%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1996-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
-module(snmpa_mib_data_tttn).
%%%-----------------------------------------------------------------
%%%
%%% TTTN - TupleTreeTupleNodes
%%%
%%% This module implements the MIB (internal) data structures.
%%% The TTTN MIB Data structure consists of three items:
%%%
%%% 1) A mib-storage (as specified when new is called) for
%%% the data associated with each variable, table,
%%% table-entry and table-column in the MIB.
%%% 2) A tree contains information of the Oids in the MIB.
%%% 3) A list of registered subagents.
%%%
%%% The subagent information is consequently duplicated. It resides
%%% both in the tree and in the list.
%%%
%%% When a mib is loaded, the tree is built from the plain list
%%% in the binary file.
%%%
%%%-----------------------------------------------------------------
-include_lib("snmp/include/snmp_types.hrl").
-include_lib("snmp/src/misc/snmp_debug.hrl").
-define(VMODULE,"MDATA_TTTN").
-include_lib("snmp/src/misc/snmp_verbosity.hrl").
-behaviour(snmpa_mib_data).
-define(MIB_DATA, snmpa_mib_data).
-define(MIB_NODE, snmpa_mib_node).
-define(MIB_TREE, snmpa_mib_tree).
-define(DUMMY_TREE_GENERATION, 1).
-define(DEFAULT_TREE, {tree,{undefined_node},internal}).
%%%-----------------------------------------------------------------
%%% Table of contents
%%% =================
%%% 1. Interface
%%% 2. Implementation of tree access
%%% 3. Tree building functions
%%% 4. Tree merging
%%% 5. Tree deletion routines
%%% 6. Functions for subagent handling
%%% 7. Misc functions
%%%-----------------------------------------------------------------
-record(mib_data,
{
%% Mib storage module
module :: snmpa:mib_storage_module(),
%% A database of loaded mibs
%% #mib_info{}
mib_db,
%% A database with information about each node in the tree
%% #node_info{}
node_db,
%% A database containing _one_ record with the tree
%% without the subagent(s).
%% (the reason for this is part to get replication
%% and part out of convenience)
%% #tree{}
tree_db,
%% The root node (same as the tree part of the tree_db
%% but with the subagents added).
tree,
%% A list of {SAPid, Oid}
subagents = []
}).
-record(mib_info, {name, symbolic, file_name}).
-record(node_info, {oid, mib_name, me}).
%% (behaviour) API
-export([new/1,
close/1,
sync/1,
load_mib/4,
unload_mib/4,
lookup/2,
next/3,
register_subagent/3,
unregister_subagent/2,
dump/2,
which_mib/2, which_mibs/1,
whereis_mib/2,
info/1, info/2,
backup/2,
code_change/4]).
%%-----------------------------------------------------------------
%% A tree is represented as a N-tuple, where each element is a
%% node. A node is:
%% 1) {tree, Tree, Info} where Info can be {table, Id}, {table_entry, Id}
%% or perhaps 'internal'
%% 2) undefined_node (memory optimization (instead of {node, undefined}))
%% 3) {node, Info} where Info can be {subagent, Pid}, {variable, Id},
%% {table_column, Id}
%% Id is {MibName, MibEntry}
%% The over all root is represented as {tree, Tree, internal}.
%%
%% tree() = {tree, nodes(), tree_info()}
%% nodes() = {tree() | node() | undefined_node, ...}
%% node() = {node, node_info()}
%% tree_info() = {table, Id} | {table_entry, Id} | internal
%% node_info() = {subagent, Pid} | {variable, Id} | {table_colum, Id}
%%-----------------------------------------------------------------
%% This record is what is stored in the database. The 'tree' part
%% is described above...
-record(tree, {generation = ?DUMMY_TREE_GENERATION, root = ?DEFAULT_TREE}).
%%%======================================================================
%%% 1. Interface
%%%======================================================================
%%-----------------------------------------------------------------
%% Func: new/1
%% Returns: A representation of mib data.
%%-----------------------------------------------------------------
%% Where -> A list of nodes where the tables will be created
new(MibStorage) ->
Mod = snmp_misc:get_option(module, MibStorage),
Opts = snmp_misc:get_option(options, MibStorage, []),
%% First we must check if there is already something to read
%% If a database already exists, then the tree structure has to be read
?vdebug("open (mib) database",[]),
MibDb =
case Mod:open(?MIB_DATA, mib_info, record_info(fields, mib_info),
set, Opts) of
{ok, T1} ->
T1;
{error, Reason1} ->
throw({error, {open, mib_data, Reason1}})
end,
?vdebug("open (mib) node database",[]),
NodeDb =
case Mod:open(?MIB_NODE, node_info, record_info(fields, node_info),
set, Opts) of
{ok, T2} ->
T2;
{error, Reason2} ->
throw({error, {open, mib_node, Reason2}})
end,
?vdebug("open (mib) tree database",[]),
TreeDb =
case Mod:open(?MIB_TREE, tree, record_info(fields, tree),
set, Opts) of
{ok, T3} ->
T3;
{error, Reason3} ->
throw({error, {open, mib_tree, Reason3}})
end,
?vdebug("write the default (mib) tree",[]),
Tree =
case Mod:read(TreeDb, ?DUMMY_TREE_GENERATION) of
false ->
T = #tree{},
Mod:write(TreeDb, T),
T;
{value, T} ->
T
end,
?vdebug("install (existing) mibs",[]),
install_mibs(Mod, MibDb, NodeDb),
?vdebug("done",[]),
#mib_data{module = Mod,
mib_db = MibDb,
node_db = NodeDb,
tree_db = TreeDb,
tree = Tree}.
%%----------------------------------------------------------------------
%% Returns: new mib data | {error, Reason}
%%----------------------------------------------------------------------
load_mib(MibData, FileName, MeOverride, TeOverride)
when is_record(MibData,mib_data) andalso is_list(FileName) ->
?vlog("load mib file: ~p",[FileName]),
ActualFileName = filename:rootname(FileName, ".bin") ++ ".bin",
MibName = list_to_atom(filename:basename(FileName, ".bin")),
(catch do_load_mib(MibData, ActualFileName, MibName,
MeOverride, TeOverride)).
do_load_mib(MibData, ActualFileName, MibName, MeOverride, TeOverride) ->
?vtrace("do_load_mib -> entry with"
"~n ActualFileName: ~s"
"~n MibName: ~p",[ActualFileName, MibName]),
#mib_data{module = Mod,
mib_db = MibDb,
node_db = NodeDb,
%% tree_db = TreeDb,
tree = Tree} = MibData,
verify_not_loaded(Mod, MibDb, MibName),
?vtrace("do_load_mib -> already loaded mibs:"
"~n ~p", [loaded(Mod, MibDb)]),
Mib = do_read_mib(ActualFileName),
?vtrace("do_load_mib -> read mib ~s",[Mib#mib.name]),
NonInternalMes =
lists:filter(fun(ME) -> maybe_drop_me(ME) end, Mib#mib.mes),
OldRoot = Tree#tree.root,
T = build_tree(NonInternalMes, MibName),
?d("load_mib -> "
"~n OldRoot: ~p"
"~n T: ~p", [OldRoot, T]),
case (catch merge_nodes(T, OldRoot)) of
{error_merge_nodes, Node1, Node2} ->
?vlog("error merging nodes:"
"~n~p~nand~n~p", [Node1,Node2]),
{error, oid_conflict};
NewRoot when is_tuple(NewRoot) andalso (element(1,NewRoot) =:= tree) ->
?d("load_mib -> "
"~n NewRoot: ~p", [NewRoot]),
Symbolic = not lists:member(no_symbolic_info, Mib#mib.misc),
case (catch check_notif_and_mes(TeOverride, MeOverride, Symbolic,
Mib#mib.traps, NonInternalMes)) of
true ->
install_mes(Mod, NodeDb, MibName, NonInternalMes),
install_mib(Mod,
MibDb, Symbolic, Mib,
MibName, ActualFileName, NonInternalMes),
?vtrace("installed mib ~s", [Mib#mib.name]),
Tree2 = Tree#tree{root = NewRoot},
{ok, MibData#mib_data{tree = Tree2}};
Else ->
Else
end
end.
verify_not_loaded(Mod, Tab, Name) ->
case Mod:read(Tab, Name) of
{value, #mib_info{name = Name}} ->
throw({error, already_loaded});
false ->
ok
end.
do_read_mib(ActualFileName) ->
case snmp_misc:read_mib(ActualFileName) of
{error, Reason} ->
?vlog("Failed reading mib file ~p with reason: ~p",
[ActualFileName, Reason]),
throw({error, Reason});
{ok, Mib} ->
Mib
end.
%% The Tree DB is handled in a special way since it can be very large.
sync(#mib_data{module = Mod,
mib_db = M,
node_db = N,
tree_db = T, tree = Tree, subagents = []}) ->
Mod:sync(M),
Mod:sync(N),
Mod:write(T, Tree),
Mod:sync(T);
sync(#mib_data{module = Mod,
mib_db = M,
node_db = N,
tree_db = T, tree = Tree, subagents = SAs}) ->
Mod:sync(M),
Mod:sync(N),
%% Ouch. Since the subagent info is dynamic we do not
%% want to store the tree containing subagent info. So, we
%% have to create a tmp tree without those and store it.
case delete_subagents(Tree, SAs) of
{ok, TreeWithoutSAs} ->
Mod:write(T, TreeWithoutSAs),
Mod:sync(T);
Error ->
Error
end.
delete_subagents(Tree, []) ->
{ok, Tree};
delete_subagents(Tree0, [{_, Oid}|SAs]) ->
case (catch delete_subagent(Tree0, Oid)) of
{tree, _Tree, _Info} = Tree1 ->
delete_subagents(Tree1, SAs);
_Error ->
{error, {'invalid oid', Oid}}
end.
%%----------------------------------------------------------------------
%% (OTP-3601)
%%----------------------------------------------------------------------
check_notif_and_mes(TeOverride,MeOverride,Symbolic,Traps,MEs) ->
?vtrace("check notifications and mib entries",[]),
check_notifications(TeOverride,Symbolic,Traps),
check_mes(MeOverride,MEs).
check_notifications(true, _Symbolic, _Traps) ->
?vtrace("trapentry override = true => skip check",[]),
true;
check_notifications(_, Symbolic, Traps) ->
check_notifications(Symbolic, Traps).
check_notifications(true, Traps) ->
check_notifications(Traps);
check_notifications(_, _) -> true.
check_notifications([]) -> true;
check_notifications([#trap{trapname = Key} = Trap | Traps]) ->
?vtrace("check notification [trap] with Key: ~p",[Key]),
case snmpa_symbolic_store:get_notification(Key) of
{value, Trap} -> check_notifications(Traps);
{value, _} -> throw({error, {'trap already defined', Key}});
undefined -> check_notifications(Traps)
end;
check_notifications([#notification{trapname = Key} = Notif | Traps]) ->
?vtrace("check notification [notification] with Key: ~p",[Key]),
case snmpa_symbolic_store:get_notification(Key) of
{value, Notif} ->
check_notifications(Traps);
{value, _} ->
throw({error, {'notification already defined', Key}});
undefined ->
check_notifications(Traps)
end;
check_notifications([Crap | Traps]) ->
?vlog("skipped check of: ~n~p",[Crap]),
check_notifications(Traps).
check_mes(true,_) ->
?vtrace("mibentry override = true => skip check",[]),
true;
check_mes(_,MEs) ->
check_mes(MEs).
check_mes([]) -> true;
check_mes([#me{aliasname = Name, oid = Oid1} | MEs]) ->
?vtrace("check mib entries with aliasname: ~p",[Name]),
case snmpa_symbolic_store:aliasname_to_oid(Name) of
{value, Oid1} ->
check_mes(MEs);
{value, Oid2} ->
?vinfo("~n expecting '~p'~n but found '~p'",[Oid1, Oid2]),
throw({error, {'mibentry already defined', Name}});
false ->
check_mes(MEs)
end;
check_mes([Crap | MEs]) ->
?vlog("skipped check of: ~n~p",[Crap]),
check_mes(MEs).
%%----------------------------------------------------------------------
%% Returns: new mib data | {error, Reason}
%%----------------------------------------------------------------------
unload_mib(MibData, FileName, _, _) when is_list(FileName) ->
MibName = list_to_atom(filename:basename(FileName, ".bin")),
(catch do_unload_mib(MibData, MibName)).
do_unload_mib(MibData, MibName) ->
?vtrace("do_unload_mib -> entry with"
"~n MibName: ~p", [MibName]),
#mib_data{module = Mod,
mib_db = MibDb,
node_db = NodeDb,
%% tree_db = TreeDb,
tree = Tree} = MibData,
#mib_info{symbolic = Symbolic} = verify_loaded(Mod, MibDb, MibName),
NewRoot = delete_mib_from_tree(MibName, Tree#tree.root),
MEs = uninstall_mes(Mod, NodeDb, MibName),
uninstall_mib(Mod, MibDb, Symbolic, MibName, MEs),
NewMibData = MibData#mib_data{tree = Tree#tree{root = NewRoot}},
{ok, NewMibData}.
verify_loaded(Mod, Tab, Name) ->
case Mod:read(Tab, Name) of
{value, MibInfo} ->
MibInfo;
false ->
throw({error, not_loaded})
end.
close(#mib_data{module = Mod,
mib_db = MibDb,
node_db = NodeDb,
tree_db = TreeDb}) ->
Mod:close(MibDb),
Mod:close(NodeDb),
Mod:close(TreeDb),
ok.
register_subagent(#mib_data{tree = T} = MibData, Oid, Pid) ->
case insert_subagent(Oid, T#tree.root) of
{error, Reason} ->
{error, Reason};
NewRootTree ->
SAs = [{Pid, Oid} | MibData#mib_data.subagents],
T2 = T#tree{root = NewRootTree},
{ok, MibData#mib_data{tree = T2, subagents = SAs}}
end.
%%----------------------------------------------------------------------
%% Purpose: Get a list of all loaded mibs
%% Returns: [{Name, File}]
%%----------------------------------------------------------------------
which_mibs(#mib_data{module = Mod, mib_db = Db}) ->
Mibs = Mod:tab2list(Db),
[{Name, File} || #mib_info{name = Name, file_name = File} <- Mibs].
%%----------------------------------------------------------------------
%% Purpose: Get a list of all loaded mibs
%% Returns: [{Name, File}]
%%----------------------------------------------------------------------
whereis_mib(#mib_data{module = Mod, mib_db = Db}, Name) ->
case Mod:read(Db, Name) of
{value, #mib_info{file_name = File}} ->
{ok, File};
false ->
{error, not_found}
end.
%%----------------------------------------------------------------------
%% Purpose: Deletes SA with Pid from all subtrees it handles.
%% Returns: NewMibData.
%%----------------------------------------------------------------------
unregister_subagent(#mib_data{subagents = SAs} = MibData, Pid)
when is_pid(Pid) ->
SAs = MibData#mib_data.subagents,
case lists:keysearch(Pid, 1, SAs) of
false ->
{ok, MibData};
{value, {Pid, Oid}} ->
% we should never get an error since Oid is found in MibData.
{ok, NewMibData, _DeletedSA} = unregister_subagent(MibData, Oid),
% continue if the same Pid handles other mib subtrees.
unregister_subagent(NewMibData, Pid)
end;
%%----------------------------------------------------------------------
%% Purpose: Deletes one unique subagent.
%% Returns: {error, Reason} | {ok, NewMibData, DeletedSubagentPid}
%%----------------------------------------------------------------------
unregister_subagent(#mib_data{tree = T} = MibData, Oid) when is_list(Oid) ->
case (catch delete_subagent(T#tree.root, Oid)) of
{tree, Tree, Info} ->
OldSAs = MibData#mib_data.subagents,
{value, {Pid, _Oid}} = lists:keysearch(Oid, 2, OldSAs),
SAs = lists:keydelete(Oid, 2, OldSAs),
T2 = T#tree{root = {tree, Tree, Info}},
{ok,
MibData#mib_data{tree = T2, subagents = SAs},
Pid};
_ ->
{error, {invalid_oid, Oid}}
end.
%%----------------------------------------------------------------------
%% Purpose: To inpect memory usage, loaded mibs, registered subagents
%%----------------------------------------------------------------------
info(MibData) ->
?vtrace("retrieve info",[]),
#mib_data{module = Mod,
mib_db = MibDb,
node_db = NodeDb,
tree_db = TreeDb,
tree = Tree,
subagents = SAs} = MibData,
LoadedMibs = old_format(Mod:tab2list(MibDb)),
TreeSize = snmp_misc:mem_size(Tree),
{memory, ProcSize} = erlang:process_info(self(), memory),
MibDbSize = Mod:info(MibDb, memory),
NodeDbSize = Mod:info(NodeDb, memory),
TreeDbSize = Mod:info(TreeDb, memory),
[{loaded_mibs, LoadedMibs}, {subagents, SAs}, {tree_size_bytes, TreeSize},
{process_memory, ProcSize},
{db_memory, [{mib,MibDbSize},{node,NodeDbSize},{tree,TreeDbSize}]}].
info(#mib_data{module = Mod, mib_db = MibDb}, loaded_mibs) ->
Mibs = Mod:tab2list(MibDb),
[filename:rootname(FN, ".bin") || #mib_info{file_name = FN} <- Mibs];
info(#mib_data{tree = Tree}, tree_size_bytes) ->
snmp_misc:mem_size(Tree);
info(_, process_memory) ->
{memory, ProcSize} = erlang:process_info(self(),memory),
ProcSize;
info(#mib_data{module = Mod,
mib_db = MibDb,
node_db = NodeDb,
tree_db = TreeDb},
db_memory) ->
MibDbSize = Mod:info(MibDb, memory),
NodeDbSize = Mod:info(NodeDb, memory),
TreeDbSize = Mod:info(TreeDb, memory),
[{mib, MibDbSize}, {node, NodeDbSize}, {tree, TreeDbSize}];
info(#mib_data{subagents = SAs}, subagents) ->
SAs.
old_format(LoadedMibs) ->
?vtrace("convert mib info to old format",[]),
[{N,S,F} || #mib_info{name=N,symbolic=S,file_name=F} <- LoadedMibs].
%%----------------------------------------------------------------------
%% A total dump for debugging.
%%----------------------------------------------------------------------
dump(#mib_data{module = Mod,
mib_db = MibDb,
node_db = NodeDb,
tree = Tree}, io) ->
(catch io:format("MIB-tables:~n~p~n~n",
[Mod:tab2list(MibDb)])),
(catch io:format("MIB-entries:~n~p~n~n",
[Mod:tab2list(NodeDb)])),
(catch io:format("Tree:~n~p~n", [Tree])), % good luck reading it!
ok;
dump(#mib_data{module = Mod,
mib_db = MibDb,
node_db = NodeDb,
tree = Tree}, File) ->
case file:open(File, [write]) of
{ok, Fd} ->
io:format(Fd,"~s~n",
[snmp:date_and_time_to_string(snmp:date_and_time())]),
(catch io:format(Fd,"MIB-tables:~n~p~n~n",
[Mod:tab2list(MibDb)])),
(catch io:format(Fd, "MIB-entries:~n~p~n~n",
[Mod:tab2list(NodeDb)])),
io:format(Fd,"Tree:~n~p~n", [Tree]), % good luck reading it!
file:close(Fd),
ok;
{error, Reason} ->
?vinfo("~n Failed opening file '~s' for reason ~p",
[File, Reason]),
{error, Reason}
end.
backup(#mib_data{module = Mod,
mib_db = M,
node_db = N,
tree_db = T}, BackupDir) ->
MRes = Mod:backup(M, BackupDir),
NRes = Mod:backup(N, BackupDir),
TRes = Mod:backup(T, BackupDir),
handle_backup_res([{mib_db, MRes}, {node_db, NRes}, {tree_db, TRes}]).
handle_backup_res(Res) ->
handle_backup_res(Res, []).
handle_backup_res([], []) ->
ok;
handle_backup_res([], Err) ->
{error, lists:reverse(Err)};
handle_backup_res([{_, ok}|Res], Err) ->
handle_backup_res(Res, Err);
handle_backup_res([{Tag, {error, Reason}}|Res], Err) ->
handle_backup_res(Res, [{Tag, Reason}|Err]);
handle_backup_res([{Tag, Error}|Res], Err) ->
handle_backup_res(Res, [{Tag, Error}|Err]).
%%%======================================================================
%%% 2. Implementation of tree access
%%% lookup and next.
%%%======================================================================
which_mib(#mib_data{tree = T} = D, Oid) ->
?vtrace("which_mib -> entry with"
"~n Oid: ~p",[Oid]),
case (catch find_node(D, T#tree.root, Oid, [])) of
{variable, _ME, Mib} ->
?vtrace("which_mib -> variable:"
"~n Mib: ~p", [Mib]),
{ok, Mib};
{table, _EntryME, _, Mib} ->
?vtrace("which_mib -> table:"
"~n Mib: ~p", [Mib]),
{ok, Mib};
{subagent, SubAgentPid, _SANextOid} ->
?vtrace("which_mib -> subagent:"
"~n SubAgentPid: ~p", [SubAgentPid]),
{error, {subagent, SubAgentPid}};
{false, ErrorCode} ->
?vtrace("which_mib -> false:"
"~n ErrorCode: ~p",[ErrorCode]),
{error, ErrorCode};
false ->
?vtrace("which_mib -> false",[]),
{error, noSuchObject};
{'EXIT', R} ->
?vtrace("which_mib -> exit:"
"~n R: ~p",[R]),
{error, noSuchObject}
end.
%%-----------------------------------------------------------------
%% Func: lookup/2
%% Purpose: Finds the mib entry corresponding to the Oid. If it is a
%% variable, the Oid must be <Oid for var>.0 and if it is
%% a table, Oid must be <table>.<entry>.<col>.<any>
%% Returns: {variable, MibEntry} |
%% {table_column, MibEntry, TableEntryOid} |
%% {subagent, SubAgentPid, SAOid} |
%% {false, Reason}
%%-----------------------------------------------------------------
lookup(#mib_data{tree = T} = D, Oid) ->
?vtrace("lookup -> entry with"
"~n Oid: ~p",[Oid]),
case (catch find_node(D, T#tree.root, Oid, [])) of
{variable, ME, _Mib} when is_record(ME, me) ->
?vtrace("lookup -> variable:"
"~n ME: ~p",[ME]),
{variable, ME};
{table, EntryME, {ColME, TableEntryOid}, _Mib} ->
?vtrace("lookup -> table:"
"~n EntryME: ~p"
"~n ColME: ~p"
"~n RevTableEntryOid: ~p",
[EntryME, ColME, TableEntryOid]),
MFA = EntryME#me.mfa,
RetME = ColME#me{mfa = MFA},
{table_column, RetME, TableEntryOid};
{subagent, SubAgentPid, SANextOid} ->
?vtrace("lookup -> subagent:"
"~n SubAgentPid: ~p"
"~n SANextOid: ~p", [SubAgentPid, SANextOid]),
{subagent, SubAgentPid, SANextOid};
{false, ErrorCode} ->
?vtrace("lookup -> false:"
"~n ErrorCode: ~p",[ErrorCode]),
{false, ErrorCode};
false ->
?vtrace("lookup -> false",[]),
{false, noSuchObject};
{'EXIT', R} ->
?vtrace("lookup -> exit:"
"~n R: ~p",[R]),
{false, noSuchObject}
end.
find_node(D, {tree, Tree, {table, _}}, RestOfOid, RevOid) ->
?vtrace("find_node(tree,table) -> entry with"
"~n RestOfOid: ~p"
"~n RevOid: ~p",[RestOfOid, RevOid]),
find_node(D, {tree, Tree, internal}, RestOfOid, RevOid);
find_node(D, {tree, Tree, {table_entry, _}}, RestOfOid, RevOid) ->
?vtrace("find_node(tree,table_entry) -> entry with"
"~n RestOfOid: ~p"
"~n RevOid: ~p",[RestOfOid, RevOid]),
#mib_data{module = Mod, node_db = Db} = D,
Oid = lists:reverse(RevOid),
case Mod:read(Db, Oid) of
{value, #node_info{me = ME, mib_name = Mib}} ->
case find_node(D, {tree, Tree, internal}, RestOfOid, RevOid) of
{false, ErrorCode} -> {false, ErrorCode};
Val -> {table, ME, Val, Mib}
end;
false ->
?vinfo("find_node -> could not find table_entry ME with"
"~n RevOid: ~p"
"~n when"
"~n RestOfOid: ~p",
[RevOid, RestOfOid]),
false
end;
find_node(D, {tree, Tree, _Internal}, [Int | RestOfOid], RevOid) ->
?vtrace("find_node(tree) -> entry with"
"~n Int: ~p"
"~n RestOfOid: ~p"
"~n RevOid: ~p",[Int, RestOfOid, RevOid]),
find_node(D, element(Int+1, Tree), RestOfOid, [Int | RevOid]);
find_node(D, {node, {table_column, _}}, RestOfOid, [ColInt | RevOid]) ->
?vtrace("find_node(tree,table_column) -> entry with"
"~n RestOfOid: ~p"
"~n ColInt: ~p"
"~n RevOid: ~p",[RestOfOid, ColInt, RevOid]),
#mib_data{module = Mod, node_db = Db} = D,
Oid = lists:reverse([ColInt | RevOid]),
case Mod:read(Db, Oid) of
{value, #node_info{me = ME}} ->
{ME, lists:reverse(RevOid)};
false ->
X = Mod:read(Db, lists:reverse([ColInt | RevOid])),
?vinfo("find_node -> could not find table_column ME with"
"~n RevOid: ~p"
"~n trying [~p|~p]"
"~n X: ~p",
[RevOid, [ColInt | RevOid], X]),
false
end;
find_node(D, {node, {variable, _MibName}}, [0], RevOid) ->
?vtrace("find_node(tree,variable,[0]) -> entry with"
"~n RevOid: ~p",[RevOid]),
#mib_data{module = Mod, node_db = Db} = D,
Oid = lists:reverse(RevOid),
case Mod:read(Db, Oid) of
{value, #node_info{me = ME, mib_name = Mib}} ->
{variable, ME, Mib};
false ->
?vinfo("find_node -> could not find variable ME with"
"~n RevOid: ~p", [RevOid]),
false
end;
find_node(_D, {node, {variable, _MibName}}, [], _RevOid) ->
?vtrace("find_node(tree,variable,[]) -> entry",[]),
{false, noSuchObject};
find_node(_D, {node, {variable, _MibName}}, _, _RevOid) ->
?vtrace("find_node(tree,variable) -> entry",[]),
{false, noSuchInstance};
find_node(D, {node, subagent}, _RestOfOid, SARevOid) ->
?vtrace("find_node(tree,subagent) -> entry with"
"~n SARevOid: ~p",[SARevOid]),
#mib_data{subagents = SAs} = D,
SAOid = lists:reverse(SARevOid),
case lists:keysearch(SAOid, 2, SAs) of
{value, {SubAgentPid, SAOid}} ->
{subagent, SubAgentPid, SAOid};
false ->
?vinfo("find_node -> could not find subagent with"
"~n SAOid: ~p"
"~n SAs: ~p", [SAOid, SAs]),
false
end;
find_node(_D, Node, _RestOfOid, _RevOid) ->
?vtrace("find_node -> failed:~n~p",[Node]),
{false, noSuchObject}.
%%-----------------------------------------------------------------
%% Func: next/3
%% Purpose: Finds the lexicographically next oid.
%% Returns: endOfMibView |
%% {subagent, SubAgentPid, SAOid} |
%% {variable, MibEntry, VarOid} |
%% {table, TableOid, TableRestOid, MibEntry}
%% If a variable is returnes, it is in the MibView.
%% If a table or subagent is returned, it *may* be in the MibView.
%%-----------------------------------------------------------------
next(#mib_data{tree = T} = D, Oid, MibView) ->
case catch next_node(D, T#tree.root, Oid, [], MibView) of
false -> endOfMibView;
Else -> Else
end.
%%-----------------------------------------------------------------
%% This function is used as long as we have any Oid left. Take
%% one integer at a time from the Oid, and traverse the tree
%% accordingly. When the Oid is empty, call find_next.
%% Returns: {subagent, SubAgentPid, SAOid} |
%% false |
%% {variable, MibEntry, VarOid} |
%% {table, TableOid, TableRestOid, MibEntry}
%%-----------------------------------------------------------------
next_node(_D, undefined_node, _Oid, _RevOidSoFar, _MibView) ->
?vtrace("next_node(undefined_node) -> entry", []),
false;
next_node(_D, {tree, Tree, {table_entry, _Id}}, [Int | _Oid],
_RevOidSoFar, _MibView)
when Int+1 > size(Tree) ->
?vtrace("next_node(tree,table_entry) -> entry when not found whith"
"~n Int: ~p"
"~n size(Tree): ~p", [Int, size(Tree)]),
false;
next_node(D, {tree, Tree, {table_entry, _MibName}},
Oid, RevOidSoFar, MibView) ->
?vtrace("next_node(tree,table_entry) -> entry when"
"~n size(Tree): ~p"
"~n Oid: ~p"
"~n RevOidSoFar: ~p"
"~n MibView: ~p", [size(Tree), Oid, RevOidSoFar, MibView]),
OidSoFar = lists:reverse(RevOidSoFar),
case snmpa_acm:is_definitely_not_in_mib_view(OidSoFar, MibView) of
true ->
?vdebug("next_node(tree,table_entry) -> not in mib view",[]),
false;
_ ->
#mib_data{module = Mod, node_db = Db} = D,
case Mod:read(Db, OidSoFar) of
false ->
?vinfo("next_node -> could not find table_entry with"
"~n OidSoFar: ~p", [OidSoFar]),
false;
{value, #node_info{me = ME}} ->
?vtrace("next_node(tree,table_entry) -> found: ~n ~p",
[ME]),
{table, OidSoFar, Oid, ME}
end
end;
next_node(D, {tree, Tree, _Info}, [Int | RestOfOid], RevOidSoFar, MibView)
when (Int < size(Tree)) andalso (Int >= 0) ->
?vtrace("next_node(tree) -> entry when"
"~n size(Tree): ~p"
"~n Int: ~p"
"~n RestOfOid: ~p"
"~n RevOidSoFar: ~p"
"~n MibView: ~p",
[size(Tree), Int, RestOfOid, RevOidSoFar, MibView]),
case next_node(D, element(Int+1,Tree),
RestOfOid, [Int|RevOidSoFar], MibView) of
false ->
find_next(D, {tree, Tree, _Info}, Int+1, RevOidSoFar, MibView);
Else ->
Else
end;
%% no solution
next_node(D, {tree, Tree, _Info}, [], RevOidSoFar, MibView) ->
?vtrace("next_node(tree,[]) -> entry when"
"~n size(Tree): ~p"
"~n RevOidSoFar: ~p"
"~n MibView: ~p",
[size(Tree), RevOidSoFar, MibView]),
find_next(D, {tree, Tree, _Info}, 0, RevOidSoFar, MibView);
next_node(_D, {tree, Tree, _Info}, _RestOfOid, _RevOidSoFar, _MibView) ->
?vtrace("next_node(tree) -> entry when"
"~n size(Tree): ~p", [size(Tree)]),
false;
next_node(D, {node, subagent}, Oid, RevOidSoFar, MibView) ->
?vtrace("next_node(node,subagent) -> entry when"
"~n Oid: ~p"
"~n RevOidSoFar: ~p"
"~n MibView: ~p",
[Oid, RevOidSoFar, MibView]),
OidSoFar = lists:reverse(RevOidSoFar),
case snmpa_acm:is_definitely_not_in_mib_view(OidSoFar, MibView) of
true ->
false;
_ ->
#mib_data{subagents = SAs} = D,
case lists:keysearch(OidSoFar, 2, SAs) of
{value, {SubAgentPid, OidSoFar}} ->
{subagent, SubAgentPid, OidSoFar};
_ ->
?vinfo("next_node -> could not find subagent with"
"~n OidSoFar: ~p"
"~n SAs: ~p", [OidSoFar, SAs]),
false
end
end;
next_node(D, {node, {variable, _MibName}}, [], RevOidSoFar, MibView) ->
?vtrace("next_node(node,variable,[]) -> entry when"
"~n RevOidSoFar: ~p"
"~n MibView: ~p",
[RevOidSoFar, MibView]),
OidSoFar = lists:reverse([0 | RevOidSoFar]),
case snmpa_acm:validate_mib_view(OidSoFar, MibView) of
true ->
#mib_data{module = Mod, node_db = Db} = D,
case Mod:read(Db, lists:reverse(RevOidSoFar)) of
false ->
?vinfo("next_node -> could not find variable with"
"~n RevOidSoFar: ~p", [RevOidSoFar]),
false;
{value, #node_info{me = ME}} ->
{variable, ME, OidSoFar}
end;
_ ->
false
end;
next_node(_D, {node, {variable, _MibName}}, _Oid, _RevOidSoFar, _MibView) ->
?vtrace("next_node(node,variable) -> entry", []),
false.
%%-----------------------------------------------------------------
%% This function is used to find the first leaf from where we
%% are.
%% Returns: {subagent, SubAgentPid, SAOid} |
%% false |
%% {variable, MibEntry, VarOid} |
%% {table, TableOid, TableRestOid, MibEntry}
%% PRE: This function must always be called with a {internal, Tree}
%% node.
%%-----------------------------------------------------------------
find_next(D, {tree, Tree, internal}, Idx, RevOidSoFar, MibView)
when Idx < size(Tree) ->
case find_next(D, element(Idx+1, Tree), 0, [Idx| RevOidSoFar], MibView) of
false ->
find_next(D, {tree, Tree, internal}, Idx+1, RevOidSoFar, MibView);
Other ->
Other
end;
find_next(_D, {tree, _Tree, internal}, _Idx, _RevOidSoFar, _MibView) ->
false;
find_next(_D, undefined_node, _Idx, _RevOidSoFar, _MibView) ->
false;
find_next(D, {tree, Tree, {table, _MibName}}, Idx, RevOidSoFar, MibView) ->
find_next(D, {tree, Tree, internal}, Idx, RevOidSoFar, MibView);
find_next(D, {tree, _Tree, {table_entry, _MibName}}, _Index,
RevOidSoFar, MibView) ->
OidSoFar = lists:reverse(RevOidSoFar),
case snmpa_acm:is_definitely_not_in_mib_view(OidSoFar, MibView) of
true ->
false;
_ ->
#mib_data{module = Mod, node_db = Db} = D,
case Mod:read(Db, OidSoFar) of
false ->
?vinfo("find_next -> could not find table_entry ME with"
"~n OidSoFar: ~p", [OidSoFar]),
false;
{value, #node_info{me = ME}} ->
{table, OidSoFar, [], ME}
end
end;
find_next(D, {node, {variable, _MibName}}, _Idx, RevOidSoFar, MibView) ->
OidSoFar = lists:reverse([0 | RevOidSoFar]),
case snmpa_acm:validate_mib_view(OidSoFar, MibView) of
true ->
#mib_data{module = Mod, node_db = Db} = D,
case Mod:read(Db, lists:reverse(RevOidSoFar)) of
false ->
?vinfo("find_next -> could not find variable with"
"~n RevOidSoFar: ~p", [RevOidSoFar]),
false;
{value, #node_info{me = ME}} ->
{variable, ME, OidSoFar}
end;
_ ->
false
end;
find_next(D, {node, subagent}, _Idx, RevOidSoFar, MibView) ->
OidSoFar = lists:reverse(RevOidSoFar),
case snmpa_acm:is_definitely_not_in_mib_view(OidSoFar, MibView) of
true ->
false;
_ ->
#mib_data{subagents = SAs} = D,
case lists:keysearch(OidSoFar, 2, SAs) of
{value, {SubAgentPid, OidSoFar}} ->
{subagent, SubAgentPid, OidSoFar};
false ->
?vinfo("find_node -> could not find subagent with"
"~n OidSoFar: ~p"
"~n SAs: ~p", [OidSoFar, SAs]),
false
end
end.
%%%======================================================================
%%% 3. Tree building functions
%%% Used when loading mibs.
%%%======================================================================
build_tree(Mes, MibName) ->
?d("build_tree -> "
"~n Mes: ~p", [Mes]),
{ListTree, []} = build_subtree([], Mes, MibName),
{tree, convert_tree(ListTree), internal}.
%%----------------------------------------------------------------------
%% Purpose: Builds the tree where all oids have prefix equal to LevelPrefix.
%% Returns: {Tree, RestMes}
%% RestMes are Mes that should not be in this subtree.
%% The Tree is a temporary and simplified data structure that is easy to
%% convert to the final tuple tree used by the MIB process.
%% A Node is represented as in the final tree.
%% The tree is not represented as a N-tuple, but as an Index-list.
%% Example: Temporary: [{1, Node1}, {3, Node3}]
%% Final: {Node1, undefined_node, Node3}
%% Pre: Mes are sorted on oid.
%%----------------------------------------------------------------------
build_subtree(LevelPrefix, [Me | Mes], MibName) ->
?vtrace("build subtree -> ~n"
" oid: ~p~n"
" LevelPrefix: ~p~n"
" MibName: ~p", [Me#me.oid, LevelPrefix, MibName]),
EType = Me#me.entrytype,
?vtrace("build subtree -> EType = ~p",[EType]),
case in_subtree(LevelPrefix, Me) of
above ->
?vtrace("build subtree -> above",[]),
{[], [Me|Mes]};
{node, Index} ->
?vtrace("build subtree -> node at ~p",[Index]),
{Tree, RestMes} = build_subtree(LevelPrefix, Mes, MibName),
{[{Index, {node, {EType, MibName}}} | Tree], RestMes};
{subtree, Index, NewLevelPrefix} ->
?vtrace("build subtree -> subtree at"
"~n ~w with ~w",
[Index, NewLevelPrefix]),
{BelowTree, RestMes} =
build_subtree(NewLevelPrefix, Mes, MibName),
{CurTree, RestMes2} =
build_subtree(LevelPrefix, RestMes, MibName),
{[{Index, {tree, BelowTree, {EType,MibName}}}| CurTree], RestMes2};
{internal_subtree, Index, NewLevelPrefix} ->
?vtrace("build subtree -> internal_subtree at"
"~n ~w with ~w",
[Index,NewLevelPrefix]),
{BelowTree, RestMes} =
build_subtree(NewLevelPrefix, [Me | Mes], MibName),
{CurTree, RestMes2} =
build_subtree(LevelPrefix, RestMes, MibName),
{[{Index, {tree, BelowTree, internal}} | CurTree], RestMes2}
end;
build_subtree(_LevelPrefix, [], _MibName) ->
?vtrace("build subtree -> done", []),
{[], []}.
%%--------------------------------------------------
%% Purpose: Determine how/if/where Me should be inserted in subtree
%% with LevelPrefix. This function does not build any tree, only
%% determinses what should be done (by build subtree).
%% Returns:
%% above - Indicating that this ME should _not_ be in this subtree.
%% {node, Index} - yes, construct a node with index Index on this level
%% {internal_subtree, Index, NewLevelPrefix} - yes, there should be an
%% internal subtree at this index.
%% {subtree, Index, NewLevelPrefix} - yes, construct a subtree with
%% NewLevelPrefix and insert this on current level in position Index.
%%--------------------------------------------------
in_subtree(LevelPrefix, Me) ->
case lists:prefix(LevelPrefix, Me#me.oid) of
true when length(Me#me.oid) > length(LevelPrefix) ->
classify_how_in_subtree(LevelPrefix, Me);
_ ->
above
end.
%%--------------------------------------------------
%% See comment about in_subtree/2. This function takes care of all cases
%% where the ME really should be in _this_ subtree (not above).
%%--------------------------------------------------
classify_how_in_subtree(LevelPrefix, Me)
when (length(Me#me.oid) =:= (length(LevelPrefix) + 1)) ->
Oid = Me#me.oid,
case node_or_subtree(Me#me.entrytype) of
subtree ->
{subtree, lists:last(Oid), Oid};
node ->
{node, lists:last(Oid)}
end;
classify_how_in_subtree(LevelPrefix, Me)
when (length(Me#me.oid) > (length(LevelPrefix) + 1)) ->
L1 = length(LevelPrefix) + 1,
Oid = Me#me.oid,
{internal_subtree, lists:nth(L1, Oid), lists:sublist(Oid, 1, L1)}.
%%--------------------------------------------------
%% Determines how to treat different kinds om MEs in the tree building process.
%% Pre: all internal nodes have been removed.
%%--------------------------------------------------
node_or_subtree(table) -> subtree;
node_or_subtree(table_entry) -> subtree;
node_or_subtree(variable) -> node;
node_or_subtree(table_column) -> node.
%%--------------------------------------------------
%% Purpose: (Recursively) Converts a temporary tree (see above) to a final tree.
%% If input is a ListTree, output is a TupleTree.
%% If input is a Node, output is the same Node.
%% Pre: All Indexes are >= 0.
%%--------------------------------------------------
convert_tree({Index, {tree, Tree, Info}}) when Index >= 0 ->
L = lists:map(fun convert_tree/1, Tree),
{Index, {tree, dict_list_to_tuple(L), Info}};
convert_tree({Index, {node, Info}}) when Index >= 0 ->
{Index, {node, Info}};
convert_tree(Tree) when is_list(Tree) ->
L = lists:map(fun convert_tree/1, Tree),
dict_list_to_tuple(L).
%%----------------------------------------------------------------------
%% Purpose: Converts a single level (that is non-recursively) from
%% the temporary indexlist to the N-tuple.
%% Input: A list of {Index, Data}.
%% Output: A tuple where element Index is Data.
%%----------------------------------------------------------------------
dict_list_to_tuple(L) ->
L2 = lists:keysort(1, L),
list_to_tuple(integrate_indexes(0, L2)).
%%----------------------------------------------------------------------
%% Purpose: Helper function for dict_list_to_tuple/1.
%% Converts an indexlist to a N-list.
%% Input: A list of {Index, Data}.
%% Output: A (usually longer, never shorter) list where element Index is Data.
%% Example: [{1,hej}, {3, sven}] will give output
%% [undefined_node, hej, undefined_node, sven].
%% Initially CurIndex should be 0.
%%----------------------------------------------------------------------
integrate_indexes(CurIndex, [{CurIndex, Data} | T]) ->
[Data | integrate_indexes(CurIndex + 1, T)];
integrate_indexes(_Index, []) ->
[];
integrate_indexes(CurIndex, L) ->
[undefined_node | integrate_indexes(CurIndex + 1, L)].
%%%======================================================================
%%% 4. Tree merging
%%% Used by: load mib, insert subagent.
%%%======================================================================
%%----------------------------------------------------------------------
%% Arg: Two root nodes (that is to be merged).
%% Returns: A new root node where the nodes have been merger to one.
%%----------------------------------------------------------------------
merge_nodes(Same, Same) ->
Same;
merge_nodes(Node, undefined_node) ->
Node;
merge_nodes(undefined_node, Node) ->
Node;
merge_nodes({tree, Tree1, internal}, {tree, Tree2, internal}) ->
{tree, merge_levels(tuple_to_list(Tree1),tuple_to_list(Tree2)), internal};
merge_nodes(Node1, Node2) ->
throw({error_merge_nodes, Node1, Node2}).
%%----------------------------------------------------------------------
%% Arg: Two levels to be merged.
%% Here, a level is represented as a list of nodes. A list is easier
%% to extend than a tuple.
%% Returns: The resulting, merged level tuple.
%%----------------------------------------------------------------------
merge_levels(Level1, Level2) when length(Level1) =:= length(Level2) ->
MergeNodes = fun(N1, N2) -> merge_nodes(N1, N2) end,
list_to_tuple(snmp_misc:multi_map(MergeNodes, [Level1, Level2]));
merge_levels(Level1, Level2) when length(Level1) > length(Level2) ->
merge_levels(Level1, Level2 ++
undefined_nodes_list(length(Level1) - length(Level2)));
merge_levels(Level1, Level2) when length(Level1) < length(Level2) ->
merge_levels(Level2, Level1).
undefined_nodes_list(N) -> lists:duplicate(N, undefined_node).
%%%======================================================================
%%% 5. Tree deletion routines
%%% (for unload mib)
%%%======================================================================
%%----------------------------------------------------------------------
%% Purpose: Actually kicks of the tree reconstruction.
%% Returns: {list of removed MEs, NewTree}
%%----------------------------------------------------------------------
delete_mib_from_tree(MibName, {tree, Tree, internal}) ->
case delete_tree(Tree, MibName) of
[] ->
{tree, {undefined_node}, internal}; % reduce
LevelList ->
{tree, list_to_tuple(LevelList), internal}
end.
%%----------------------------------------------------------------------
%% Purpose: Deletes all nodes associated to MibName from this level and
%% all levels below.
%% If the new level does not contain information (that is, no
%% other mibs use it) anymore the empty list is returned.
%% Returns: {MEs, The new level represented as a list}
%%----------------------------------------------------------------------
delete_tree(Tree, MibName) when is_tuple(Tree) ->
NewLevel = delete_nodes(tuple_to_list(Tree), MibName, []),
case lists:filter(fun drop_undefined_nodes/1,NewLevel) of
[] -> [];
_A_perhaps_shorted_list ->
NewLevel % some other mib needs this level
end.
%%----------------------------------------------------------------------
%% Purpose: Nodes belonging to MibName are removed from the tree.
%% Recursively deletes sub trees to this node.
%% Returns: {MEs, NewNodesList}
%%----------------------------------------------------------------------
delete_nodes([], _MibName, AccNodes) ->
lists:reverse(AccNodes);
delete_nodes([{node, {variable, MibName}}|T], MibName, AccNodes) ->
delete_nodes(T, MibName, [undefined_node | AccNodes]);
delete_nodes([{node, {table_column, MibName}}|T], MibName, AccNodes) ->
delete_nodes(T, MibName, [undefined_node | AccNodes]);
delete_nodes([{tree, _Tree, {table, MibName}}|T], MibName, AccNodes) ->
delete_nodes(T, MibName, [undefined_node | AccNodes]);
delete_nodes([{tree, _Tree, {table_entry, MibName}}|T], MibName, AccNodes) ->
delete_nodes(T, MibName, [undefined_node | AccNodes]);
delete_nodes([{tree, Tree, Info}|T], MibName, AccNodes) ->
case delete_tree(Tree, MibName) of
[] -> % tree completely deleted
delete_nodes(T, MibName, [undefined_node | AccNodes]);
LevelList ->
delete_nodes(T, MibName,
[{tree, list_to_tuple(LevelList), Info} | AccNodes])
end;
delete_nodes([NodeToKeep|T], MibName, AccNodes) ->
delete_nodes(T, MibName, [NodeToKeep | AccNodes]).
drop_undefined_nodes(undefined_node) -> false;
drop_undefined_nodes(_) -> true.
%%%======================================================================
%%% 6. Functions for subagent handling
%%%======================================================================
%%----------------------------------------------------------------------
%% Returns: A new Root|{error, reason}
%%----------------------------------------------------------------------
insert_subagent(Oid, OldRoot) ->
ListTree = build_tree_for_subagent(Oid),
case catch convert_tree(ListTree) of
{'EXIT', _Reason} ->
{error, 'cannot construct tree from oid'};
Level when is_tuple(Level) ->
T = {tree, Level, internal},
case catch merge_nodes(T, OldRoot) of
{error_merge_nodes, _Node1, _Node2} ->
{error, oid_conflict};
NewRoot when is_tuple(NewRoot) andalso
(element(1, NewRoot) =:= tree) ->
NewRoot
end
end.
build_tree_for_subagent([Index]) ->
[{Index, {node, subagent}}];
build_tree_for_subagent([Index | T]) ->
[{Index, {tree, build_tree_for_subagent(T), internal}}].
%%----------------------------------------------------------------------
%% Returns: A new tree where the subagent at Oid (2nd arg) has been deleted.
%%----------------------------------------------------------------------
delete_subagent({tree, Tree, Info}, [Index]) ->
{node, subagent} = element(Index+1, Tree),
{tree, setelement(Index+1, Tree, undefined_node), Info};
delete_subagent({tree, Tree, Info}, [Index | TI]) ->
{tree, setelement(Index+1, Tree,
delete_subagent(element(Index+1, Tree), TI)), Info}.
%%%======================================================================
%%% 7. Misc functions
%%%======================================================================
%%----------------------------------------------------------------------
%% Installs the mibs found in the database when starting the agent.
%% Basically calls the instrumentation functions for all non-internal
%% mib-entries
%%----------------------------------------------------------------------
install_mibs(Mod, MibDb, NodeDb) ->
MibNames = loaded(Mod, MibDb),
?vtrace("install_mibs -> found following mibs in database: ~n"
"~p", [MibNames]),
install_mibs2(Mod, NodeDb, MibNames).
install_mibs2(_, _, []) ->
ok;
install_mibs2(Mod, NodeDb, [MibName|MibNames]) ->
Pattern = #node_info{oid = '_', mib_name = MibName, me = '_'},
Nodes = Mod:match_object(NodeDb, Pattern),
MEs = [ME || #node_info{me = ME} <- Nodes],
?vtrace("install_mibs2 -> installing ~p MEs for mib ~p",
[length(MEs), MibName]),
NewF = fun(ME) -> call_instrumentation(ME, new) end,
lists:foreach(NewF, MEs),
install_mibs2(Mod, NodeDb, MibNames).
%%----------------------------------------------------------------------
%% Does all side effect stuff during load_mib.
%%----------------------------------------------------------------------
install_mib(Mod, Db, Symbolic, Mib, MibName, FileName, NonInternalMes) ->
?vdebug("install_mib -> entry with"
"~n Symbolic: ~p"
"~n MibName: ~p"
"~n FileName: ~p", [Symbolic, MibName, FileName]),
Rec = #mib_info{name = MibName, symbolic = Symbolic, file_name = FileName},
Mod:write(Db, Rec),
install_mib2(Symbolic, MibName, Mib),
NewF = fun(ME) -> call_instrumentation(ME, new) end,
lists:foreach(NewF, NonInternalMes).
install_mib2(true, MibName, Mib) ->
#mib{table_infos = TabInfos,
variable_infos = VarInfos,
mes = MEs,
asn1_types = ASN1Types,
traps = Traps} = Mib,
snmpa_symbolic_store:add_table_infos(MibName, TabInfos),
snmpa_symbolic_store:add_variable_infos(MibName, VarInfos),
snmpa_symbolic_store:add_aliasnames(MibName, MEs),
snmpa_symbolic_store:add_types(MibName, ASN1Types),
SetF = fun(Trap) ->
snmpa_symbolic_store:set_notification(Trap, MibName)
end,
lists:foreach(SetF, Traps);
install_mib2(_, _, _) ->
ok.
install_mes(Mod, Db, MibName, MEs) ->
Write = fun(#me{oid = Oid} = ME) ->
Node = #node_info{oid = Oid,
mib_name = MibName,
me = ME},
Mod:write(Db, Node)
end,
install_mes(Write, MEs).
install_mes(_Write, []) ->
ok;
install_mes(Write, [ME|MEs]) ->
Write(ME),
install_mes(Write, MEs).
%%----------------------------------------------------------------------
%% Does all side effect stuff during unload_mib.
%%----------------------------------------------------------------------
uninstall_mib(Mod, Db, Symbolic, MibName, MEs) ->
?vtrace("uninstall_mib -> entry with"
"~n Db: ~p"
"~n Symbolic: ~p"
"~n MibName: ~p", [Db, Symbolic, MibName]),
Res = Mod:delete(Db, MibName),
?vtrace("uninstall_mib -> (mib) db delete result: ~p", [Res]),
uninstall_mib2(Symbolic, MibName),
DelF = fun(ME) -> call_instrumentation(ME, delete) end,
lists:foreach(DelF, MEs).
uninstall_mib2(true, MibName) ->
snmpa_symbolic_store:delete_table_infos(MibName),
snmpa_symbolic_store:delete_variable_infos(MibName),
snmpa_symbolic_store:delete_aliasnames(MibName),
snmpa_symbolic_store:delete_types(MibName),
snmpa_symbolic_store:delete_notifications(MibName);
uninstall_mib2(_, _) ->
ok.
uninstall_mes(Mod, Db, MibName) ->
Pattern = #node_info{oid = '_', mib_name = MibName, me = '_'},
Mod:match_delete(Db, Pattern).
%%----------------------------------------------------------------------
%% Create a list of the names of all the loaded mibs
%%----------------------------------------------------------------------
loaded(Mod, Db) ->
[N || #mib_info{name = N} <- Mod:tab2list(Db)].
%%----------------------------------------------------------------------
%% Calls MFA-instrumentation with 'new' or 'delete' operation.
%%----------------------------------------------------------------------
call_instrumentation(#me{entrytype = variable, mfa={M,F,A}}, Operation) ->
?vtrace("call instrumentation with"
"~n entrytype: variable"
"~n MFA: {~p,~p,~p}"
"~n Operation: ~p",
[M,F,A,Operation]),
catch apply(M, F, [Operation | A]);
call_instrumentation(#me{entrytype = table_entry, mfa={M,F,A}}, Operation) ->
?vtrace("call instrumentation with"
"~n entrytype: table_entry"
"~n MFA: {~p,~p,~p}"
"~n Operation: ~p",
[M,F,A,Operation]),
catch apply(M, F, [Operation | A]);
call_instrumentation(_ShitME, _Operation) ->
done.
maybe_drop_me(#me{entrytype = internal}) -> false;
maybe_drop_me(#me{entrytype = group}) -> false;
maybe_drop_me(#me{imported = true}) -> false;
maybe_drop_me(_) -> true.
%%----------------------------------------------------------------------
%% Code change functions
%%----------------------------------------------------------------------
code_change(down, _Vsn, _Extra, State) ->
?d("code_change(down) -> entry when"
"~n Vsn: ~p"
"~n Extra: ~p", [_Vsn, _Extra]),
State;
code_change(up, _Vsn, _Extra, State) ->
?d("code_change(up) -> entry when"
"~n Vsn: ~p"
"~n Extra: ~p", [_Vsn, _Extra]),
State.