%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2002-2013. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%%----------------------------------------------------------------------
%% File : hipe_ssa.inc
%% Authors : Christoffer Vikström, Daniel Deogun, and Jesper Bengtsson
%% Created : March 2002
%% Purpose : Provides code which converts the code of a CFG into SSA
%% (Static Single Assignment) form and back.
%% A routine to check for SSA-ness is also provided.
%%
%% Major Modifications:
%% * Feb 2003: Per Gustafsson - added SSA checker.
%% * Aug 2003: Per Gustafsson - added removal of dead code.
%% * Feb 2004: Kostis Sagonas - made it work on RTL level too.
%% * Feb 2004: Tobias Lindahl - re-wrote the unconvert/1 function.
%%----------------------------------------------------------------------
-export([convert/1, check/1, unconvert/1, remove_dead_code/1]).
-include("../main/hipe.hrl").
-include("../flow/cfg.hrl"). %% needed for the specs
-include("../ssa/hipe_ssa_liveness.inc"). %% needed for dead code removal
%%----------------------------------------------------------------------
%%
%% NOTE! When the phi-instructions are placed, it is important that
%% the internal order is preserved. Otherwise the (correct) order:
%%
%% v1 := phi({1, v2}, {2, v11})
%% v2 := phi({1, v11}, {2, v12})
%%
%% can become (the incorrect)
%%
%% v2 := phi({1, v11}, {2, v12})
%% v1 := phi({1, v2}, {2, v11})
%%
%% that will set v1 to the _new_ value of v2 instead of the old value.
%%
%%----------------------------------------------------------------------
-spec convert(#cfg{}) -> #cfg{}.
convert(CFG) ->
CFG1 = insertNewStartNode(CFG),
?opt_start_timer("Dominator Tree construction"),
DomTree = hipe_dominators:domTree_create(CFG1),
?opt_stop_timer("Dominator Tree construction done"),
?opt_start_timer("Dominance Frontier"),
DomFrontier = hipe_dominators:domFrontier_create(CFG1, DomTree),
?opt_stop_timer("Dominance Frontier done"),
?opt_start_timer("placement of Phi-nodes"),
CFG2 = place_phi(CFG1, DomFrontier),
?opt_stop_timer("placement of Phi-nodes done"),
?opt_start_timer("Rename"),
CFG3 = rename(CFG2, DomTree),
?opt_stop_timer("Rename done"),
CFG3.
%%----------------------------------------------------------------------
insertNewStartNode(CFG) ->
StartLabel = ?CFG:start_label(CFG),
NewStartLabel = ?CODE:label_name(?CODE:mk_new_label()),
BB = hipe_bb:mk_bb([?CODE:mk_goto(StartLabel)]),
CFG2 = ?CFG:bb_add(CFG, NewStartLabel, BB),
?CFG:start_label_update(CFG2, NewStartLabel).
%%======================================================================
%% PlacePhi Algorithm
%%======================================================================
%%----------------------------------------------------------------------
%% Procedure : place_phi/2
%% Purpose : Places phi nodes at appropriate places in the CFG.
%% Arguments : CFG - Control Flow Graph.
%% DF - Dominance Frontier.
%% Returns : CFG with phi functions.
%%----------------------------------------------------------------------
place_phi(CFG, DF) ->
AssMap = insertParams(CFG),
AssMap2 = preProcess(CFG, AssMap),
VarList = gb_trees:to_list(AssMap2),
Liveness = ?LIVENESS:analyze(CFG),
variableTraverse(CFG, DF, gb_trees:empty(), gb_trees:empty(),
0, AssMap2, Liveness, VarList).
%%----------------------------------------------------------------------
%% Procedure : insertParams/1
%% Purpose : Inserts the parameters of the CFG into the AssMap.
%% Arguments : CFG - Control Flow Graph
%% Returns : AssMap - Assignment map.
%%----------------------------------------------------------------------
insertParams(CFG) ->
StartLabel = ?CFG:start_label(CFG),
Params = ?CFG:params(CFG),
insertParams(Params, StartLabel, gb_trees:empty()).
insertParams([Param|T], StartLabel, AssMap) ->
insertParams(T, StartLabel, gb_trees:insert(Param, [StartLabel], AssMap));
insertParams([], _, AssMap) -> AssMap.
%%----------------------------------------------------------------------
%% Procedure : preProcessg/2
%% Purpose : Creates the assignment map.
%% Arguments : CFG - Control Flow Graph
%% AssMap - Assignment map
%% Returns : AssMap.
%%----------------------------------------------------------------------
preProcess(CFG, AssMap) ->
traverseLabels(CFG, ?CFG:labels(CFG), AssMap).
%%----------------------------------------------------------------------
%% Procedure : traverseLabels/3
%% Purpose : Traverses all labels and adds all assignments in the basic
%% block to the assignment map.
%% Arguments : CFG - Control Flow Graph
%% AssMap - Assignment Map
%% Label - A label for a node
%% Returns : AssMap.
%%----------------------------------------------------------------------
traverseLabels(CFG, [Label|T], AssMap) ->
Code = get_code_from_label(CFG, Label),
NewVarList = getAssignments(Code),
traverseLabels(CFG, T, updateAssMap(NewVarList, Label, AssMap));
traverseLabels(_, [], AssMap) -> AssMap.
%%----------------------------------------------------------------------
%% Procedure : getAssignments/1
%% Purpose : Retrieves all assigned variables in a basic block.
%% Arguments : InstrLst - A list of instructions from a basic block.
%% VarList - A list of variables.
%% Returns : VarList.
%% Notes : This function may return a list containing duplicates.
%%----------------------------------------------------------------------
getAssignments(InstrList) -> getAssignments(InstrList, []).
getAssignments([Instr|T], VarList) ->
getAssignments(T, defs_to_rename(Instr) ++ VarList);
getAssignments([], VarList) -> VarList.
%%----------------------------------------------------------------------
%% Procedure : updateAssMap/3
%% Purpose : Updates the assignment map with. Each variable in the AssVar
%% list is inserted with the value Label.
%% Arguments : Label - a label of a node
%% AssVar - a variable that is assigned at Label
%% AssMap - Assignment map.
%% Returns : AssMap.
%%----------------------------------------------------------------------
updateAssMap([AssVar|T], Label, AssMap) ->
Lst = getAssMap(AssVar, AssMap),
updateAssMap(T, Label, gb_trees:enter(AssVar, [Label|Lst], AssMap));
updateAssMap([], _, AssMap) -> AssMap.
getAssMap(AssVar, AssMap) ->
case gb_trees:lookup(AssVar, AssMap) of
{value, L} -> L;
none -> []
end.
%%----------------------------------------------------------------------
%% Procedure : variableTraverse/7
%% Purpose : This function traverses all variables and adds phi functions
%% at appropriate nodes.
%% Arguments : CFG - Control Flow Graph
%% DFMap - Dominance Frontier Map
%% HasAlready - A map of nodes which already have phi functions
%% Work -
%% IterCount - Counter of how many iterations have been done
%% AssMap - Assignment map
%% VarLst - Variable list that is traversed
%% Returns : CFG.
%%----------------------------------------------------------------------
variableTraverse(CFG, DFMap, HasAlready, Work,
IterCount, AssMap, Liveness, [{Var,_}|VarLst]) ->
IterCount2 = IterCount + 1,
DefLst = getAssMap(Var, AssMap),
{Work2, WorkLst2} = workListBuilder(DefLst, Work, [], IterCount2),
{CFG2, HasAlready2, Work3} = doWork(CFG, DFMap, HasAlready,
Work2, IterCount2, WorkLst2,
Var, Liveness),
variableTraverse(CFG2, DFMap, HasAlready2, Work3,
IterCount2, AssMap, Liveness, VarLst);
variableTraverse(CFG, _, _, _, _, _, _, []) -> CFG.
%%----------------------------------------------------------------------
%% Procedure : workListBuilder/4
%% Purpose : Builds the worklist that the algorithm is working on.
%% Arguments : Work -
%% WorkLst - The worklist that is worked through
%% IterCount - Counter of how many itterations that has been done
%% Node - A node in the CFG
%% Returns :
%%----------------------------------------------------------------------
workListBuilder([Node|T], Work, WorkLst, IterCount) ->
case getCount(Node, Work) of
0 ->
Work2 = gb_trees:enter(Node, IterCount, Work),
workListBuilder(T, Work2, [Node|WorkLst], IterCount);
_ ->
Work2 = gb_trees:enter(Node, IterCount, Work),
workListBuilder(T, Work2, [Node|WorkLst], IterCount)
end;
workListBuilder([], Work, WorkLst, _IterCount) ->
{Work, WorkLst}.
getCount(Key, Dict) ->
case gb_trees:lookup(Key, Dict) of
{value, V} -> V;
none -> 0
end.
%%----------------------------------------------------------------------
%% Procedure : doWork/7
%% Purpose : This procedure works itself through the worklist and checks
%% if a node needs any phi functions.
%% Arguments : CFG - Control Flow Graph
%% DFMap - Dominance Frontier Map
%% HasAlready - A map of nodes that already have phi functions
%% Work -
%% IterCount - Counter of how many iterations have taken place
%% WorkLst - The worklist that is worked through
%% Var - Variable
%% Returns : {CFG, HasAlready, Work}
%%----------------------------------------------------------------------
doWork(CFG, DFMap, HasAlready, Work, IterCount,
[Node|WorkLst], Var, Liveness) ->
DFofX = hipe_dominators:domFrontier_get(Node, DFMap),
{CFG2, HasAlready2, Work2, WorkLst2} =
checkPhiNeeds(CFG, DFofX, HasAlready, Work,
IterCount, WorkLst, Var, Liveness),
doWork(CFG2, DFMap, HasAlready2, Work2,
IterCount, WorkLst2, Var, Liveness);
doWork(CFG, _, HasAlready, Work, _, [], _, _) ->
{CFG, HasAlready, Work}.
%%----------------------------------------------------------------------
%% Procedure : checkPhiNeeds/7
%% Purpose : This function checks if a node needs a phi function and adds
%% one if its needed.
%% Arguments : CFG - Control Flow Graph
%% DFofX - Dominance Frontier of a node
%% HasAlready - A map of nodes that already have phi functions
%% Work -
%% IterCount - Counter of how many iterations have taken place
%% WorkLst - The worklist that is worked through
%% Var - Variable
%% Returns : {CFG, HasAlready, Work, WorkLst}
%%----------------------------------------------------------------------
checkPhiNeeds(CFG, [Node|DFofX], HasAlready, Work,
IterCount, WorkLst, Var, Liveness) ->
case getCount(Node, HasAlready) < IterCount of
true ->
LiveIn = ?LIVENESS:livein(Liveness, Node),
case lists:member(Var, LiveIn) of
true ->
CFG2 = insertPhiCode(CFG, Node, Var),
HasAlready2 = gb_trees:enter(Node, IterCount, HasAlready),
case getCount(Node, Work) < IterCount of
true ->
Work2 = gb_trees:enter(Node, IterCount, Work),
WorkLst2 = [Node|WorkLst],
checkPhiNeeds(CFG2, DFofX, HasAlready2, Work2,
IterCount, WorkLst2, Var, Liveness);
false ->
checkPhiNeeds(CFG2, DFofX, HasAlready2, Work,
IterCount, WorkLst, Var, Liveness)
end;
false ->
checkPhiNeeds(CFG, DFofX, HasAlready, Work, IterCount,
WorkLst, Var, Liveness)
end;
false ->
checkPhiNeeds(CFG, DFofX, HasAlready, Work, IterCount,
WorkLst, Var, Liveness)
end;
checkPhiNeeds(CFG, [], HasAlready, Work, _, WorkLst, _, _) ->
{CFG, HasAlready, Work, WorkLst}.
%%----------------------------------------------------------------------
%% Procedure : insertPhiCode/3
%% Purpose :
%% Arguments : CFG - Control Flow Graph
%% Node - A node
%% Var - A variable
%% Returns : CFG
%%----------------------------------------------------------------------
insertPhiCode(CFG, Node, Var) ->
BB = ?CFG:bb(CFG, Node),
Phi = ?CODE:mk_phi(Var),
Code = [Phi | hipe_bb:code(BB)],
?CFG:bb_add(CFG, Node, hipe_bb:code_update(BB, Code)).
%%======================================================================
%% SSA Renaming pass
%%======================================================================
%%----------------------------------------------------------------------
%% Procedure : rename/2
%% Purpose : Renames all the variables in the CFG according to the SSA
%% conversion algorithm.
%% Arguments : CFG - The CFG being translated.
%% DomTree - The dominator tree of the CFG.
%% Returns : A CFG where all variables are renamed.
%%----------------------------------------------------------------------
rename(CFG, DomTree) ->
%% Reset the appropriate variable index so that we start from low
%% variable numbers again
reset_var_indx(),
{CFG2,Current} = insertRenamedParams(CFG),
rename(CFG2, ?CFG:start_label(CFG2), DomTree, Current).
rename(CFG, Node, DomTree, Current) ->
BB = ?CFG:bb(CFG, Node),
Statements = hipe_bb:code(BB),
{Statements2,Current2} = renameVars(Statements, Current),
CFG1 = ?CFG:bb_add(CFG, Node, hipe_bb:code_update(BB, Statements2)),
Succ = ?CFG:succ(CFG1, Node),
CFG2 = updateSuccPhi(Succ, Node, CFG1, Current2),
Children = hipe_dominators:domTree_getChildren(Node, DomTree),
childrenRename(Children, CFG2, DomTree, Current2).
%%----------------------------------------------------------------------
%% Procedure : childrenRename/5
%% Purpose : Renames all the nodes in a list according to the SSA
%% conversion algorithm.
%% Arguments : ChildList - the list of nodes being renamed
%% CFG - the CFG that the children are a part of
%% DomTree - The dominator tree for the CFG
%% Current - the current index of all variables encountered
%% Returns : CFG
%%----------------------------------------------------------------------
childrenRename([Child|Children], CFG, DomTree, Current) ->
CFG2 = rename(CFG, Child, DomTree, Current),
childrenRename(Children, CFG2, DomTree, Current);
childrenRename([], CFG, _, _) ->
CFG.
%%----------------------------------------------------------------------
%% Procedure : renameVars/3
%% Purpose : Renames the variables in basic block
%% Arguments : Statements - the basic block
%% Current - the current index of all variables encountered
%% Returns : {Statements,Current}
%%----------------------------------------------------------------------
renameVars(Statements, Current) ->
renameVars(Statements, Current, []).
renameVars([Statement|Statements], Current, Result) ->
Statement2 = renameUses(Statement, Current),
{Statement3,Current2} = renameDefs(Statement2, Current),
renameVars(Statements, Current2, [Statement3|Result]);
renameVars([], Current, Result) ->
{lists:reverse(Result),Current}.
%%----------------------------------------------------------------------
%% Procedure : renameUses/2
%% Purpose : Renames all the uses of a variable in a statement.
%% Arguments : Statement - the statement being renamed.
%% Current - the current index of all variables encountered.
%% Returns : Statement
%%----------------------------------------------------------------------
renameUses(Statement, Current) ->
case ?CODE:is_phi(Statement) of
true -> Statement;
false -> VarList = uses_to_rename(Statement),
updateStatementUses(VarList, Statement, Current)
end.
%%----------------------------------------------------------------------
%% Procedure : updateStatementUses/3
%% Purpose : Traverses the variable list and renames all the instances
%% of a variable in the Statement uses to its current value.
%% Arguments : VarList - the list of variables being updated.
%% Statement - the statement being updated.
%% Current - the current index of all variables encountered.
%% Returns : An updated statement.
%%----------------------------------------------------------------------
updateStatementUses(Vars, Statement, Current) ->
Substs = [{Var,gb_trees:get(Var, Current)} || Var <- Vars],
?CODE:subst_uses(Substs, Statement).
%%----------------------------------------------------------------------
%% Procedure : renameDefs/3
%% Purpose : Renames all the definitons in Statement.
%% Arguments : Statement - the statement where the definitions are being
%% renamed.
%% Current - the current index of all variables encountered.
%% Returns : Statement
%%----------------------------------------------------------------------
renameDefs(Statement, Current) ->
VarList = defs_to_rename(Statement),
updateStatementDefs(VarList, Statement, Current).
%%----------------------------------------------------------------------
%% Procedure : updateStatementDefs/4
%% Purpose : traverses a variable list and exchanges all instances of
%% the variable in the statements definitions by its current
%% value.
%% Arguments : VariableList - the list of varibles being renamed
%% Statement - the statement whos definitions are being changed
%% Current - the current index of all variables encountered
%% Returns : {Statement, Current}
%% Notes : Per Gustafsson:
%% I changed this function to update the statement only when
%% all substitutions are found.
%%----------------------------------------------------------------------
updateStatementDefs(Vars, Statement, Current) ->
updateStatementDefs(Vars, Statement, Current, []).
updateStatementDefs([Var|Vars], Statement, Current, Acc) ->
{NewVar,Current2} = updateIndices(Current, Var),
updateStatementDefs(Vars, Statement, Current2, [{Var,NewVar}|Acc]);
updateStatementDefs([], Statement, Current, Acc) ->
Statement2 = ?CODE:subst_defines(Acc, Statement),
{Statement2,Current}.
%%----------------------------------------------------------------------
%% Procedure : updateIndices/3
%% Purpose : This function is used for updating the Current hash table
%% and for getting a new variable/fp variable/register.
%% Arguments : Current - Hash table containg the current index for a
%% particular variable.
%% Variable - The variable that is used as key in the hash table.
%% Returns : A two-tuple containing the new variable and Current.
%%----------------------------------------------------------------------
updateIndices(Current, Variable) ->
case ?CODE:is_var(Variable) of
true ->
NewVar = ?CODE:mk_new_var(),
{NewVar,gb_trees:enter(Variable, NewVar, Current)};
false ->
case is_fp_temp(Variable) of
true ->
NewFVar = mk_new_fp_temp(),
{NewFVar,gb_trees:enter(Variable, NewFVar, Current)};
false ->
NewReg = ?CODE:mk_new_reg(),
{NewReg,gb_trees:enter(Variable, NewReg, Current)}
end
end.
%%----------------------------------------------------------------------
%% Procedure : updateSuccPhi/4
%% Purpose : This function is used for updating phi functions in a
%% particular node's successors. That is, the function
%% traverses the successor list of a node and updates the
%% arguments in the phi function calls.
%% Arguments : Succ - A successor to the node Parent.
%% T - The remainder of the successor list
%% Parent - The parent of the node Succ
%% CFG - Control Flow Graph
%% Current - Hash table containg the current index for a
%% particular variable
%% Returns : An updated version of the CFG
%%----------------------------------------------------------------------
updateSuccPhi([Succ|T], Parent, CFG, Current) ->
CFG2 = updatePhi(Succ, Parent, CFG, Current),
updateSuccPhi(T, Parent, CFG2, Current);
updateSuccPhi([], _, CFG, _) ->
CFG.
%%----------------------------------------------------------------------
%% Procedure : updatePhi/4
%% Purpose : This function prepares for an update of a phi function call.
%% That is, if a statement contains a phi function call
%% then the number of predecessors are computed and the index
%% of the parent in the predecessor list is used for computing
%% which variable in the argument list of the phi function call
%% that need to be updated.
%% Arguments : Node - A node in the CFG
%% Parent - The parent of the node Node in the dominator tree
%% CFG - Control Flow Graph
%% Current - Hash table containg the current index for a
%% particular variable
%% Returns : An updated version of the CFG
%%----------------------------------------------------------------------
updatePhi(Node, Parent, CFG, Current) ->
BB = ?CFG:bb(CFG, Node),
case hipe_bb:code(BB) of
[Code|_] = Statements ->
case ?CODE:is_phi(Code) of
true ->
Code2 = updateCode(Statements, Parent, Current),
?CFG:bb_add(CFG, Node, hipe_bb:code_update(BB, Code2));
_ ->
CFG
end;
_ ->
CFG
end.
%%----------------------------------------------------------------------
%% Procedure : updateCode/3
%% Purpose : This function updates a statement that contains a phi
%% function, i.e. it changes the arguments in the phi
%% function to their correct names.
%% Arguments : Code - A list of code
%% Pred - A predecessor of the node containing the
%% phi-function
%% Current - Hash table containing the current index for a
%% particular variable
%% Returns : A list of Code
%%----------------------------------------------------------------------
updateCode(Code, Pred, Current) ->
updateCode(Code, Pred, Current, []).
updateCode([Stat|Stats] = Statements, Pred, Current, Result) ->
case ?CODE:is_phi(Stat) of
true ->
Var = ?CODE:phi_id(Stat),
Result2 = case gb_trees:lookup(Var, Current) of
none ->
[Stat|Result];
{value,Var2} ->
Stat2 = ?CODE:phi_enter_pred(Stat, Pred, Var2),
[Stat2|Result]
end,
updateCode(Stats, Pred, Current, Result2);
_ ->
Result ++ Statements
end.
%%----------------------------------------------------------------------
%% Procedure : insertRenamedParams/1
%% Purpose : Inserts the parameters of the CFG into the working hashmaps.
%% Arguments : CFG - the target control flow graph.
%% Returns : {CFG,Current}
%%----------------------------------------------------------------------
insertRenamedParams(CFG) ->
Params = ?CFG:params(CFG),
%% Current - the current variable we are working on.
{Current,Params2} = insertRenamedParams(Params, gb_trees:empty(), []),
CFG2 = ?CFG:params_update(CFG, Params2),
{CFG2,Current}.
insertRenamedParams([Param|Params], Current, Result) ->
{Var,Current2} = updateIndices(Current, Param),
insertRenamedParams(Params, Current2, [Var|Result]);
insertRenamedParams([], Current, Result) ->
{Current,lists:reverse(Result)}.
%%======================================================================
%% SSA Checker
%%======================================================================
%%
%% @doc Checks the control flow graph CFG of a function for SSA-ness.
%% More specifically, it checks that all variables in the CFG are only
%% defined once and that all uses of each variable in the function are
%% dominated by a define. If a variable does not abide by these rules,
%% a warning message will be printed on stdout.
%%
-spec check(#cfg{}) -> 'ok'.
check(CFG) ->
Labels = ?CFG:labels(CFG),
VarTree = traverse_labels(Labels, CFG),
DomTree = hipe_dominators:domTree_create(CFG),
test_uses(Labels, VarTree, DomTree, CFG).
%%
%% @doc Traverses all the labels in a CFG.
%%
traverse_labels(Labels, CFG) ->
VarTree = add_args(?CFG:params(CFG)),
traverse_labels(Labels, VarTree, CFG).
traverse_labels([Label|Rest], VarTree, CFG) ->
Code = get_code_from_label(CFG, Label),
NewVarTree = traverse_code(Code, VarTree, Label),
traverse_labels(Rest, NewVarTree, CFG);
traverse_labels([], VarTree, _CFG) ->
VarTree.
%%
%% @doc Traverses the code in a basic block.
%%
traverse_code([Instr|Rest], VarTree, Label) ->
Defined = defs_to_rename(Instr),
NewVarTree = add_to_var_tree(Defined, VarTree, Instr, Label),
traverse_code(Rest, NewVarTree, Label);
traverse_code([], VarTree, _) ->
VarTree.
%%
%% @doc
%% Adds a variable to the variable tree if the variable is defined.
%% The entry in the variable tree will have the variable as key and a
%% two tuple consisting of a list of Instructions and a list of labels
%% where the variable is defined. If a variable is defined a second
%% time a warning message to this effect is printed on stdout.
%%
add_to_var_tree([Var|Rest], VarTree, Instr, Label) ->
NewVarTree =
case gb_trees:lookup(Var, VarTree) of
{value,{OldInstr,OldLabel}} ->
?WARNING_MSG("Variable: ~w defined a second time\n"++
"in Instr: ~w\n"++
"at Label: ~w\n"++
"variable was first defined at Label(s) ~w\n"++
"in Instr(s): ~w\n -> non SSA form\n",
[Var,Instr,Label,OldLabel,OldInstr]),
gb_trees:update(Var, {[Instr|OldInstr],[Label|OldLabel]}, VarTree);
none ->
gb_trees:insert(Var, {[Instr],[Label]}, VarTree)
end,
add_to_var_tree(Rest, NewVarTree, Instr, Label);
add_to_var_tree([], VarTree, _, _) ->
VarTree.
%%
%% @doc Adds the argument of a function to the VarTree.
%% They are defined at Label 0.
%%
add_args(Args) ->
add_args(Args, gb_trees:empty()).
add_args([Arg|Rest], VarTree) ->
add_args(Rest, gb_trees:insert(Arg, {[argument_variable],[0]}, VarTree));
add_args([], VarTree) ->
VarTree.
%%
%% The functions below test that a use is dominated by a corresponding def.
%%
%%
%% This function is analogous to traverse_labels.
%%
test_uses([Label|Rest], VarTree, DomTree,CFG) ->
Code = get_code_from_label(CFG, Label),
test_code(Code, VarTree, Label, DomTree, CFG, []),
test_uses(Rest, VarTree, DomTree, CFG);
test_uses([], _VarTree, _DomTree, _CFG) ->
ok.
%%
%% This function is analogous to traverse_code.
%%
test_code([Instr|Instrs], VarTree, Label, DomTree, CFG, Old) ->
case ?CODE:is_phi(Instr) of
true ->
ArgList = ?CODE:phi_arglist(Instr),
case ArgList of
[_Arg] ->
?WARNING_MSG("Phi with only one source at BB with label ~w:\n",
[Label]),
%% case ?CODE of
%% hipe_rtl -> ?CODE:pp_block(get_code_from_label(CFG, Label));
%% _ -> ok
%% end,
ok;
[_|_] -> ok
end,
lists:foreach(fun ({Pred,Var}) ->
def_doms_use([Var], VarTree, Pred, DomTree,
get_code_from_label(CFG,Pred))
end, ArgList);
false ->
Uses = uses_to_rename(Instr),
def_doms_use(Uses, VarTree, Label, DomTree, Old)
end,
test_code(Instrs, VarTree, Label, DomTree, CFG, [Instr|Old]);
test_code([], _VarTree, _Label, _DomTree, _CFG, _Old) ->
ok.
get_code_from_label(CFG, Label) ->
case ?CFG:bb(CFG,Label) of
not_found ->
?error_msg("Basic block with label ~w was not found\n", [Label]);
%% ?EXIT('Detected serious problem in SSA form');
BB ->
hipe_bb:code(BB)
end.
%%
%% This function checks whether a use is dominated by a def.
%% There are five different cases:
%% 1. A use of an argument register. This use is dominated by the def.
%% 2. Use and Def in same basic block if Use comes first this will
%% lead to a warning message, otherwise it is ok.
%% 3. The deinition is in a basic block that dominates the basic block
%% of the use. This is ok.
%% 4. The definition is in a basic block that does not dominate the use.
%% This will result in a warning message being printed.
%% 5. A use without any definition. This will result in a warning message
%% being printed.
%%
def_doms_use([Var|Vars], VarTree, Label, DomTree, Old) ->
case gb_trees:lookup(Var, VarTree) of
{value,{_,[DefLabel|_]}} ->
case DefLabel of
0 ->
ok;
Label ->
Fun = fun(X) -> Defs = defs_to_rename(X),
lists:any(fun(Y) -> Var == Y end, Defs)
end,
case lists:any(Fun, Old) of
true ->
ok;
false ->
?WARNING_MSG("Variable : ~w used before definition in bb: ~w\n",
[Var,Label])
end;
_ ->
case hipe_dominators:domTree_dominates(DefLabel, Label, DomTree) of
true ->
ok;
false ->
?WARNING_MSG("Definition does not dominate use for variable: ~w "++
"at label: ~w (definition label: ~w)\n",
[Var, Label, DefLabel])
end
end;
none ->
?WARNING_MSG("Use with no definition of variable: ~w at label: ~w\n",
[Var, Label])
end,
def_doms_use(Vars, VarTree, Label, DomTree, Old);
def_doms_use([], _VarTree, _Label, _DomTree, _Old) ->
ok.
%%======================================================================
%% SSA Un-Converter
%%======================================================================
%%----------------------------------------------------------------------
%% Procedure : unconvert/2
%% Purpose : Removes all phi functions and propagates all
%% assignments up to the appropriate predecessors.
%% Arguments : CFG - Control Flow Graph
%% Node - A node in the CFG
%% Returns : CFG
%% Note : The call to remove_trivial_bbs is needed so that moves,
%% which are introduced in new basic blocks as part of the
%% un-conversion, are merged with the basic blocks of their
%% predecessors, if possible.
%%----------------------------------------------------------------------
-spec unconvert(#cfg{}) -> #cfg{}.
unconvert(CFG) ->
?CFG:remove_trivial_bbs(unconvert(?CFG:reverse_postorder(CFG), CFG)).
unconvert([Node|Nodes], CFG) ->
BB = ?CFG:bb(CFG, Node),
Code = hipe_bb:code(BB),
{Phis,Code2} = getPhiFuncts(Code, []),
case Phis of
[] ->
unconvert(Nodes, CFG);
_ ->
BB2 = hipe_bb:code_update(BB, Code2),
CFG2 = ?CFG:bb_add(CFG, Node, BB2),
Pred = ?CFG:pred(CFG2, Node),
PredMoveMap = get_moves(Pred, Phis),
CFG3 = insert_move_bbs(PredMoveMap, Node, CFG2),
unconvert(Nodes, CFG3)
end;
unconvert([], CFG) ->
CFG.
%%----------------------------------------------------------------------
%% Procedure : get_moves/2 and /3
%% Purpose : Find the moves that corresponds to phi-instructions of
%% a block. Try to merge incoming edges to avoid duplicate
%% blocks.
%% Arguments : Preds - The predecessors to this block.
%% Phis - The phi instructions that used to start this block.
%% Returns : [{ListOfMoves, [Preds]}]
%%----------------------------------------------------------------------
get_moves(Preds, Phis) ->
get_moves(Preds, Phis, gb_trees:empty()).
get_moves([Pred|Left], Phis, Map)->
Moves = get_moves_from_phis(Pred, Phis, []),
NewMap =
case gb_trees:lookup(Moves, Map) of
none -> gb_trees:insert(Moves, [Pred], Map);
{value,List} -> gb_trees:update(Moves, [Pred|List], Map)
end,
get_moves(Left, Phis, NewMap);
get_moves([], _Phis, Map) ->
gb_trees:to_list(Map).
%%----------------------------------------------------------------------
%% Procedure : get_moves_from_phis/3
%% Purpose : Find all the moves that should be done in the edge
%% coming in from Pred.
%% Arguments : Pred - The predecessor
%% Phis - Reverse list of phi instructions.
%% Returns : [{Dst,Src}] representing the move instructions;
%% ORDERING IS SIGNIFICANT!
%%----------------------------------------------------------------------
get_moves_from_phis(Pred, [Phi|Left], Acc) ->
Dst = ?CODE:phi_dst(Phi),
Src = ?CODE:phi_arg(Phi, Pred),
NewAcc = [{Dst, Src}|Acc],
get_moves_from_phis(Pred, Left, NewAcc);
get_moves_from_phis(_Pred, [], Acc) ->
Acc.
%%----------------------------------------------------------------------
%% Procedure : insert_move_bbs/3
%% Purpose : Create the bbs that contains the moves.
%% Arguments : Ordset - The move instruction tuples {Dst, Src}
%% Preds - The predecessors that needs the moves in Ordset
%% Label - The original label that contained the phis.
%% Cfg - The current cfg
%% Returns : The new Cfg.
%%----------------------------------------------------------------------
insert_move_bbs([{Ordset,Preds}|Left], Label, Cfg) ->
Code = create_moves(Ordset, []) ++ [?CODE:mk_goto(Label)],
BB = hipe_bb:mk_bb(Code),
NewLabel = ?CODE:label_name(?CODE:mk_new_label()),
NewCfg1 = ?CFG:bb_add(Cfg, NewLabel, BB),
NewCfg2 = lists:foldl(fun(X, Acc) ->
?CFG:redirect(Acc, X, Label, NewLabel)
end,
NewCfg1, Preds),
insert_move_bbs(Left, Label, NewCfg2);
insert_move_bbs([], _Label, Cfg) ->
Cfg.
create_moves([{X,X}|Left], Acc) ->
create_moves(Left, Acc);
create_moves([{Dst,Src}|Left], Acc) ->
create_moves(Left, [makePhiMove(Dst, Src)|Acc]);
create_moves([], Acc) ->
%% NOTE: ORDERING IS SIGNIFICANT!
lists:reverse(Acc).
%%----------------------------------------------------------------------
%% Procedure : getPhiFuncts/2
%% Purpose : This function returns the list of phi-functions from a
%% list of intermediate code instructions.
%% Arguments :
%% List - A list of Code
%% Result - Accumulative parameter to store the result
%% Returns : Reverse list of the phi instructions. ORDERING IS SIGNIFICANT!
%%----------------------------------------------------------------------
getPhiFuncts([I|T] = List, Result) ->
case ?CODE:is_phi(I) of
true ->
getPhiFuncts(T, [I|Result]);
false ->
{Result,List}
end;
getPhiFuncts([], Result) ->
{Result,[]}.
%%======================================================================
%% Dead Code Elimination on SSA form
%%======================================================================
-spec remove_dead_code(#cfg{}) -> #cfg{}.
remove_dead_code(CFG) ->
Lbls = ?CFG:reverse_postorder(CFG),
Liveness = ssa_liveness__analyze(CFG),
case do_lbls(Lbls, CFG, Liveness, false) of
{CFG1,true} ->
remove_dead_code(CFG1);
{CFG1,false} ->
CFG1
end.
do_lbls([Lbl|Rest], CFG, Liveness, Changed) ->
LiveOut = gb_sets:from_list(ssa_liveness__liveout(Liveness, Lbl)),
BB = ?CFG:bb(CFG, Lbl),
Code = hipe_bb:code(BB),
{NewCode,NewChanged} = do_code(lists:reverse(Code), LiveOut, Changed, []),
NewBB = hipe_bb:code_update(BB, NewCode),
NewCFG = ?CFG:bb_add(CFG, Lbl, NewBB),
do_lbls(Rest, NewCFG, Liveness, NewChanged);
do_lbls([], CFG, _Liveness, Changed) ->
{CFG,Changed}.
do_code([Instr|Instrs], LiveOut, Changed, Acc) ->
Def = ?CODE:defines(Instr),
Use = ?CODE:uses(Instr),
DefSet = gb_sets:from_list(Def),
UseSet = gb_sets:from_list(Use),
LiveIn = gb_sets:union(gb_sets:difference(LiveOut, DefSet), UseSet),
case gb_sets:is_empty(gb_sets:intersection(DefSet, LiveOut)) of
false ->
do_code(Instrs, LiveIn, Changed, [Instr|Acc]);
true ->
case ?CODE:is_safe(Instr) of
true ->
case ?CODE:is_call(Instr) of
true ->
case ?CODE:call_continuation(Instr) of
[] ->
do_code(Instrs, LiveOut, true, Acc);
SuccLblName ->
NewInstr = ?CODE:mk_goto(SuccLblName),
do_code(Instrs, LiveOut, true, [NewInstr|Acc])
end;
false ->
do_code(Instrs, LiveOut, true, Acc)
end;
false -> %% not a safe instruction - cannot be removed
case ?CODE:is_call(Instr) of
true ->
case ?CODE:call_dstlist(Instr) of
[] -> %% result was not used anyway; no change
do_code(Instrs, LiveIn, Changed, [Instr|Acc]);
[_Dst] -> %% remove the unused assignment to call's destination
NewInstr = ?CODE:call_dstlist_update(Instr, []),
do_code(Instrs, LiveIn, true, [NewInstr|Acc]);
[_|_] -> %% calls with multiple dests are left untouched
do_code(Instrs, LiveIn, Changed, [Instr|Acc])
end;
false ->
do_code(Instrs, LiveIn, Changed, [Instr|Acc])
end
end
end;
do_code([], _LiveOut, Changed, Acc) ->
{Acc,Changed}.