<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>2004</year><year>2013</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>snmpa</title>
<prepared></prepared>
<responsible></responsible>
<docno></docno>
<approved></approved>
<checked></checked>
<date></date>
<rev></rev>
<file>snmpa.xml</file>
</header>
<module>snmpa</module>
<modulesummary>Interface Functions to the SNMP toolkit agent</modulesummary>
<description>
<p>The module <c>snmpa</c> contains interface functions to the
SNMP agent.</p>
<marker id="data_types"></marker>
</description>
<section>
<title>DATA TYPES</title>
<code type="none"><![CDATA[
oid() = [byte()]
atl_type() = read | write | read_write
notification_delivery_info() = #snmpa_notification_delivery_info{}
]]></code>
<p>The <c>oid()</c> type is used to represent an ASN.1 OBJECT IDENTIFIER. </p>
<p>The record <c><![CDATA[snmpa_notification_delivery_info]]></c> contains the following fields: </p>
<taglist>
<tag><c><![CDATA[tag = term()]]></c></tag>
<item>
<p>A user defined identity representing this notification send
operation.</p>
</item>
<tag><c><![CDATA[mod = module()]]></c></tag>
<item>
<p>A module implementing the
<seealso marker="snmpa_notification_delivery_info_receiver">snmpa_notification_delivery_info_receiver</seealso>
behaviour. The info functions of this module will be called at
various stages of delivery. </p>
</item>
<tag><c><![CDATA[extra = term()]]></c></tag>
<item>
<p>This is any extra info the user wants to have supplied
when the functions in the callback module is called. </p>
</item>
</taglist>
<marker id="add_agent_caps"></marker>
</section>
<funcs>
<func>
<name>add_agent_caps(SysORID, SysORDescr) -> SysORIndex</name>
<fsummary>Add an AGENT-CAPABILITY definition to the agent</fsummary>
<type>
<v>SysORID = oid()</v>
<v>SysORDescr = string()</v>
<v>SysORIndex = integer()</v>
</type>
<desc>
<p>This function can be used to add an AGENT-CAPABILITY
statement to the sysORTable in the agent. The table is
defined in the SNMPv2-MIB.</p>
<marker id="del_agent_caps"></marker>
</desc>
</func>
<func>
<name>del_agent_caps(SysORIndex) -> void()</name>
<fsummary>Delete an AGENT-CAPABILITY definition from the agent</fsummary>
<type>
<v>SysORIndex = integer()</v>
</type>
<desc>
<p>This function can be used to delete an AGENT-CAPABILITY
statement to the sysORTable in the agent. This table is
defined in the SNMPv2-MIB. </p>
<marker id="get_agent_caps"></marker>
</desc>
</func>
<func>
<name>get_agent_caps() -> [[SysORIndex, SysORID, SysORDescr, SysORUpTime]]</name>
<fsummary>Return all AGENT-CAPABILITY definitions in the agent</fsummary>
<type>
<v>SysORIndex = integer()</v>
<v>SysORId = oid()</v>
<v>SysORDescr = string()</v>
<v>SysORUpTime = integer()</v>
</type>
<desc>
<p>Returns all AGENT-CAPABILITY statements in the sysORTable
in the agent. This table is defined in the SNMPv2-MIB. </p>
<marker id="get"></marker>
</desc>
</func>
<func>
<name>get(Agent, Vars) -> Values | {error, Reason}</name>
<name>get(Agent, Vars, Context) -> Values | {error, Reason}</name>
<fsummary>Perform a get operation on the agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Vars = [oid()]</v>
<v>Context = string()</v>
<v>Values = [term()]</v>
<v>Reason = {atom(), oid()}</v>
</type>
<desc>
<p>Performs a GET operation on the agent. All loaded MIB
objects are visible in this operation. The agent calls the
corresponding instrumentation functions just as if it was a
GET request coming from a manager. </p>
<p>Note that the request specific parameters (such as
<seealso marker="#current_request_id">current_request_id</seealso>)
are not accessible for the instrumentation functions if this
function is used. </p>
<marker id="get_next"></marker>
</desc>
</func>
<func>
<name>get_next(Agent, Vars) -> Values | {error, Reason}</name>
<name>get_next(Agent, Vars, Context) -> Values | {error, Reason}</name>
<fsummary>Perform a get-next operation on the agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Vars = [oid()]</v>
<v>Context = string()</v>
<v>Values = [{oid(), term()}]</v>
<v>Reason = {atom(), oid()}</v>
</type>
<desc>
<p>Performs a GET-NEXT operation on the agent. All loaded MIB
objects are visible in this operation. The agent calls the
corresponding instrumentation functions just as if it was a
GET request coming from a manager. </p>
<p>Note that the request specific parameters (such as
<c>snmpa:current_request_id/0</c> are not accessible for the
instrumentation functions if this function is used. </p>
<marker id="backup"></marker>
<!-- <marker id="get_symbolic_store_db"></marker> -->
</desc>
</func>
<!--
<func>
<name>get_symbolic_store_db() -> Db</name>
<fsummary>Retrieve the symbolic store database reference</fsummary>
<type>
<v>Db = term()</v>
</type>
<desc>
<p>Retrieve the symbolic store database reference. This is used
for faster access to the database using the functions:
<c>int_to_enum/3</c>, <c>enum_to_int/3</c>, <c>name_to_oid/2</c>,
<c>oid_to_name/2</c>. </p>
<marker id="backup"></marker>
</desc>
</func>
-->
<func>
<name>backup(BackupDir) -> ok | {error, Reason}</name>
<name>backup(Agent, BackupDir) -> ok | {error, Reason}</name>
<fsummary>Backup agent data</fsummary>
<type>
<v>BackupDir = string()</v>
<v>Agent = pid() | atom()</v>
<v>Reason = backup_in_progress | term()</v>
</type>
<desc>
<p>Backup persistent/permanent data handled by the agent
(such as local-db, mib-data and vacm). </p>
<p>Data stored by mnesia is not handled. </p>
<p>BackupDir cannot be identical to DbDir. </p>
<p>Simultaneous backup calls are <em>not</em> allowed.
That is, two different processes cannot simultaneously
successfully call this function. One of them will be first,
and succeed. The second will fail with the error reason
<c>backup_in_progress</c>. </p>
<marker id="info"></marker>
</desc>
</func>
<func>
<name>info() -> [{Key, Value}]</name>
<name>info(Agent) -> [{Key, Value}]</name>
<fsummary>Return information about the agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
</type>
<desc>
<p>Returns a list (a dictionary) containing information about
the agent. Information includes loaded MIBs, registered
sub-agents, some information about the memory allocation. </p>
<p>As of version 4.4 the format of the info has been changed.
To convert the info to the old format, call the
<seealso marker="#old_info_format">old_info_format</seealso>
function. </p>
<marker id="old_info_format"></marker>
</desc>
</func>
<func>
<name>old_info_format(NewInfo) -> OldInfo</name>
<fsummary>Return information about the agent</fsummary>
<type>
<v>OldInfo = NewInfo = [{Key, Value}]</v>
</type>
<desc>
<p>As of version 4.4 the format of the info has been changed.
This function is used to convert to the old (pre-4.4) info
format. </p>
<marker id="load_mib"></marker>
</desc>
</func>
<func>
<name>load_mib(Mib) -> ok | {error, Reason}</name>
<name>load_mib(Agent, Mib) -> ok | {error, Reason}</name>
<fsummary>Load single MIB into the agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>MibName = string()</v>
<v>Reason = already_loaded | term()</v>
</type>
<desc>
<p>Load a single <c>Mib</c> into an agent. The <c>MibName</c>
is the name of the Mib, including the path to where the compiled
mib is found. For example: </p>
<code type="none">
Dir = code:priv_dir(my_app) ++ "/mibs/",
snmpa:load_mib(snmp_master_agent, Dir ++ "MY-MIB").
</code>
<marker id="load_mibs"></marker>
</desc>
</func>
<func>
<name>load_mibs(Mibs) -> ok | {error, Reason}</name>
<name>load_mibs(Mibs, Force) -> ok | {error, Reason}</name>
<name>load_mibs(Agent, Mibs) -> ok | {error, Reason}</name>
<name>load_mibs(Agent, Mibs, Force) -> ok | {error, Reason}</name>
<fsummary>Load MIBs into the agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Mibs = [MibName]</v>
<v>Force = boolean()</v>
<v>MibName = string()</v>
<v>Reason = {'load aborted at', MibName, InternalReason}</v>
<v>InternalReason = already_loaded | term()</v>
</type>
<desc>
<p>Load <c>Mibs</c> into an agent. If the agent cannot load all
MIBs (the default value of the <c>Force</c> argument is <c>false</c>),
it will indicate where loading was aborted. The <c>MibName</c>
is the name of the Mib, including the path to where the compiled
mib is found. For example,</p>
<code type="none">
Dir = code:priv_dir(my_app) ++ "/mibs/",
snmpa:load_mibs(snmp_master_agent, [Dir ++ "MY-MIB"]).
</code>
<p>If <c>Force = true</c> then the agent will continue attempting
to load each mib even after failing to load a previous mib. Use with
care. </p>
<marker id="unload_mib"></marker>
</desc>
</func>
<func>
<name>unload_mib(Mib) -> ok | {error, Reason}</name>
<name>unload_mib(Agent, Mib) -> ok | {error, Reason}</name>
<fsummary>Unload single MIB from the agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>MibName = string()</v>
<v>Reason = not_loaded | term()</v>
</type>
<desc>
<p>Unload a single <c>Mib</c> from an agent. </p>
<marker id="unload_mibs"></marker>
</desc>
</func>
<func>
<name>unload_mibs(Mibs) -> ok | {error, Reason}</name>
<name>unload_mibs(Mibs, Force) -> ok | {error, Reason}</name>
<name>unload_mibs(Agent, Mibs) -> ok | {error, Reason}</name>
<name>unload_mibs(Agent, Mibs, Force) -> ok | {error, Reason}</name>
<fsummary>Unload MIBs from the agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Mibs = [MibName]</v>
<v>Force = boolean()</v>
<v>MibName = string()</v>
<v>Reason = {'unload aborted at', MibName, InternalReason}</v>
<v>InternalReason = not_loaded | term()</v>
</type>
<desc>
<p>Unload <c>Mibs</c> from an agent. If it cannot unload all MIBs
(the default value of the <c>Force</c> argument is <c>false</c>),
it will indicate where unloading was aborted. </p>
<p>If <c>Force = true</c> then the agent will continue attempting
to unload each mib even after failing to unload a previous mib.
Use with care. </p>
<marker id="which_mibs"></marker>
</desc>
</func>
<func>
<name>which_mibs() -> Mibs</name>
<name>which_mibs(Agent) -> Mibs</name>
<fsummary>Get a list of all the loaded mibs</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Mibs = [{MibName, MibFile}]</v>
<v>MibName = atom()</v>
<v>MibFile = string()</v>
</type>
<desc>
<p>Retrieve the list of all the mibs loaded into this agent. Default
is the master agent. </p>
<marker id="whereis_mib"></marker>
</desc>
</func>
<func>
<name>whereis_mib(MibName) -> {ok, MibFile} | {error, Reason}</name>
<name>whereis_mib(Agent, MibName) -> {ok, MibFile} | {error, Reason}</name>
<fsummary>Get the path to the mib file</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>MibName = atom()</v>
<v>MibFile = string()</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Get the full path to the (compiled) mib-file. </p>
<marker id="current_request_id"></marker>
<marker id="current_context"></marker>
<marker id="current_community"></marker>
<marker id="current_address"></marker>
</desc>
</func>
<func>
<name>current_request_id() -> {value, RequestId} | false</name>
<name>current_context() -> {value, Context} | false</name>
<name>current_community() -> {value, Community} | false</name>
<name>current_address() -> {value, Address} | false</name>
<fsummary>Get the request-id, context, community and address of the current request</fsummary>
<type>
<v>RequestId = integer()</v>
<v>Context = string()</v>
<v>Community = string()</v>
<v>Address = term()</v>
</type>
<desc>
<p>Get the request-id, context, community and address of the
request currently being processed by the agent. </p>
<p>Note that these functions is intended to be called by the
instrumentation functions and <em>only</em> if they are
executed in the context of the agent process (e.g. it does
not work if called from a spawned process).</p>
<marker id="enum_to_int"></marker>
</desc>
</func>
<func>
<name>enum_to_int(Name, Enum) -> {value, Int} | false</name>
<name>enum_to_int(Db, Name, Enum) -> {value, Int} | false</name>
<fsummary>Convert an enum value to an integer</fsummary>
<type>
<v>Db = term()</v>
<v>Name = atom()</v>
<v>Enum = atom()</v>
<v>Int = int()</v>
</type>
<desc>
<p>Converts the symbolic value <c>Enum</c> to the
corresponding integer of the enumerated object or type
<c>Name</c> in a MIB. The MIB must be loaded.
</p>
<p><c>false</c> is returned if the object or type is not
defined in any loaded MIB, or if it does not define the
symbolic value as enumerated.
</p>
<p><c>Db</c> is a reference to the symbolic store database
(retrieved by a call to <c>get_symbolic_store_db/0</c>). </p>
<marker id="int_to_enum"></marker>
</desc>
</func>
<func>
<name>int_to_enum(Name, Int) -> {value, Enum} | false</name>
<name>int_to_enum(Db, Name, Int) -> {value, Enum} | false</name>
<fsummary>Convert an integer to an enum value</fsummary>
<type>
<v>Db = term()</v>
<v>Name = atom()</v>
<v>Int = int()</v>
<v>Enum = atom()</v>
</type>
<desc>
<p>Converts the integer <c>Int</c> to the corresponding
symbolic value of the enumerated object or type <c>Name</c> in
a MIB. The MIB must be loaded.
</p>
<p><c>false</c> is returned if the object or type is not
defined in any loaded MIB, or if it does not define the
symbolic value as enumerated.
</p>
<p><c>Db</c> is a reference to the symbolic store database
(retrieved by a call to <c>get_symbolic_store_db/0</c>). </p>
<marker id="name_to_oid"></marker>
</desc>
</func>
<func>
<name>name_to_oid(Name) -> {value, oid()} | false</name>
<name>name_to_oid(Db, Name) -> {value, oid()} | false</name>
<fsummary>Convert a symbolic name to an OID</fsummary>
<type>
<v>Db = term()</v>
<v>Name = atom()</v>
</type>
<desc>
<p>Looks up the OBJECT IDENTIFIER of a MIB object, given the
symbolic name. Note, the OBJECT IDENTIFIER is given for the
object, not for an instance. </p>
<p><c>false</c> is returned if the object is not defined in any
loaded MIB. </p>
<p><c>Db</c> is a reference to the symbolic store database
(retrieved by a call to <c>get_symbolic_store_db/0</c>). </p>
<marker id="oid_to_name"></marker>
</desc>
</func>
<func>
<name>oid_to_name(OID) -> {value, Name} | false</name>
<name>oid_to_name(Db, OID) -> {value, Name} | false</name>
<fsummary>Convert an OID to a symbolic name</fsummary>
<type>
<v>Db = term()</v>
<v>OID = oid()</v>
<v>Name = atom()</v>
</type>
<desc>
<p>Looks up the symbolic name of a MIB object, given OBJECT
IDENTIFIER. </p>
<p><c>false</c> is returned if the object is not defined in any
loaded MIB. </p>
<p><c>Db</c> is a reference to the symbolic store database
(retrieved by a call to <c>get_symbolic_store_db/0</c>). </p>
<marker id="which_aliasnames"></marker>
</desc>
</func>
<func>
<name>which_aliasnames() -> Result</name>
<fsummary>Get all alias-names known to the agent</fsummary>
<type>
<v>Result = [atom()]</v>
</type>
<desc>
<p>Retrieve all alias-names known to the agent.</p>
<marker id="which_tables"></marker>
</desc>
</func>
<func>
<name>which_tables() -> Result</name>
<fsummary>Get all tables known to the agent</fsummary>
<type>
<v>Result = [atom()]</v>
</type>
<desc>
<p>Retrieve all tables known to the agent.</p>
<marker id="which_variables"></marker>
</desc>
</func>
<func>
<name>which_variables() -> Result</name>
<fsummary>Get all variables known to the agent</fsummary>
<type>
<v>Result = [atom()]</v>
</type>
<desc>
<p>Retrieve all variables known to the agent.</p>
<marker id="which_notifications"></marker>
</desc>
</func>
<func>
<name>which_notifications() -> Result</name>
<fsummary>Get all notifications known to the agent</fsummary>
<type>
<v>Result = [{Name, MibName, Info}]</v>
<v>Name = atom()</v>
<v>MibName = atom()</v>
<v>Info = term()</v>
</type>
<desc>
<p>Retrieve all notifications (and traps) known to the agent.</p>
<marker id="log_to_txt"></marker>
</desc>
</func>
<func>
<name>log_to_txt(LogDir)</name>
<name>log_to_txt(LogDir, Block | Mibs)</name>
<name>log_to_txt(LogDir, Mibs, Block | OutFile) -> ok | {error, Reason}</name>
<name>log_to_txt(LogDir, Mibs, OutFile, Block | LogName) -> ok | {error, Reason}</name>
<name>log_to_txt(LogDir, Mibs, OutFile, LogName, Block | LogFile) -> ok | {error, Reason}</name>
<name>log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block | Start) -> ok | {error, Reason}</name>
<name>log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start) -> ok | {error, Reason}</name>
<name>log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) -> ok | {error, Reason}</name>
<name>log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop) -> ok | {error, Reason}</name>
<fsummary>Convert an Audit Trail Log to text format</fsummary>
<type>
<v>LogDir = string()</v>
<v>Mibs = [MibName]</v>
<v>MibName = string()</v>
<v>Block = boolean()</v>
<v>OutFile = string()</v>
<v>LogName = string()</v>
<v>LogFile = string()</v>
<v>Start = Stop = null | calendar:datetime() | {local_time, calendar:datetime()} | {universal_time, calendar:datetime()} </v>
<v>Reason = disk_log_open_error() | file_open_error() | term()</v>
<v>disk_log_open_error() = {LogName, term()}</v>
<v>file_open_error() = {OutFile, term()}</v>
</type>
<desc>
<p>Converts an Audit Trail Log to a readable text file.
<c>OutFile</c> defaults to "./snmpa_log.txt".
<c>LogName</c> defaults to "snmpa_log".
<c>LogFile</c> defaults to "snmpa.log". </p>
<p>The <c>Block</c> option indicates if the log should be blocked
during conversion. This could be usefull when converting large
logs (when otherwise the log could wrap during conversion).
Defaults to <c>true</c>. </p>
<p>See <seealso marker="snmp#log_to_txt">snmp:log_to_txt</seealso>
for more info.</p>
<marker id="log_to_io"></marker>
</desc>
</func>
<func>
<name>log_to_io(LogDir) -> ok | {error, Reason}</name>
<name>log_to_io(LogDir, Block | Mibs) -> ok | {error, Reason}</name>
<name>log_to_io(LogDir, Mibs, Block | LogName) -> ok | {error, Reason}</name>
<name>log_to_io(LogDir, Mibs, LogName, Block | LogFile) -> ok | {error, Reason}</name>
<name>log_to_io(LogDir, Mibs, LogName, LogFile, Block | Start) -> ok | {error, Reason}</name>
<name>log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start) -> ok | {error, Reason}</name>
<name>log_to_io(LogDir, Mibs, LogName, LogFile, Start, Stop) -> ok | {error, Reason}</name>
<name>log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop) -> ok | {error, Reason}</name>
<fsummary>Convert an Audit Trail Log to text format</fsummary>
<type>
<v>LogDir = string()</v>
<v>Mibs = [MibName]</v>
<v>MibName = string()</v>
<v>Block = boolean()</v>
<v>LogName = string()</v>
<v>LogFile = string()</v>
<v>Start = Stop = null | calendar:datetime() | {local_time, calendar:datetime()} | {universal_time, calendar:datetime()} </v>
<v>Reason = disk_log_open_error() | file_open_error() | term()</v>
<v>disk_log_open_error() = {LogName, term()}</v>
<v>file_open_error() = {OutFile, term()}</v>
</type>
<desc>
<p>Converts an Audit Trail Log to a readable format and
prints it on stdio.
<c>LogName</c> defaults to "snmpa_log".
<c>LogFile</c> defaults to "snmpa.log".
<p>The <c>Block</c> option indicates if the log should be blocked
during conversion. This could be usefull when converting large
logs (when otherwise the log could wrap during conversion).
Defaults to <c>true</c>. </p>
See <seealso marker="snmp#log_to_io">snmp:log_to_io</seealso>
for more info.</p>
<marker id="change_log_size"></marker>
</desc>
</func>
<func>
<name>change_log_size(NewSize) -> ok | {error, Reason}</name>
<fsummary>Change the size of the Audit Trail Log</fsummary>
<type>
<v>NewSize = {MaxBytes, MaxFiles}</v>
<v>MaxBytes = integer()</v>
<v>MaxFiles = integer()</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Changes the log size of the Audit Trail Log. The application must
be configured to use the audit trail log function. Please refer to
disk_log(3) in Kernel Reference Manual for a description of how to
change the log size. </p>
<p>The change is permanent, as long as the log is not deleted.
That means, the log size is remembered across reboots. </p>
<marker id="set_log_type"></marker>
</desc>
</func>
<func>
<name>set_log_type(NewType) -> {ok, OldType} | {error, Reason}</name>
<name>set_log_type(Agent, NewType) -> {ok, OldType} | {error, Reason}</name>
<fsummary>Change the type of the Audit Trail Log</fsummary>
<type>
<v>NewType = OldType = atl_type()</v>
<v>Agent = pid() | atom()</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Changes the run-time Audit Trail log type. </p>
<p>Note that this has no effect on the application configuration as
defined by configuration files, so a node restart will revert the
config to whatever is in those files. </p>
<p>This function is primarily useful in testing/debugging
scenarios. </p>
<marker id="mib_of"></marker>
</desc>
</func>
<func>
<name>mib_of(Oid) -> {ok, MibName} | {error, Reason}</name>
<name>mib_of(Agent, Oid) -> {ok, MibName} | {error, Reason}</name>
<fsummary>Which mib an Oid belongs to</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Oid = oid()</v>
<v>MibName = atom()</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Finds the mib corresponding to the <c>Oid</c>. If it is a
variable, the Oid must be
<Oid for var>.0 and if it is a table, Oid must be
<table>.<entry>.<col>.<any></p>
<marker id="me_of"></marker>
</desc>
</func>
<func>
<name>me_of(Oid) -> {ok, Me} | {error, Reason}</name>
<name>me_of(Agent, Oid) -> {ok, Me} | {error, Reason}</name>
<fsummary>Retrieve the mib-entry of an Oid</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Oid = oid()</v>
<v>Me = #me{}</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Finds the mib entry corresponding to the <c>Oid</c>. If it is a
variable, the Oid must be
<Oid for var>.0 and if it is a table, Oid must be
<table>.<entry>.<col>.<any></p>
<marker id="invalidate_mibs_cache"></marker>
</desc>
</func>
<func>
<name>invalidate_mibs_cache() -> void()</name>
<name>invalidate_mibs_cache(Agent) -> void()</name>
<fsummary>Invalidate the mib server cache</fsummary>
<type>
<v>Agent = pid() | atom()</v>
</type>
<desc>
<p>Invalidate the mib server cache. </p>
<p>The entire contents of the cache will be deleted. </p>
<marker id="enable_mibs_cache"></marker>
</desc>
</func>
<func>
<name>enable_mibs_cache() -> void()</name>
<name>enable_mibs_cache(Agent) -> void()</name>
<fsummary>Enable the mib server cache</fsummary>
<type>
<v>Agent = pid() | atom()</v>
</type>
<desc>
<p>Enable the mib server cache. </p>
<marker id="disable_mibs_cache"></marker>
</desc>
</func>
<func>
<name>disable_mibs_cache() -> void()</name>
<name>disable_mibs_cache(Agent) -> void()</name>
<fsummary>Disable the mib server cache</fsummary>
<type>
<v>Agent = pid() | atom()</v>
</type>
<desc>
<p>Disable the mib server cache. </p>
<marker id="which_mibs_cache_size"></marker>
</desc>
</func>
<func>
<name>which_mibs_cache_size() -> void()</name>
<name>which_mibs_cache_size(Agent) -> void()</name>
<fsummary>The size of the mib server cache</fsummary>
<type>
<v>Agent = pid() | atom()</v>
</type>
<desc>
<p>Retreive the size of the mib server cache. </p>
<marker id="gc_mibs_cache"></marker>
</desc>
</func>
<func>
<name>gc_mibs_cache() -> {ok, NumElementsGCed} | {error, Reason}</name>
<name>gc_mibs_cache(Agent) -> {ok, NumElementsGCed} | {error, Reason}</name>
<name>gc_mibs_cache(Age) -> {ok, NumElementsGCed} | {error, Reason}</name>
<name>gc_mibs_cache(Agent, Age) -> {ok, NumElementsGCed} | {error, Reason}</name>
<name>gc_mibs_cache(Age, GcLimit) -> {ok, NumElementsGCed} | {error, Reason}</name>
<name>gc_mibs_cache(Agent, Age, GcLimit) -> {ok, NumElementsGCed} | {error, Reason}</name>
<fsummary>Perform mib server cache gc</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Age = integer() > 0</v>
<v>GcLimit = integer() > 0 | infinity</v>
<v>NumElementsGCed = integer() >= 0</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Perform mib server cache gc. </p>
<p>Manually performs a mib server cache gc.
This can be done regardless of the value of the
<c>autogc</c> option.
The <c>NumElementsGCed</c> value indicates how many
elements where actually removed from the cache. </p>
<marker id="enable_mibs_cache_autogc"></marker>
</desc>
</func>
<func>
<name>enable_mibs_cache_autogc() -> void()</name>
<name>enable_mibs_cache_autogc(Agent) -> void()</name>
<fsummary>Enable automatic gc of the mib server cache</fsummary>
<type>
<v>Agent = pid() | atom()</v>
</type>
<desc>
<p>Enable automatic gc of the mib server cache. </p>
<marker id="disable_mibs_cache_autogc"></marker>
</desc>
</func>
<func>
<name>disable_mibs_cache_autogc() -> void()</name>
<name>disable_mibs_cache_autogc(Agent) -> void()</name>
<fsummary>Disable automatic gc of the mib server cache</fsummary>
<type>
<v>Agent = pid() | atom()</v>
</type>
<desc>
<p>Disable automatic gc of the mib server cache. </p>
<marker id="update_mibs_cache_age"></marker>
</desc>
</func>
<func>
<name>update_mibs_cache_age(NewAge) -> ok | {error, Reason}</name>
<name>update_mibs_cache_age(Agent, NewAge) -> ok | {error, Reason}</name>
<fsummary>Change the mib server cache age property</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>NewAge = integer() > 0</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Change the mib server cache <c>age</c> property. </p>
<marker id="update_mibs_cache_gclimit"></marker>
</desc>
</func>
<func>
<name>update_mibs_cache_gclimit(NewGcLimit) -> ok | {error, Reason}</name>
<name>update_mibs_cache_gclimit(Agent, NewGCLimit) -> ok | {error, Reason}</name>
<fsummary>Change the mib server cache gclimit property</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>NewGcLimit = integer() > 0 | infinity</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Change the mib server cache <c>gclimit</c> property. </p>
<marker id="register_notification_filter"></marker>
</desc>
</func>
<func>
<name>register_notification_filter(Id, Mod, Data) -> ok | {error, Reason}</name>
<name>register_notification_filter(Agent, Id, Mod, Data) -> ok | {error, Reason}</name>
<name>register_notification_filter(Id, Mod, Data, Where) -> ok | {error, Reason}</name>
<name>register_notification_filter(Agent, Id, Mod, Data, Where) -> ok | {error, Reason}</name>
<fsummary>Register a notification filter</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Id = filter_id()</v>
<v>filter_id() = term()</v>
<v>Mod = atom()</v>
<v>Data = term()</v>
<v>Where = filter_position()</v>
<v>Reason = term()</v>
<v>filter_position() = first | last | {insert_before, filter_id()} | {insert_after, filter_id()} </v>
</type>
<desc>
<p>Registers a notification filter.
</p>
<p><c>Mod</c> is a module implementing the
<c>snmpa_notification_filter</c> behaviour.</p>
<p><c>Data</c> will be passed on to the filter when calling the
functions of the behaviour.</p>
<marker id="unregister_notification_filter"></marker>
</desc>
</func>
<func>
<name>unregister_notification_filter(Id) -> ok | {error, Reason}</name>
<name>unregister_notification_filter(Agent, Id) -> ok | {error, Reason}</name>
<fsummary>Unregister a notification filter</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Id = filter_id()</v>
<v>filter_id() = term()</v>
</type>
<desc>
<p>Unregister a notification filter. </p>
<marker id="which_notification_filter"></marker>
</desc>
</func>
<func>
<name>which_notification_filter() -> Filters</name>
<name>which_notification_filter(Agent) -> Filters</name>
<fsummary>Which notification filter</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Filters = [filter_id()]</v>
<v>filter_id() = term()</v>
</type>
<desc>
<p>List all notification filters in an agent.</p>
<marker id="set_request_limit"></marker>
</desc>
</func>
<func>
<name>set_request_limit(NewLimit) -> {ok, OldLimit} | {error, Reason}</name>
<name>set_request_limit(Agent, NewLimit) -> {ok, OldLimit} | {error, Reason}</name>
<fsummary>Change the request limit</fsummary>
<type>
<v>NewLimit = OldLimit = infinity | integer() >= 0</v>
<v>Agent = pid() | atom()</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Changes the request limit. </p>
<p>Note that this has no effect on the application configuration as
defined by configuration files, so a node restart will revert the
config to whatever is in those files. </p>
<p>This function is primarily useful in load regulation
scenarios. </p>
<marker id="register_subagent"></marker>
</desc>
</func>
<func>
<name>register_subagent(Agent, SubTreeOid, Subagent) -> ok | {error, Reason}</name>
<fsummary>Register a sub-agent under a sub-tree</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>SubTreeOid = oid()</v>
<v>SubAgent = pid()</v>
</type>
<desc>
<p>Registers a sub-agent under a sub-tree of another agent. </p>
<p>It is easy to make mistakes when registering sub-agents and
this activity should be done carefully. For example, a
strange behaviour would result from the following
configuration:</p>
<pre>
snmp_agent:register_subagent(MAPid,[1,2,3,4],SA1),
snmp_agent:register_subagent(SA1,[1,2,3], SA2).
</pre>
<p><c>SA2</c> will not get requests starting with object
identifier <c>[1,2,3]</c> since <c>SA1</c> does not. </p>
<marker id="unregister_subagent"></marker>
</desc>
</func>
<func>
<name>unregister_subagent(Agent, SubagentOidOrPid) -> ok | {ok, SubAgentPid} | {error, Reason}</name>
<fsummary>Unregister a sub-agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>SubTreeOidorPid = oid() | pid()</v>
</type>
<desc>
<p>Unregister a sub-agent. If the second argument is a pid,
then that sub-agent will be unregistered from all trees in
<c>Agent</c>. </p>
<marker id="send_notification2"></marker>
</desc>
</func>
<func>
<name>send_notification2(Agent, Notification, SendOpts) -> void()</name>
<fsummary>Send notification</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Notification = atom()</v>
<v>SendOpts = [send_option()]</v>
<v>send_option() = {receiver, receiver()} | {name, notify_name()} | {context, context_name()} | {varbinds, varbinds()} | {local_engine_id, string()} | {extra, extra_info()}</v>
<v>receiver() = no_receiver | {tag(), tag_receiver()} | notification_delivery_info()</v>
<v>tag() = term(()</v>
<v>tag_receiver() = pid() | registered_name() | {Mod, Func, Args}</v>
<v>registered_name() = atom()</v>
<v>Mod = atom()</v>
<v>Func = atom()</v>
<v>Args = list()</v>
<v>notify_name() = string()</v>
<v>context_name() = string()</v>
<v>varbinds() = [varbind()]</v>
<v>varbind() = {variable(), value()} | {column(), row_index(), value()} | {oid(), value()}</v>
<v>variable() = atom()</v>
<v>value() = term()</v>
<v>column() = atom()</v>
<v>row_index() = [int()]</v>
<v>extra_info() = term()</v>
</type>
<desc>
<p>Send the notification <c>Notification</c> to the management
targets defined for notify-name (<c>name</c>) in the
<c>snmpNotifyTable</c> in SNMP-NOTIFICATION-MIB from the
specified <c>context</c>. </p>
<p>If no <c>name</c> is specified (or if it is <c>""</c>), the
notification is sent to all management targets. </p>
<p>If no <c>context</c> is specified, the default context, <c>""</c>,
is used. </p>
<p>The send option <c>receiver</c> specifies where information
about delivery of Inform-Requests should be sent. The agent
sends Inform-Requests and waits for acknowledgments from the
management targets.
The <c>receiver</c> can have three values: </p>
<list type="bulleted">
<item>
<p><c>no_receiver</c> - No information is delivered. </p>
</item>
<item>
<p><c>notification_delivery_info()</c> - The information is
delivered via a function call according to this data. See the
<seealso marker="#data_types">DATA TYPES</seealso> section
above for details. </p>
</item>
<item>
<p><c>{tag(), tag_receiver()}</c> - The information is delivered
either via messages or via a function call according to the value
of <c>tag_receiver()</c>. </p>
<p>Delivery is done differently depending on the value
of <c>tag_receiver()</c>: </p>
<list>
<item>
<p><c>pid() | registered_name()</c> - The info will be delivered in
the following messages: </p>
<list>
<item>
<p><c>{snmp_targets, tag(), Addresses}</c></p>
<p>This informs the user which target addresses the
notification was sent to. </p>
</item>
<item>
<p><c>{snmp_notification, tag(), {got_response, Address}}</c></p>
<p>This informs the user that this target address
acknowledged the notification. </p>
</item>
<item>
<p><c>{snmp_notification, tag(), {no_response, Address}}</c></p>
<p>This informs the user that this target address
did not acknowledge the notification. </p>
</item>
</list>
<p>The notification is sent as an Inform-Request to each
target address in <c>Addresses</c> and if there are no
targets for which an Inform-Request is sent, <c>Addresses</c>
is the empty list <c>[]</c>. </p>
<p>The <c>tag_receiver()</c> will first be sent the
<c>snmp_targets</c> message, and then for each address in
<c>Addresses</c> list, one of the two <c>snmp_notification</c>
messages. </p>
</item>
<item>
<p><c>{Mod, Func, Args}</c> - The info will be delivered via
the function call: </p>
<p><c>Mod:Func([Msg | Args])</c></p>
<p>where <c>Msg</c> has the same content and purpose as the
messages descrived above.</p>
</item>
</list>
</item>
</list>
<note>
<p>The <c>extra</c> info is not normally interpreted by the agent,
instead it is passed through to the
<seealso marker="snmp_agent_netif">net-if</seealso> process. It is
up to the implementor of that process to make use of this data. </p>
<p>The version of net-if provided by this application makes no use
of this data, with one exception:
Any tuple containing the atom
<c>snmpa_default_notification_extra_info</c>
may be used by the agent and is therefor <em>reserved</em>. </p>
<p>See the net-if incomming messages for sending a
<seealso marker="snmp_agent_netif#im_send_pdu">
trap</seealso> and
<seealso marker="snmp_agent_netif#im_send_pdu_req">
notification</seealso> for more info. </p>
</note>
<marker id="send_notification"></marker>
</desc>
</func>
<func>
<name>send_notification(Agent, Notification, Receiver)</name>
<name>send_notification(Agent, Notification, Receiver, Varbinds)</name>
<name>send_notification(Agent, Notification, Receiver, NotifyName, Varbinds)</name>
<name>send_notification(Agent, Notification, Receiver, NotifyName, ContextName, Varbinds) -> void() </name>
<name>send_notification(Agent, Notification, Receiver, NotifyName, ContextName, Varbinds, LocalEngineID) -> void() </name>
<fsummary>Send a notification</fsummary>
<type>
<v>Agent = pid() | atom()</v>
<v>Notification = atom()</v>
<v>Receiver = no_receiver | {Tag, Recv} | notification_delivery_info()</v>
<v>Tag = term()</v>
<v>Recv = receiver()</v>
<v>receiver() = pid() | atom() | {Mod, Func, Args}</v>
<v>Mod = atom()</v>
<v>Func = atom()</v>
<v>Args = list()</v>
<v>NotifyName = string()</v>
<v>ContextName = string()</v>
<v>Varbinds = varbinds()</v>
<v>varbinds() = [varbind()]</v>
<v>varbind() = {Variable, Value} | {Column, RowIndex, Value} | {OID, Value}</v>
<v>Variable = atom()</v>
<v>Column = atom()</v>
<v>OID = oid()</v>
<v>Value = term()</v>
<v>RowIndex = [int()]</v>
<v>LocalEngineID = string()</v>
</type>
<desc>
<p>Sends the notification <c>Notification</c> to the
management targets defined for <c>NotifyName</c> in the
<c>snmpNotifyTable</c> in SNMP-NOTIFICATION-MIB from the
specified context. </p>
<p>If no <c>NotifyName</c> is specified (or if it is <c>""</c>),
the notification is sent to all management targets
(<c>Addresses</c> below). </p>
<p>If no <c>ContextName</c> is specified, the default <c>""</c>
context is used. </p>
<p>The parameter <c>Receiver</c> specifies where information
about delivery of Inform-Requests should be sent. The agent
sends Inform-Requests and waits for acknowledgments from the
managers. <c>Receiver</c> can have three values: </p>
<list type="bulleted">
<item>
<p><c>no_receiver</c> - No information is delivered. </p>
</item>
<item>
<p><c>notification_delivery_info()</c> - The information is
delivered via a function call according to this data. See the
<seealso marker="#data_types">DATA TYPES</seealso> section
above for details. </p>
</item>
<item>
<p><c>{Tag, Recv}</c> - The information is delivered either via
messages or via a function call according to the value of
<c>Recv</c>. </p>
</item>
</list>
<p>If <c>Receiver</c> has the value <c>{Tag, Recv}</c>, the delivery is
done according to <c>Recv</c>: </p>
<list>
<item>
<p><c>pid() | atom()</c> - The info will be delivered in
the following messages: </p>
<list>
<item>
<p><c>{snmp_targets, Tag, Addresses}</c></p>
<p>This inform the user which target addresses the
notification was sent to. </p>
</item>
<item>
<p><c>{snmp_notification, Tag, {got_response, Address}}</c></p>
<p>This informs the user that this target address
acknowledged the notification. </p>
</item>
<item>
<p><c>{snmp_notification, Tag, {no_response, Address}}</c></p>
<p>This informs the user that this target address
did not acknowledge notification. </p>
</item>
</list>
<p>The notification is sent as an Inform-Request to each
target address in <c>Addresses</c> and if there are no
targets for which an Inform-Request is sent, <c>Addresses</c>
is the empty list <c>[]</c>. </p>
<p>The <c>receiver</c> will first be sent the <c>snmp_targets</c>
message, and then for each address in <c>Addresses</c> list,
one of the two <c>snmp_notification</c> messages. </p>
</item>
<item>
<p><c>{Mod, Func, Args}</c> - The info will be delivered via
the function call: </p>
<p><c>Mod:Func([Msg | Args])</c></p>
<p>where <c>Msg</c> has the same content and purpose as the
messages descrived above.</p>
</item>
</list>
<p><c>Address</c> is a management target address and <c>Addresses</c> is a
list of management target addresses. They are defined as followes: </p>
<pre>
Addresses = [address()]
Address = address()
address() = v1_address() | v3_address()
v1_address() = {TDomain, TAddress}
v3_address() = {{TDomain, TAddress}, V3MsgData}
TDomain = tdoamin()
TAddress = taddress()
tdomain() = The oid of snmpUDPDomain
This is the only supported transport domain.
taddress() = [A1, A2, A3, A4, P1, P3]
The 4 first bytes makes up the IP-address and the last 2,
the UDP-port number.
V3MsgData = v3_msg_data()
v3_msg_data() = term()
</pre>
<p>If <c>Receiver</c> is a <c>notification_delivery_info()</c> record,
then the information about the notification delivery will be delivered
to the <c>receiver</c> via the callback functions defined by the
<seealso marker="snmpa_notification_delivery_info_receiver">snmpa_notification_delivery_info_receiver</seealso>
behaviour according to the content of the <c>notification_delivery_info()</c>
record. </p>
<p>The optional argument <c>Varbinds</c> defines
values for the objects in the notification. If no value is
given for an object, the <c>Agent</c> performs a get-operation
to retrieve the value.
</p>
<p><c>Varbinds</c> is a list of <c>Varbind</c>, where each
<c>Varbind</c> is one of:
</p>
<list type="bulleted">
<item><c>{Variable, Value}</c>, where <c>Variable</c> is the
symbolic name of a scalar variable referred to in the notification
specification.
</item>
<item><c>{Column, RowIndex, Value}</c>, where <c>Column</c>
is the symbolic name of a column variable.
<c>RowIndex</c> is a list of indices for the specified
element. If this is the case, the OBJECT IDENTIFIER sent
in the notification is the <c>RowIndex</c> appended to the OBJECT
IDENTIFIER for the table column. This is the OBJECT
IDENTIFIER which specifies the element.
</item>
<item><c>{OID, Value}</c>, where <c>OID</c> is the OBJECT
IDENTIFIER for an instance of an object, scalar variable,
or column variable.
</item>
</list>
<p>For example, to specify that <c>sysLocation</c> should have the
value <c>"upstairs"</c> in the notification, we could use one of:
</p>
<list type="bulleted">
<item><c>{sysLocation, "upstairs"}</c> or</item>
<item><c>{[1,3,6,1,2,1,1,6,0], "upstairs"}</c> or</item>
<item><c>{?sysLocation_instance, "upstairs"}</c> (provided
that the generated <c>.hrl</c> file is included)</item>
</list>
<p>If a variable in the notification is a table element, the
<c>RowIndex</c> for the element must be given in the
<c>Varbinds</c> list. In this case, the OBJECT IDENTIFIER sent
in the notification is the OBJECT IDENTIFIER that identifies this
element. This OBJECT IDENTIFIER could be used in a get
operation later.
</p>
<p>This function is asynchronous, and does not return any
information. If an error occurs, <c>user_err/2</c> of the error
report module is called and the notification is discarded.
</p>
<note>
<p>Note that the use of the LocalEngineID argument is only intended
for special cases, if the agent is to "emulate" multiple EngineIDs!
By default, the agent uses the value of <c>SnmpEngineID</c>
(see SNMP-FRAMEWORK-MIB). </p>
</note>
<p><c>ExtraInfo</c> is not normally used in any way by the agent.
It is intended to be passed along to the net-if process, which is
a component that a user can implement themself. The users own net-if
may then make use of ExtraInfo. The net-if provided with this
application does not process ExtraInfo. </p>
<p>There is one exception. <em>Any</em> tuple containing the atom
<c>snmpa_default_notification_extra_info</c> will, in this context,
be considered belonging to this application, and may be processed
by the agent. </p>
<marker id="discovery"></marker>
</desc>
</func>
<func>
<name>discovery(TargetName, Notification) -> {ok, ManagerEngineID} | {error, Reason}</name>
<name>discovery(TargetName, Notification, Varbinds) -> {ok, ManagerEngineID} | {error, Reason}</name>
<name>discovery(TargetName, Notification, DiscoHandler) -> {ok, ManagerEngineID} | {error, Reason}</name>
<name>discovery(TargetName, Notification, ContextName, Varbinds) -> {ok, ManagerEngineID} | {error, Reason}</name>
<name>discovery(TargetName, Notification, Varbinds, DiscoHandler) -> {ok, ManagerEngineID} | {error, Reason}</name>
<name>discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler) -> {ok, ManagerEngineID} | {error, Reason}</name>
<name>discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler, ExtraInfo) -> {ok, ManagerEngineID} | {error, Reason}</name>
<fsummary>Initiate the discovery process with a manager</fsummary>
<type>
<v>TargetName = string()</v>
<v>Notification = atom()</v>
<v>ContextName = string() (defaults to "")</v>
<v>Varbinds = varbinds()</v>
<v>varbinds() = [varbind()]</v>
<v>DiscoHandler = snmpa_discovery_handler()</v>
<v>ExtraInfo = term()</v>
<v>snmpa_discovery_handler() = Module implementing the snmpa_discovery_handler behaviour</v>
<v>ManagerEngineID = string()</v>
<v>varbind() = {Variable, Value} | {Column, RowIndex, Value} | {OID, Value}</v>
<v>Variable = atom()</v>
<v>Column = atom()</v>
<v>OID = oid()</v>
<v>Value = term()</v>
<v>RowIndex = [int()]</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Initiate the discovery process with the manager identified by
<c>TargetName</c> using the notification <c>Notification</c>. </p>
<p>This function is synchronous, which means that it will return when
the discovery process has been completed or failed. </p>
<p>The <c>DiscoHandler</c> module is used during the discovery
process. See
<seealso marker="snmpa_discovery_handler">discovery handler</seealso>
for more info. </p>
<p>The <c>ExtraInfo</c> argument is passed on to the callback functions
of the <c>DiscoHandler</c>. </p>
<note><p>If we are not at security-level <c>noAuthNoPriv</c>,
this could be complicated, since the agent will then continue
with stage 2, before which the usm-related updates must be
done. </p></note>
<note><p>The default discovery handler will require
additional actions by the caller and the discovery will not work
if the security-level is higher then <c>noAuthNoPriv</c>. </p></note>
<marker id="convert_config"></marker>
</desc>
</func>
<func>
<name>convert_config(OldConfig) -> AgentConfig</name>
<fsummary>Convert old snmp config to new agent config</fsummary>
<type>
<v>OldConfig = list()</v>
<v>AgentConfig = list()</v>
</type>
<desc>
<p>This off-line utility function can be used to convert
the old snmp application config (pre snmp-4.0) to the
new snmp agent config (as of snmp-4.0).</p>
<p>For information about the old config (<c>OldConfig</c>)
see the OTP R9C documentation.</p>
<p>For information about the current agent config
(<c>AgentConfig</c>), see either
the <seealso marker="snmp_app">SNMP application</seealso>
part of the reference manual or the
<seealso marker="snmp_config">Configuring the application</seealso>
chapter of the SNMP user's guide.</p>
<marker id="restart_worker"></marker>
</desc>
</func>
<func>
<name>restart_worker() -> void()</name>
<name>restart_worker(Agent) -> void()</name>
<fsummary>Restart the worker process of a multi-threaded agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
</type>
<desc>
<p>Restart the worker process of a multi-threaded agent.</p>
<p>This is a utility function, that can be useful when
e.g. debugging instrumentation functions.</p>
<marker id="restart_set_worker"></marker>
</desc>
</func>
<func>
<name>restart_set_worker() -> void()</name>
<name>restart_set_worker(Agent) -> void()</name>
<fsummary>Restart the set worker process of a multi-threaded agent</fsummary>
<type>
<v>Agent = pid() | atom()</v>
</type>
<desc>
<p>Restart the set worker process of a multi-threaded agent.</p>
<p>This is a utility function, that can be useful when
e.g. debugging instrumentation functions.</p>
<marker id="print_mib_info"></marker>
</desc>
</func>
<func>
<name>print_mib_info() -> void()</name>
<fsummary>Print mib info</fsummary>
<desc>
<p>Prints the content of all the (snmp) tables and variables
for all mibs handled by the snmp agent. </p>
<marker id="print_mib_tables"></marker>
</desc>
</func>
<func>
<name>print_mib_tables() -> void()</name>
<fsummary>Print mib tables</fsummary>
<desc>
<p>Prints the content of all the (snmp) tables
for all mibs handled by the snmp agent. </p>
<marker id="print_mib_variables"></marker>
</desc>
</func>
<func>
<name>print_mib_variables() -> void()</name>
<fsummary>Print mib variables</fsummary>
<desc>
<p>Prints the content of all the (snmp) variables
for all mibs handled by the snmp agent. </p>
<marker id="verbosity"></marker>
</desc>
</func>
<func>
<name>verbosity(Ref,Verbosity) -> void()</name>
<fsummary>Assign a new verbosity for the process</fsummary>
<type>
<v>Ref = pid() | sub_agents | master_agent | net_if | mib_server | symbolic_store | note_store | local_db</v>
<v>Verbosity = verbosity() | {subagents, verbosity()}</v>
<v>verbosity() = silence | info | log | debug | trace </v>
</type>
<desc>
<p>Sets verbosity for the designated process. For the lowest
verbosity <c>silence</c>, nothing is printed. The higher the
verbosity, the more is printed. </p>
</desc>
</func>
</funcs>
<section>
<title>See Also</title>
<p>calendar(3), erlc(1) </p>
</section>
</erlref>