), Env, Ren),
cerl:update_c_binary(E, Es);
bitstr ->
E1 = pattern(cerl:bitstr_val(E), Env, Ren),
E2 = pattern(cerl:bitstr_size(E), Env, Ren),
E3 = cerl:bitstr_unit(E),
E4 = cerl:bitstr_type(E),
E5 = cerl:bitstr_flags(E),
cerl:update_c_bitstr(E, E1, E2, E3, E4, E5);
alias ->
V = pattern(cerl:alias_var(E), Env, Ren),
P = pattern(cerl:alias_pat(E), Env, Ren),
cerl:update_c_alias(E, V, P)
end.
pattern_list([E | Es], Env, Ren) ->
[pattern(E, Env, Ren) | pattern_list(Es, Env, Ren)];
pattern_list([], _, _) ->
[].
%% First we set up the environment, binding the function names to the
%% corresponding descriptors. (For the top level functions, we don't
%% want to cause renaming.) After that, we can visit each function body
%% and return the new function definitions and the final state.
module_defs(Ds, Env, Ren, S) ->
{Env1, S1} = bind_module_defs(Ds, Env, S),
module_defs_1(Ds, [], Env1, Ren, S1).
bind_module_defs([{V, _F} | Ds], Env, S) ->
Name = cerl:var_name(V),
check_function_name(Name, S),
S1 = s__add_function_name(Name, S),
Info = #function{name = Name, free = []},
Env1 = env__bind(Name, Info, Env),
bind_module_defs(Ds, Env1, S1);
bind_module_defs([], Env, S) ->
{Env, S}.
%% Checking that top-level function names are not reused
check_function_name(Name, S) ->
case s__is_function_name(Name, S) of
true ->
error_msg("multiple definitions of function `~w'.", [Name]),
exit(error);
false ->
ok
end.
%% We must track which top-level function we are in, for name generation
%% purposes.
module_defs_1([{V, F} | Ds], Ds1, Env, Ren, S) ->
S1 = s__enter_function(cerl:var_name(V), S),
%% The parameters should never need renaming, but this is easiest.
{Vs, Env1, Ren1} = bind_vars(cerl:fun_vars(F), Env, Ren),
{B, S2} = expr(cerl:fun_body(F), Env1, Ren1, S1),
F1 = cerl:update_c_fun(F, Vs, B),
module_defs_1(Ds, [{V, F1} | Ds1], Env, Ren, S2);
module_defs_1([], Ds, _, _, S) ->
{Ds, S}.
%% First we must create the new function names and set up the
%% environment with descriptors for the letrec-bound functions.
%%
%% Since we never shadow variables, the free variables of any
%% letrec-bound fun can always be referenced directly wherever the
%% fun-variable itself is referenced - this is important when we create
%% direct calls to lifted letrec-bound functions, and is the main reason
%% why we do renaming. For example:
%%
%% 'f'/0 = fun () ->
%% let X = 42 in
%% letrec 'g'/1 = fun (Y) -> {X, Y} in
%% let X = 17 in
%% apply 'g'/1(X)
%%
%% will become something like
%%
%% 'f'/0 = fun () ->
%% let X = 42 in
%% let X1 = 17 in
%% apply 'g'/2(X1, X)
%% 'g'/2 = fun (Y, X) -> {X, Y}
%%
%% where the innermost X has been renamed so that the outermost X can be
%% referenced in the call to the lifted function 'g'/2. (Renaming must
%% of course also be applied also to letrec-bound function variables.)
%%
%% Furthermore, if some variable X occurs free in a fun 'f'/N, and 'f'/N
%% it its turn occurs free in a fun 'g'/M, then we transitively count X
%% as free in 'g'/M, even if it has no occurrence there. This allows us
%% to rewrite code such as the following:
%%
%% 'f'/0 = fun () ->
%% let X = 42 in
%% letrec 'g'/1 = fun (Y) -> {X, Y}
%% 'h'/1 = fun (Z) -> {'bar', apply 'g'/1(Z)}
%% in let X = 17 in
%% apply 'h'/1(X)
%%
%% into something like:
%%
%% 'f'/0 = fun () ->
%% let X = 42 in
%% let X1 = 17 in
%% apply 'h'/2(X1, X)
%% 'g'/2 = fun (Y, X) -> {X, Y}
%% 'h'/2 = fun (Z, X) -> {'bar', apply 'g'/2(Z, X)}
%%
%% which uses only direct calls. The drawback is that if the occurrence
%% of 'f'/N in 'g'/M instead would cause a closure to be created, then
%% that closure could have been formed earlier (at the point where 'f'/N
%% was defined), rather than passing on all the free variables of 'f'/N
%% into 'g'/M. Since we must know the interface to 'g'/M (i.e., the
%% total number of parameters) before we begin processing its body, and
%% the interface depends on what we do to the body (and functions can be
%% mutually recursive), this problem can only be solved by finding out
%% _what_ we are going to do before we can even define the interfaces of
%% the functions, by looking at _how_ variables are being referenced
%% when we look for free variables. Currently, we don't do that.
letrec_defs(Ds, Env, Ren, S) ->
{Env1, Ren1, S1} = bind_letrec_defs(Ds, Env, Ren, S),
{Env1, Ren1, lift_letrec_defs(Ds, Env1, Ren1, S1)}.
%% Note: it is important that we store the *renamed* free variables for
%% each function to be lifted.
bind_letrec_defs(Ds, Env, Ren, S) ->
bind_letrec_defs(Ds, free_in_defs(Ds, Env, Ren), Env, Ren, S).
bind_letrec_defs([{V, _F} | Ds], Free, Env, Ren, S) ->
Name = cerl:var_name(V),
{Env1, Ren1, S1} = bind_letrec_fun(Name, Free, Env, Ren, S),
bind_letrec_defs(Ds, Free, Env1, Ren1, S1);
bind_letrec_defs([], _Free, Env, Ren, S) ->
{Env, Ren, S}.
bind_letrec_fun(Name = {_,A}, Free, Env, Ren, S) ->
A1 = A + length(Free),
{Name1, Ren1, S1} = rename_letrec_fun(Name, A1, Env, Ren, S),
Info = #function{name = Name1, free = Free},
{env__bind(Name1, Info, Env), Ren1, S1}.
%% Creating a new name for the lifted function that is informative, is
%% not in the environment, and is not already used for some other lifted
%% function.
rename_letrec_fun(Name, NewArity, Env, Ren, S) ->
{New, S1} = new_letrec_fun_name(Name, NewArity, Env, S),
{New, ren__add(Name, New, Ren), s__add_function_name(New, S1)}.
new_letrec_fun_name({N,_}, Arity, Env, S) ->
{FName, FArity} = s__get_function(S),
Base = fun_name_base(FName, FArity)
++ "-letrec-" ++ atom_to_list(N) ++ "-",
%% We try the base as name first. This will usually work.
Name = {list_to_atom(Base), Arity},
case env__is_defined(Name, Env) of
true ->
new_fun_name(Base, Arity, Env, S);
false ->
case s__is_function_name(Name, S) of
true ->
new_fun_name(Base, Arity, Env, S);
false ->
{Name, S}
end
end.
%% Processing the actual functions of a letrec
lift_letrec_defs([{V, F} | Ds], Env, Ren, S) ->
Info = env__get(ren__map(cerl:var_name(V), Ren), Env),
S1 = lift_letrec_fun(F, Info, Env, Ren, S),
lift_letrec_defs(Ds, Env, Ren, S1);
lift_letrec_defs([], _, _, S) ->
S.
%% The direct calling convention for letrec-defined functions is to pass
%% the free variables as additional parameters. Note that the free
%% variables (if any) are already in the environment when we get here.
%% We only have to append them to the parameter list so that they are in
%% scope in the lifted function; they are already renamed.
%%
%% It should not be possible for the original parameters to clash with
%% the free ones (in that case they cannot be free), but we do the full
%% bind-and-rename anyway, since it's easiest.
lift_letrec_fun(F, Info, Env, Ren, S) ->
{Vs, Env1, Ren1} = bind_vars(cerl:fun_vars(F), Env, Ren),
{B, S1} = expr(cerl:fun_body(F), Env1, Ren1, S),
Fs = [cerl:c_var(V) || V <- Info#function.free],
F1 = cerl:c_fun(Vs ++ Fs, B),
s__add_def(cerl:c_var(Info#function.name), F1, S1).
%% This is a simple way of handling mutual recursion in a group of
%% letrec-definitions: classify a variable as free in all the functions
%% if it is free in any of them. (The preferred way would be to actually
%% take the transitive closure for each function.)
free_in_defs(Ds, Env, Ren) ->
{Vs, Fs} = free_in_defs(Ds, [], [], Ren),
closure_vars(ordsets:subtract(Fs, Vs), Env, Ren).
free_in_defs([{V, F} | Ds], Vs, Free, Ren) ->
Fs = cerl_trees:free_variables(F),
free_in_defs(Ds, [ren__map(cerl:var_name(V), Ren) | Vs], Fs ++ Free,
Ren);
free_in_defs([], Vs, Free, _Ren) ->
{ordsets:from_list(Vs), ordsets:from_list(Free)}.
%% Replacing function variables with the free variables of the function
closure_vars(Vs, Env, Ren) ->
closure_vars(Vs, [], Env, Ren).
closure_vars([V = {_, _} | Vs], As, Env, Ren) ->
V1 = ren__map(V, Ren),
case env__lookup(V1, Env) of
{ok, #function{free = Vs1}} ->
closure_vars(Vs, Vs1 ++ As, Env, Ren);
_ ->
closure_vars(Vs, As, Env, Ren)
end;
closure_vars([V | Vs], As, Env, Ren) ->
closure_vars(Vs, [V | As], Env, Ren);
closure_vars([], As, _Env, _Ren) ->
ordsets:from_list(As).
%% We use the no-shadowing strategy, renaming variables on the fly and
%% only when necessary to uphold the invariant.
bind_vars(Vs, Env, Ren) ->
bind_vars(Vs, [], Env, Ren).
bind_vars([V | Vs], Vs1, Env, Ren) ->
Name = cerl:var_name(V),
{Name1, Ren1} = rename_var(Name, Env, Ren),
bind_vars(Vs, [cerl:update_c_var(V, Name1) | Vs1],
env__bind(Name1, variable, Env), Ren1);
bind_vars([], Vs, Env, Ren) ->
{lists:reverse(Vs), Env, Ren}.
rename_var(Name, Env, Ren) ->
case env__is_defined(Name, Env) of
false ->
{Name, Ren};
true ->
New = env__new_name(Env),
{New, ren__add(Name, New, Ren)}
end.
%% This handles variable references *except* in function application
%% operator positions (see apply_expr/4).
%%
%% The Beam compiler annotates function-variable references with 'id'
%% info, eventually transforming a direct reference such as "fun f/2"
%% into a new fun-expression "fun (X1,X2) -> apply f/2(X1,X2)" for which
%% the info is used to create the lifted function as for any other fun.
%% We do the same thing for function-bound variables.
var(V, Env, Ren, S) ->
Name = ren__map(cerl:var_name(V), Ren),
case lookup_var(Name, Env) of
#function{name = F, free = Vs} ->
{_, Arity} = F,
Vs1 = make_vars(Arity),
C = cerl:c_apply(cerl:c_var(F), Vs1),
E = cerl:ann_c_fun(cerl:get_ann(V), Vs1, C),
fun_expr_1(E, Vs, Env, Ren, S);
variable ->
{cerl:update_c_var(V, Name), S}
end.
lookup_var(V, Env) ->
case env__lookup(V, Env) of
{ok, X} ->
X;
error ->
error_msg("unbound variable `~P'.", [V, 5]),
exit(error)
end.
make_vars(N) when N > 0 ->
[cerl:c_var(list_to_atom("X" ++ integer_to_list(N)))
| make_vars(N - 1)];
make_vars(0) ->
[].
%% All funs that are not bound by module or letrec definitions will be
%% rewritten to create explicit closures using "make fun". We don't
%% currently track ordinary let-bindings of funs, as in "let F = fun
%% ... in ...apply F(...)...".
%%
%% Note that we (currently) follow the Beam naming convention, including
%% the free variables in the arity of the name, even though the actual
%% function typically expects a different number of parameters.
fun_expr(F, Env, Ren, S) ->
Free = closure_vars(cerl_trees:free_variables(F), Env, Ren),
Vs = [cerl:c_var(V) || V <- Free],
fun_expr_1(F, Vs, Env, Ren, S).
fun_expr_1(F, Vs, Env, Ren, S) ->
Arity = cerl:fun_arity(F) + length(Vs), % for the name only
{Info, S1} = fun_info(F, Env, S),
Name = {Info#fun_info.name, Arity},
S2 = lift_fun(Name, F, Vs, Env, Ren, S1),
{make_fun_primop(Name, Vs, Info, F, S2), S2}.
make_fun_primop({Name, Arity}, Free, #fun_info{id = Id, hash = Hash},
F, S) ->
Module = s__get_module_name(S),
cerl:update_c_primop(F, cerl:c_atom(?PRIMOP_MAKE_FUN),
[cerl:c_atom(Module),
cerl:c_atom(Name),
cerl:c_int(Arity),
cerl:c_int(Hash),
cerl:c_int(Id),
cerl:make_list(Free)]).
%% Getting attached fun-info, if present; otherwise making it up.
fun_info(E, Env, S) ->
case lists:keyfind(id, 1, cerl:get_ann(E)) of
{id, {Id, H, Name}} ->
%% io:fwrite("Got fun-info: ~w: {~w,~w}.\n", [Name,Id,H]),
{#fun_info{name = Name, id = Id, hash = H}, S};
_ ->
io:fwrite("Warning - fun not annotated: "
"making up new name.\n"), % for now
{{Name,_Arity}, S1} = new_fun_name(E, Env, S),
{#fun_info{name = Name, id = 0, hash = 0}, S1}
end.
fun_name_base(FName, FArity) ->
"-" ++ atom_to_list(FName) ++ "/" ++ integer_to_list(FArity).
%% Generate a name for the new function, using a the same convention
%% that is used by the Beam compiler.
new_fun_name(F, Env, S) ->
{FName, FArity} = s__get_function(S),
Base = fun_name_base(FName, FArity) ++ "-fun-",
Arity = cerl:fun_arity(F),
new_fun_name(Base, Arity, Env, S).
%% Creating a new function name that is not in the environment and is
%% not already used for some other lifted function.
new_fun_name(Base, Arity, Env, S) ->
F = fun (N) ->
{list_to_atom(Base ++ integer_to_list(N)), Arity}
end,
new_fun_name(Base, Arity, Env, S, F).
new_fun_name(Base, Arity, Env, S, F) ->
%% Note that repeated calls to env__new_function_name/2 will yield
%% different names even though Env and F are the same.
Name = env__new_function_name(F, Env),
case s__is_function_name(Name, S) of
true ->
new_fun_name(Base, Arity, Env, S, F);
false ->
{Name, S}
end.
%% This lifts the fun to a new top-level function which uses the calling
%% convention for closures, with the closure itself as the final
%% parameter. Note that the free variables (if any) are already in the
%% environment.
%%
%% It should not be possible for the original parameters to clash with
%% the free ones (in that case they cannot be free), but we do the full
%% bind-and-rename anyway, since it's easiest.
lift_fun(Name, F, Free, Env, Ren, S) ->
%% If the name is already in the list of top-level definitions, we
%% assume we have already generated this function, and do not need
%% to do it again (typically, this happens for 'fun f/n'-variables
%% that have been duplicated before being rewritten to actual
%% fun-expressions, and the name is taken from their annotations).
%% Otherwise, we add the name to the list.
case s__is_function_name(Name, S) of
true ->
S;
false ->
S1 = s__add_function_name(Name, S),
lift_fun_1(Name, F, Free, Env, Ren, S1)
end.
lift_fun_1(Name, F, Free, Env, Ren, S) ->
%% (The original parameters must be added to the environment before
%% we generate the new variable for the closure parameter.)
{Vs, Env1, Ren1} = bind_vars(cerl:fun_vars(F), Env, Ren),
V = env__new_name(Env1),
Env2 = env__bind(V, variable, Env1),
{B, S1} = expr(cerl:fun_body(F), Env2, Ren1, S),
%% We unpack all free variables from the closure upon entering.
%% (Adding this to the body before we process it would introduce
%% unnecessary, although harmless, renaming of the free variables.)
Es = closure_elements(length(Free), cerl:c_var(V)),
B1 = cerl:c_let(Free, cerl:c_values(Es), B),
%% The closure itself is passed as the last argument. The new
%% function is annotated as being a closure-call entry point.
E = cerl:ann_c_fun([closure, {closure_orig_arity, cerl:fun_arity(F)}], Vs ++ [cerl:c_var(V)], B1),
s__add_def(cerl:c_var(Name), E, S1).
closure_elements(N, V) ->
closure_elements(N, N + 1, V).
closure_elements(0, _, _) -> [];
closure_elements(N, M, V) ->
[cerl:c_primop(cerl:c_atom(?PRIMOP_FUN_ELEMENT),
[cerl:c_int(M - N), V])
| closure_elements(N - 1, M, V)].
%% Function applications must be rewritten depending on the
%% operator. For a call to a known top-level function or letrec-bound
%% function, we make a direct call, passing the free variables as extra
%% parameters (we know they are in scope, since variables may not be
%% shadowed). Otherwise, we create an "apply fun" primop call that
%% expects a closure.
apply_expr(E, Env, Ren, S) ->
{As, S1} = expr_list(cerl:apply_args(E), Env, Ren, S),
Op = cerl:apply_op(E),
case cerl:is_c_var(Op) of
true ->
Name = ren__map(cerl:var_name(Op), Ren),
case lookup_var(Name, Env) of
#function{name = F, free = Vs} ->
Vs1 = As ++ [cerl:c_var(V) || V <- Vs],
{cerl:update_c_apply(E, cerl:c_var(F), Vs1), S1};
variable ->
apply_expr_1(E, Op, As, Env, Ren, S1)
end;
_ ->
apply_expr_1(E, Op, As, Env, Ren, S1)
end.
%% Note that this primop call only communicates the necessary
%% information to the core-to-icode stage, which rewrites it to use the
%% real calling convention for funs.
apply_expr_1(E, Op, As, Env, Ren, S) ->
{Op1, S1} = expr(Op, Env, Ren, S),
Call = cerl:update_c_primop(E, cerl:c_atom(?PRIMOP_APPLY_FUN),
[Op1, cerl:make_list(As)]),
{Call, S1}.
%% ---------------------------------------------------------------------
%% Environment
env__new() ->
rec_env:empty().
env__bind(Key, Value, Env) ->
rec_env:bind(Key, Value, Env).
env__lookup(Key, Env) ->
rec_env:lookup(Key, Env).
env__get(Key, Env) ->
rec_env:get(Key, Env).
env__is_defined(Key, Env) ->
rec_env:is_defined(Key, Env).
env__new_name(Env) ->
rec_env:new_key(Env).
env__new_function_name(F, Env) ->
rec_env:new_key(F, Env).
%% ---------------------------------------------------------------------
%% Renaming
ren__new() ->
dict:new().
ren__add(Key, Value, Ren) ->
dict:store(Key, Value, Ren).
ren__map(Key, Ren) ->
case dict:find(Key, Ren) of
{ok, Value} ->
Value;
error ->
Key
end.
%% ---------------------------------------------------------------------
%% State
-record(state, {module :: module(),
function :: {atom(), arity()} | 'undefined',
names = sets:new() :: sets:set(), %% XXX: refine
refs = dict:new() :: dict:dict(), %% XXX: refine
defs = []}).
s__new(Module) ->
#state{module = Module}.
s__add_function_name(Name, S) ->
S#state{names = sets:add_element(Name, S#state.names)}.
s__is_function_name(Name, S) ->
sets:is_element(Name, S#state.names).
s__get_module_name(S) ->
S#state.module.
s__enter_function(F, S) ->
S#state{function = F}.
s__get_function(S) ->
S#state.function.
s__add_def(V, F, S) ->
S#state{defs = [{V, F} | S#state.defs]}.
s__get_defs(S) ->
S#state.defs.
%% ---------------------------------------------------------------------
%% Reporting
%% internal_error_msg(S) ->
%% internal_error_msg(S, []).
%% internal_error_msg(S, Vs) ->
%% error_msg(lists:concat(["Internal error: ", S]), Vs).
%% error_msg(S) ->
%% error_msg(S, []).
error_msg(S, Vs) ->
error_logger:error_msg(lists:concat([?MODULE, ": ", S, "\n"]), Vs).
%% warning_msg(S) ->
%% warning_msg(S, []).
%% warning_msg(S, Vs) ->
%% info_msg(lists:concat(["warning: ", S]), Vs).
%% info_msg(S) ->
%% info_msg(S, []).
%% info_msg(S, Vs) ->
%% error_logger:info_msg(lists:concat([?MODULE, ": ", S, "\n"]), Vs).