<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>1996</year><year>2016</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>digraph</title>
<prepared>Tony</prepared>
<responsible>Bjarne Däcker</responsible>
<docno>1</docno>
<approved>Bjarne Däcker</approved>
<checked></checked>
<date>2001-08-27</date>
<rev>C</rev>
<file>digraph.sgml</file>
</header>
<module>digraph</module>
<modulesummary>Directed Graphs</modulesummary>
<description>
<p>The <c>digraph</c> module implements a version of labeled
directed graphs. What makes the graphs implemented here
non-proper directed graphs is that multiple edges between
vertices are allowed. However, the customary definition of
directed graphs will be used in the text that follows.
</p>
<p>A <marker id="digraph"></marker><em>directed graph</em> (or just
"digraph") is a pair (V, E) of a finite set V of
<marker id="vertex"></marker><em>vertices</em> and a finite set E of
<marker id="edge"></marker><em>directed edges</em> (or just "edges").
The set of
edges E is a subset of V × V (the Cartesian
product of V with itself). In this module, V is allowed to be
empty; the so obtained unique digraph is called the
<marker id="empty_digraph"></marker><em>empty digraph</em>.
Both vertices and edges are represented by unique Erlang terms.
</p>
<p>Digraphs can be annotated with additional information. Such
information may be attached to the vertices and to the edges of
the digraph. A digraph which has been annotated is called a
<em>labeled digraph</em>, and the information attached to a
vertex or an edge is called a <marker id="label"></marker>
<em>label</em>. Labels are Erlang terms.
</p>
<p>An edge e = (v, w) is said to
<marker id="emanate"></marker><em>emanate</em> from vertex v and
to be <marker id="incident"></marker><em>incident</em> on vertex w.
The <marker id="out_degree"></marker><em>out-degree</em> of a vertex
is the number of edges emanating from that vertex.
The <marker id="in_degree"></marker><em>in-degree</em> of a vertex
is the number of edges incident on that vertex.
If there is an edge emanating from v and incident on w, then w is
said to be an <marker id="out_neighbour"></marker>
<em>out-neighbour</em> of v, and v is said to be an
<marker id="in_neighbour"></marker><em>in-neighbour</em> of w.
A <marker id="path"></marker><em>path</em> P from v[1] to v[k]
in a digraph (V, E) is a non-empty sequence
v[1], v[2], ..., v[k] of vertices in V such that
there is an edge (v[i],v[i+1]) in E for
1 <= i < k.
The <marker id="length"></marker><em>length</em> of the path P is k-1.
P is <marker id="simple_path"></marker><em>simple</em> if all
vertices are distinct, except that the first and the last vertices
may be the same.
P is a <marker id="cycle"></marker><em>cycle</em> if the length
of P is not zero and v[1] = v[k].
A <marker id="loop"></marker><em>loop</em> is a cycle of length one.
A <marker id="simple_cycle"></marker><em>simple cycle</em> is a path
that is both a cycle and simple.
An <marker id="acyclic_digraph"></marker><em>acyclic digraph</em>
is a digraph that has no cycles.
</p>
</description>
<datatypes>
<datatype>
<name name="d_type"/>
</datatype>
<datatype>
<name name="d_cyclicity"/>
</datatype>
<datatype>
<name name="d_protection"/>
</datatype>
<datatype>
<name name="graph"/>
<desc><p>A digraph as returned by <c>new/0,1</c>.</p></desc>
</datatype>
<datatype>
<name>edge()</name>
<desc><p><marker id="type-edge"/></p></desc>
</datatype>
<datatype>
<name name="label"/>
</datatype>
<datatype>
<name>vertex()</name>
<desc><p><marker id="type-vertex"/></p></desc>
</datatype>
</datatypes>
<funcs>
<func>
<name name="add_edge" arity="3"/>
<name name="add_edge" arity="4"/>
<name name="add_edge" arity="5"/>
<fsummary>Add an edge to a digraph.</fsummary>
<type name="add_edge_err_rsn"/>
<desc>
<p><c>add_edge/5</c> creates (or modifies) the edge <c><anno>E</anno></c>
of the digraph <c><anno>G</anno></c>, using <c><anno>Label</anno></c> as the (new)
<seealso marker="#label">label</seealso> of the edge. The
edge is <seealso marker="#emanate">emanating</seealso> from
<c><anno>V1</anno></c> and <seealso marker="#incident">incident</seealso>
on <c><anno>V2</anno></c>. Returns <c><anno>E</anno></c>.
</p>
<p><c>add_edge(<anno>G</anno>, <anno>V1</anno>, <anno>V2</anno>, <anno>Label</anno>)</c> is
equivalent to
<c>add_edge(<anno>G</anno>, <anno>E</anno>, <anno>V1</anno>, <anno>V2</anno>, <anno>Label</anno>)</c>,
where <c><anno>E</anno></c> is a created edge. The created edge is
represented by the term <c>['$e' | N]</c>, where N
is an integer >= 0.
</p>
<p><c>add_edge(<anno>G</anno>, <anno>V1</anno>, <anno>V2</anno>)</c> is equivalent to
<c>add_edge(<anno>G</anno>, <anno>V1</anno>, <anno>V2</anno>, [])</c>.
</p>
<p>If the edge would create a cycle in
an <seealso marker="#acyclic_digraph">acyclic digraph</seealso>,
then <c>{error, {bad_edge, <anno>Path</anno>}}</c> is returned. If
either of <c><anno>V1</anno></c> or <c><anno>V2</anno></c> is not a vertex of the
digraph <c><anno>G</anno></c>, then
<c>{error, {bad_vertex, </c><anno>V</anno><c>}}</c> is
returned, <anno>V</anno> = <c><anno>V1</anno></c> or
<anno>V</anno> = <c><anno>V2</anno></c>.
</p>
</desc>
</func>
<func>
<name name="add_vertex" arity="1"/>
<name name="add_vertex" arity="2"/>
<name name="add_vertex" arity="3"/>
<fsummary>Add or modify a vertex of a digraph.</fsummary>
<desc>
<p><c>add_vertex/3</c> creates (or modifies) the vertex <c><anno>V</anno></c>
of the digraph <c><anno>G</anno></c>, using <c><anno>Label</anno></c> as the (new)
<seealso marker="#label">label</seealso> of the
vertex. Returns <c><anno>V</anno></c>.
</p>
<p><c>add_vertex(<anno>G</anno>, <anno>V</anno>)</c> is equivalent to
<c>add_vertex(<anno>G</anno>, <anno>V</anno>, [])</c>.
</p>
<p><c>add_vertex/1</c> creates a vertex using the empty list
as label, and returns the created vertex. The created vertex
is represented by the term <c>['$v' | N]</c>,
where N is an integer >= 0.
</p>
</desc>
</func>
<func>
<name name="del_edge" arity="2"/>
<fsummary>Delete an edge from a digraph.</fsummary>
<desc>
<p>Deletes the edge <c><anno>E</anno></c> from the digraph <c><anno>G</anno></c>.
</p>
</desc>
</func>
<func>
<name name="del_edges" arity="2"/>
<fsummary>Delete edges from a digraph.</fsummary>
<desc>
<p>Deletes the edges in the list <c><anno>Edges</anno></c> from the digraph
<c><anno>G</anno></c>.
</p>
</desc>
</func>
<func>
<name name="del_path" arity="3"/>
<fsummary>Delete paths from a digraph.</fsummary>
<desc>
<p>Deletes edges from the digraph <c><anno>G</anno></c> until there are no
<seealso marker="#path">paths</seealso> from the vertex
<c><anno>V1</anno></c> to the vertex <c><anno>V2</anno></c>.
</p>
<p>A sketch of the procedure employed: Find an arbitrary
<seealso marker="#simple_path">simple path</seealso>
v[1], v[2], ..., v[k] from <c><anno>V1</anno></c> to
<c><anno>V2</anno></c> in <c><anno>G</anno></c>. Remove all edges of
<c><anno>G</anno></c> <seealso marker="#emanate">emanating</seealso> from v[i]
and <seealso marker="#incident">incident</seealso> to v[i+1] for
1 <= i < k (including multiple
edges). Repeat until there is no path between <c><anno>V1</anno></c> and
<c><anno>V2</anno></c>.
</p>
</desc>
</func>
<func>
<name name="del_vertex" arity="2"/>
<fsummary>Delete a vertex from a digraph.</fsummary>
<desc>
<p>Deletes the vertex <c><anno>V</anno></c> from the digraph <c><anno>G</anno></c>. Any
edges <seealso marker="#emanate">emanating</seealso> from
<c><anno>V</anno></c> or <seealso marker="#incident">incident</seealso>
on <c><anno>V</anno></c> are also deleted.
</p>
</desc>
</func>
<func>
<name name="del_vertices" arity="2"/>
<fsummary>Delete vertices from a digraph.</fsummary>
<desc>
<p>Deletes the vertices in the list <c><anno>Vertices</anno></c> from the
digraph <c><anno>G</anno></c>.
</p>
</desc>
</func>
<func>
<name name="delete" arity="1"/>
<fsummary>Delete a digraph.</fsummary>
<desc>
<p>Deletes the digraph <c><anno>G</anno></c>. This call is important
because digraphs are implemented with <c>ETS</c>. There is
no garbage collection of <c>ETS</c> tables. The digraph
will, however, be deleted if the process that created the
digraph terminates.
</p>
</desc>
</func>
<func>
<name name="edge" arity="2"/>
<fsummary>Return the vertices and the label of an edge of a digraph.</fsummary>
<desc>
<p>Returns <c>{<anno>E</anno>, <anno>V1</anno>, <anno>V2</anno>, <anno>Label</anno>}</c> where
<c><anno>Label</anno></c> is the <seealso marker="#label">label</seealso>
of the edge
<c><anno>E</anno></c> <seealso marker="#emanate">emanating</seealso> from
<c><anno>V1</anno></c> and <seealso marker="#incident">incident</seealso> on
<c><anno>V2</anno></c> of the digraph <c><anno>G</anno></c>.
If there is no edge <c><anno>E</anno></c> of the
digraph <c><anno>G</anno></c>, then <c>false</c> is returned.
</p>
</desc>
</func>
<func>
<name name="edges" arity="1"/>
<fsummary>Return all edges of a digraph.</fsummary>
<desc>
<p>Returns a list of all edges of the digraph <c><anno>G</anno></c>, in
some unspecified order.
</p>
</desc>
</func>
<func>
<name name="edges" arity="2"/>
<fsummary>Return the edges emanating from or incident on a vertex of a digraph.</fsummary>
<desc>
<p>Returns a list of all
edges <seealso marker="#emanate">emanating</seealso> from
or <seealso marker="#incident">incident</seealso> on <c><anno>V</anno></c>
of the digraph <c><anno>G</anno></c>, in some unspecified order.</p>
</desc>
</func>
<func>
<name name="get_cycle" arity="2"/>
<fsummary>Find one cycle in a digraph.</fsummary>
<desc>
<p>If there is
a <seealso marker="#simple_cycle">simple cycle</seealso> of
length two or more through the vertex
<c><anno>V</anno></c>, then the cycle is returned as a list
<c>[<anno>V</anno>, ..., <anno>V</anno>]</c> of vertices, otherwise if there
is a <seealso marker="#loop">loop</seealso> through
<c><anno>V</anno></c>, then the loop is returned as a list <c>[<anno>V</anno>]</c>. If
there are no cycles through <c><anno>V</anno></c>, then <c>false</c> is
returned.
</p>
<p><c>get_path/3</c> is used for finding a simple cycle
through <c><anno>V</anno></c>.
</p>
</desc>
</func>
<func>
<name name="get_path" arity="3"/>
<fsummary>Find one path in a digraph.</fsummary>
<desc>
<p>Tries to find
a <seealso marker="#simple_path">simple path</seealso> from
the vertex <c><anno>V1</anno></c> to the vertex
<c><anno>V2</anno></c> of the digraph <c><anno>G</anno></c>. Returns the path as a
list <c>[<anno>V1</anno>, ..., <anno>V2</anno>]</c> of vertices, or
<c>false</c> if no simple path from <c><anno>V1</anno></c> to <c><anno>V2</anno></c>
of length one or more exists.
</p>
<p>The digraph <c><anno>G</anno></c> is traversed in a depth-first manner,
and the first path found is returned.
</p>
</desc>
</func>
<func>
<name name="get_short_cycle" arity="2"/>
<fsummary>Find one short cycle in a digraph.</fsummary>
<desc>
<p>Tries to find an as short as
possible <seealso marker="#simple_cycle">simple cycle</seealso> through
the vertex <c><anno>V</anno></c> of the digraph <c>G</c>. Returns the cycle
as a list <c>[<anno>V</anno>, ..., <anno>V</anno>]</c> of vertices, or
<c>false</c> if no simple cycle through <c><anno>V</anno></c> exists.
Note that a <seealso marker="#loop">loop</seealso> through
<c><anno>V</anno></c> is returned as the list <c>[<anno>V</anno>, <anno>V</anno>]</c>.
</p>
<p><c>get_short_path/3</c> is used for finding a simple cycle
through <c><anno>V</anno></c>.
</p>
</desc>
</func>
<func>
<name name="get_short_path" arity="3"/>
<fsummary>Find one short path in a digraph.</fsummary>
<desc>
<p>Tries to find an as short as
possible <seealso marker="#simple_path">simple path</seealso> from
the vertex <c><anno>V1</anno></c> to the vertex <c><anno>V2</anno></c> of the digraph <c><anno>G</anno></c>.
Returns the path as a list <c>[<anno>V1</anno>, ..., <anno>V2</anno>]</c> of
vertices, or <c>false</c> if no simple path from <c><anno>V1</anno></c>
to <c><anno>V2</anno></c> of length one or more exists.
</p>
<p>The digraph <c><anno>G</anno></c> is traversed in a breadth-first
manner, and the first path found is returned.
</p>
</desc>
</func>
<func>
<name name="in_degree" arity="2"/>
<fsummary>Return the in-degree of a vertex of a digraph.</fsummary>
<desc>
<p>Returns the <seealso marker="#in_degree">in-degree</seealso> of the vertex
<c><anno>V</anno></c> of the digraph <c><anno>G</anno></c>.
</p>
</desc>
</func>
<func>
<name name="in_edges" arity="2"/>
<fsummary>Return all edges incident on a vertex of a digraph.</fsummary>
<desc>
<p>Returns a list of all
edges <seealso marker="#incident">incident</seealso> on
<c><anno>V</anno></c> of the digraph <c><anno>G</anno></c>, in some unspecified order.
</p>
</desc>
</func>
<func>
<name name="in_neighbours" arity="2"/>
<fsummary>Return all in-neighbours of a vertex of a digraph.</fsummary>
<desc>
<p>Returns a list of
all <seealso marker="#in_neighbour">in-neighbours</seealso> of
<c><anno>V</anno></c> of the digraph <c><anno>G</anno></c>, in some unspecified order.
</p>
</desc>
</func>
<func>
<name name="info" arity="1"/>
<fsummary>Return information about a digraph.</fsummary>
<type name="d_cyclicity"/>
<type name="d_protection"/>
<desc>
<p>Returns a list of <c>{Tag, Value}</c> pairs describing the
digraph <c><anno>G</anno></c>. The following pairs are returned:
</p>
<list type="bulleted">
<item>
<p><c>{cyclicity, <anno>Cyclicity</anno>}</c>, where <c><anno>Cyclicity</anno></c>
is <c>cyclic</c> or <c>acyclic</c>, according to the
options given to <c>new</c>.</p>
</item>
<item>
<p><c>{memory, <anno>NoWords</anno>}</c>, where <c><anno>NoWords</anno></c> is
the number of words allocated to the <c>ETS</c> tables.</p>
</item>
<item>
<p><c>{protection, <anno>Protection</anno>}</c>, where <c><anno>Protection</anno></c>
is <c>protected</c> or <c>private</c>, according
to the options given to <c>new</c>.</p>
</item>
</list>
</desc>
</func>
<func>
<name name="new" arity="0"/>
<fsummary>Return a protected empty digraph, where cycles are allowed.</fsummary>
<desc>
<p>Equivalent to <c>new([])</c>.
</p>
</desc>
</func>
<func>
<name name="new" arity="1"/>
<fsummary>Create a new empty digraph.</fsummary>
<type variable="Type"/>
<type name="d_type"/>
<type name="d_cyclicity"/>
<type name="d_protection"/>
<desc>
<p>Returns
an <seealso marker="#empty_digraph">empty digraph</seealso> with
properties according to the options in <c><anno>Type</anno></c>:</p>
<taglist>
<tag><c>cyclic</c></tag>
<item>Allow <seealso marker="#cycle">cycles</seealso> in the
digraph (default).</item>
<tag><c>acyclic</c></tag>
<item>The digraph is to be kept <seealso marker="#acyclic_digraph">acyclic</seealso>.</item>
<tag><c>protected</c></tag>
<item>Other processes can read the digraph (default).</item>
<tag><c>private</c></tag>
<item>The digraph can be read and modified by the creating
process only.</item>
</taglist>
<p>If an unrecognized type option <c>T</c> is given or <c><anno>Type</anno></c>
is not a proper list, there will be a <c>badarg</c> exception.
</p>
</desc>
</func>
<func>
<name name="no_edges" arity="1"/>
<fsummary>Return the number of edges of the a digraph.</fsummary>
<desc>
<p>Returns the number of edges of the digraph <c><anno>G</anno></c>.
</p>
</desc>
</func>
<func>
<name name="no_vertices" arity="1"/>
<fsummary>Return the number of vertices of a digraph.</fsummary>
<desc>
<p>Returns the number of vertices of the digraph <c><anno>G</anno></c>.
</p>
</desc>
</func>
<func>
<name name="out_degree" arity="2"/>
<fsummary>Return the out-degree of a vertex of a digraph.</fsummary>
<desc>
<p>Returns the <seealso marker="#out_degree">out-degree</seealso> of the vertex
<c><anno>V</anno></c> of the digraph <c><anno>G</anno></c>.
</p>
</desc>
</func>
<func>
<name name="out_edges" arity="2"/>
<fsummary>Return all edges emanating from a vertex of a digraph.</fsummary>
<desc>
<p>Returns a list of all
edges <seealso marker="#emanate">emanating</seealso> from
<c><anno>V</anno></c> of the digraph <c><anno>G</anno></c>, in some unspecified order.
</p>
</desc>
</func>
<func>
<name name="out_neighbours" arity="2"/>
<fsummary>Return all out-neighbours of a vertex of a digraph.</fsummary>
<desc>
<p>Returns a list of
all <seealso marker="#out_neighbour">out-neighbours</seealso> of
<c><anno>V</anno></c> of the digraph <c><anno>G</anno></c>, in some unspecified order.
</p>
</desc>
</func>
<func>
<name name="vertex" arity="2"/>
<fsummary>Return the label of a vertex of a digraph.</fsummary>
<desc>
<p>Returns <c>{<anno>V</anno>, <anno>Label</anno>}</c> where <c><anno>Label</anno></c> is the
<seealso marker="#label">label</seealso> of the vertex
<c><anno>V</anno></c> of the digraph <c><anno>G</anno></c>, or <c>false</c> if there
is no vertex <c><anno>V</anno></c> of the digraph <c><anno>G</anno></c>.
</p>
</desc>
</func>
<func>
<name name="vertices" arity="1"/>
<fsummary>Return all vertices of a digraph.</fsummary>
<desc>
<p>Returns a list of all vertices of the digraph <c><anno>G</anno></c>, in
some unspecified order.
</p>
</desc>
</func>
</funcs>
<section>
<title>See Also</title>
<p><seealso marker="digraph_utils">digraph_utils(3)</seealso>,
<seealso marker="ets">ets(3)</seealso></p>
</section>
</erlref>