%% =====================================================================
%% This library is free software; you can redistribute it and/or modify
%% it under the terms of the GNU Lesser General Public License as
%% published by the Free Software Foundation; either version 2 of the
%% License, or (at your option) any later version.
%%
%% This library is distributed in the hope that it will be useful, but
%% WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
%% Lesser General Public License for more details.
%%
%% You should have received a copy of the GNU Lesser General Public
%% License along with this library; if not, write to the Free Software
%% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
%% USA
%%
%% @copyright 2000-2006 Richard Carlsson
%% @author Richard Carlsson <[email protected]>
%% @end
%% =====================================================================
%% @doc A generic pretty printer library. This module uses a
%% strict-style context passing implementation of John Hughes algorithm,
%% described in "The design of a Pretty-printing Library". The
%% paragraph-style formatting, empty documents, floating documents, and
%% null strings are my own additions to the algorithm.
%%
%% To get started, you should read about the {@link document()} data
%% type; the main constructor functions: {@link text/1}, {@link
%% above/2}, {@link beside/2}, {@link nest/2}, {@link sep/1}, and {@link
%% par/2}; and the main layout function {@link format/3}.
%%
%% If you simply want to format a paragraph of plain text, you probably
%% want to use the {@link text_par/2} function, as in the following
%% example:
%% ```
%% prettypr:format(prettypr:text_par("Lorem ipsum dolor sit amet"), 20)
%% '''
%% @TODO can floats be moved in/out of sep:s without too much pain?
-module(prettypr).
-export([above/2, beside/2, best/3, break/1, empty/0, floating/1,
floating/3, follow/2, follow/3, format/1, format/2, format/3,
nest/2, par/1, par/2, sep/1, text/1, null_text/1, text_par/1,
text_par/2]).
-export_type([document/0]).
%% ---------------------------------------------------------------------
-type deep_string() :: [char() | deep_string()].
%% Document structures fully implemented and available to the user:
-record(text, {s :: deep_string()}).
-record(nest, {n :: integer(), d :: document()}).
-record(beside, {d1 :: document(), d2 :: document()}).
-record(above, {d1 :: document(), d2 :: document()}).
-record(sep, {ds :: [document()], i = 0 :: integer(),
p = false :: boolean()}).
%% Document structure which is not clear whether it is fully implemented:
-record(float, {d :: document(), h :: integer(), v :: integer()}).
%% Document structures not available to the user:
-record(union, {d1 :: document(), d2 :: document()}).
-record(fit, {d :: document()}).
%% ---------------------------------------------------------------------
%% A small warning for hackers: it's fairly easy to break this
%% thing (in particular, to muck up the complexity) if you don't
%% understand how it works.
%% ---------------------------------------------------------------------
%% =====================================================================
%% @type document(). An abstract character-based "document" representing
%% a number of possible layouts, which can be processed to produce a
%% single concrete layout. A concrete layout can then be rendered as a
%% sequence of characters containing linebreaks, which can be passed to
%% a printer or terminal that uses a fixed-width font.
%%
%% For example, a document `sep([text("foo"), text("bar")])'
%% represents the two layouts
%% ```foo bar'''
%% and
%% ```foo
%% bar'''
%%
%% Which layout is chosen depends on the available horizontal space.
%% When processing a document, the main parameters are the <em>paper
%% width</em> and the <em>line width</em> (also known as the "ribbon
%% width"). In the resulting layout, no text should be printed beyond
%% the paper width (which by default is 80 characters) as long as it can
%% be avoided, and each single line of text (its indentation not
%% counted, hence "ribbon") should preferably be no wider than the
%% specified line width (which by default is 65).
%%
%% Documents can be joined into a single new document using the
%% constructor functions of this module. Note that the new document
%% often represents a larger number of possible layouts than just the
%% sum of the components.
-type document() :: 'null' | #text{} | #nest{} | #beside{}
| #above{} | #sep{} | #float{} | #union{} | #fit{}.
%% =====================================================================
%% @spec text(Characters::string()) -> document()
%%
%% @doc Yields a document representing a fixed, unbreakable sequence of
%% characters. The string should contain only <em>printable</em>
%% characters (tabs allowed but not recommended), and <em>not</em>
%% newline, line feed, vertical tab, etc. A tab character (`\t') is
%% interpreted as padding of 1-8 space characters to the next column of
%% 8 characters <em>within the string</em>.
%%
%% @see empty/0
%% @see null_text/1
%% @see text_par/2
-spec text(string()) -> #text{}.
text(S) ->
mktext(string(S)). % convert to internal representation
%% This function is used internally only, and expects a string on
%% the internal representation:
mktext(S) ->
#text{s = S}.
%% =====================================================================
%% @spec null_text(Characters::string()) -> document()
%%
%% @doc Similar to {@link text/1}, but the result is treated as having
%% zero width. This is regardless of the actual length of the string.
%% Null text is typically used for markup, which is supposed to have no
%% effect on the actual layout.
%%
%% The standard example is when formatting source code as HTML to be
%% placed within `<pre>...</pre>' markup, and using e.g. `<i>' and `<b>'
%% to make parts of the source code stand out. In this case, the markup
%% does not add to the width of the text when viewed in an HTML browser,
%% so the layout engine should simply pretend that the markup has zero
%% width.
%%
%% @see text/1
%% @see empty/0
-spec null_text(string()) -> #text{}.
null_text(S) ->
mktext(null_string(S)). % convert to internal representation
%% =====================================================================
%% @spec text_par(Text::string()) -> document()
%% @equiv text_par(Text, 0)
-spec text_par(string()) -> document().
text_par(S) ->
text_par(S, 0).
%% =====================================================================
%% @spec text_par(Text::string(), Indentation::integer()) -> document()
%%
%% @doc Yields a document representing paragraph-formatted plain text.
%% The optional `Indentation' parameter specifies the extra indentation
%% of the first line of the paragraph. For example, `text_par("Lorem
%% ipsum dolor sit amet", N)' could represent
%% ```Lorem ipsum dolor
%% sit amet'''
%% if `N' = 0, or
%% ``` Lorem ipsum
%% dolor sit amet'''
%% if `N' = 2, or
%% ```Lorem ipsum dolor
%% sit amet'''
%% if `N' = -2.
%%
%% (The sign of the indentation is thus reversed compared to the {@link
%% par/2} function, and the behaviour varies slightly depending on the
%% sign in order to match the expected layout of a paragraph of text.)
%%
%% Note that this is just a utility function, which does all the work of
%% splitting the given string into words separated by whitespace and
%% setting up a {@link par/2. `par'} with the proper indentation,
%% containing a list of {@link text/1. `text'} elements.
%%
%% @see text_par/1
%% @see text/1
%% @see par/2
-spec text_par(string(), integer()) -> document().
text_par(S, 0) ->
par(words(S));
text_par(S, N) when N > 0 ->
nest(N, par(words(S), -N));
text_par(S, N) when N < 0 ->
par(words(S), -N).
words(S) ->
words(S, [], []).
words([$\s | Cs], As, Ws) -> words_1(Cs, As, Ws);
words([$\t | Cs], As, Ws) -> words_1(Cs, As, Ws);
words([$\n | Cs], As, Ws) -> words_1(Cs, As, Ws);
words([C | Cs], As, Ws) -> words(Cs, [C | As], Ws);
words([], [], Ws) -> lists:reverse(Ws);
words([], As, Ws) -> words_1([], As, Ws).
words_1(Cs, [], Ws) ->
words(Cs, [], Ws);
words_1(Cs, As, Ws) ->
words(Cs, [], [text(lists:reverse(As)) | Ws]).
%% =====================================================================
%% @spec empty() -> document()
%%
%% @doc Yields the empty document, which has neither height nor width.
%% (`empty' is thus different from an empty {@link text/1. `text'}
%% string, which has zero width but height 1.)
%%
%% Empty documents are occasionally useful; in particular, they have the
%% property that `above(X, empty())' will force a new line after `X'
%% without leaving an empty line below it; since this is a common idiom,
%% the utility function {@link break/1} will place a given document in
%% such a context.
%%
%% @see text/1
-spec empty() -> 'null'.
empty() ->
null.
%% =====================================================================
%% @spec break(document()) -> document()
%%
%% @doc Forces a line break at the end of the given document. This is a
%% utility function; see {@link empty/0} for details.
-spec break(document()) -> #above{}.
break(D) ->
above(D, empty()).
%% =====================================================================
%% @spec nest(N::integer(), D::document()) -> document()
%%
%% @doc Indents a document a number of character positions to the right.
%% Note that `N' may be negative, shifting the text to the left, or
%% zero, in which case `D' is returned unchanged.
-spec nest(integer(), document()) -> document().
nest(N, D) ->
if N =:= 0 ->
D;
true ->
#nest{n = N, d = D}
end.
%% =====================================================================
%% @spec beside(D1::document(), D2::document()) -> document()
%%
%% @doc Concatenates documents horizontally. Returns a document
%% representing the concatenation of the documents `D1' and `D2' such
%% that the last character of `D1' is horizontally adjacent to the first
%% character of `D2', in all possible layouts. (Note: any indentation of
%% `D2' is lost.)
%%
%% Examples:
%% ```ab cd => abcd
%%
%% ab ef ab
%% cd gh => cdef
%% gh'''
-spec beside(document(), document()) -> #beside{}.
beside(D1, D2) ->
#beside{d1 = D1, d2 = D2}.
%% =====================================================================
%% @spec above(D1::document(), D2::document()) -> document()
%%
%% @doc Concatenates documents vertically. Returns a document
%% representing the concatenation of the documents `D1' and `D2' such
%% that the first line of `D2' follows directly below the last line of
%% `D1', and the first character of `D2' is in the same horizontal
%% column as the first character of `D1', in all possible layouts.
%%
%% Examples:
%% ```ab cd => ab
%% cd
%%
%% abc
%% abc fgh => de
%% de ij fgh
%% ij'''
-spec above(document(), document()) -> #above{}.
above(D1, D2) ->
#above{d1 = D1, d2 = D2}.
%% =====================================================================
%% @spec sep(Docs::[document()]) -> document()
%%
%% @doc Arranges documents horizontally or vertically, separated by
%% whitespace. Returns a document representing two alternative layouts
%% of the (nonempty) sequence `Docs' of documents, such that either all
%% elements in `Docs' are concatenated horizontally, and separated by a
%% space character, or all elements are concatenated vertically (without
%% extra separation).
%%
%% Note: If some document in `Docs' contains a line break, the vertical
%% layout will always be selected.
%%
%% Examples:
%% ``` ab
%% ab cd ef => ab cd ef | cd
%% ef
%%
%% ab ab
%% cd ef => cd
%% ef'''
%%
%% @see par/2
-spec sep([document()]) -> #sep{}.
sep(Ds) ->
#sep{ds = Ds}.
%% =====================================================================
%% @spec par(Docs::[document()]) -> document()
%% @equiv par(Ds, 0)
-spec par([document()]) -> #sep{}.
par(Ds) ->
par(Ds, 0).
%% =====================================================================
%% @spec par(Docs::[document()], Offset::integer()) -> document()
%%
%% @doc Arranges documents in a paragraph-like layout. Returns a
%% document representing all possible left-aligned paragraph-like
%% layouts of the (nonempty) sequence `Docs' of documents. Elements in
%% `Docs' are separated horizontally by a single space character and
%% vertically with a single line break. All lines following the first
%% (if any) are indented to the same left column, whose indentation is
%% specified by the optional `Offset' parameter relative to the position
%% of the first element in `Docs'. For example, with an offset of -4,
%% the following layout can be produced, for a list of documents
%% representing the numbers 0 to 15:
%%
%% ``` 0 1 2 3
%% 4 5 6 7 8 9
%% 10 11 12 13
%% 14 15'''
%% or with an offset of +2:
%% ```0 1 2 3 4 5 6
%% 7 8 9 10 11
%% 12 13 14 15'''
%%
%% The utility function {@link text_par/2} can be used to easily
%% transform a string of text into a `par' representation by splitting
%% it into words.
%%
%% Note that whenever a document in `Docs' contains a line break, it
%% will be placed on a separate line. Thus, neither a layout such as
%% ```ab cd
%% ef'''
%% nor
%% ```ab
%% cd ef'''
%% will be generated. However, a useful idiom for making the former
%% variant possible (when wanted) is `beside(par([D1, text("")], N),
%% D2)' for two documents `D1' and `D2'. This will break the line
%% between `D1' and `D2' if `D1' contains a line break (or if otherwise
%% necessary), and optionally further indent `D2' by `N' character
%% positions. The utility function {@link follow/3} creates this context
%% for two documents `D1' and `D2', and an optional integer `N'.
%%
%% @see par/1
%% @see text_par/2
-spec par([document()], integer()) -> #sep{}.
par(Ds, N) ->
mksep(Ds, N, true).
%% Used internally only:
mksep(Ds, N, P) when is_integer(N) ->
#sep{ds = Ds, i = N, p = P}.
%% =====================================================================
%% @spec follow(D1::document(), D2::document()) -> document()
%% @equiv follow(D1, D2, 0)
-spec follow(document(), document()) -> #beside{}.
follow(D1, D2) ->
follow(D1, D2, 0).
%% =====================================================================
%% @spec follow(D1::document(), D2::document(), Offset::integer()) ->
%% document()
%%
%% @doc Separates two documents by either a single space, or a line
%% break and intentation. In other words, one of the layouts
%% ```abc def'''
%% or
%% ```abc
%% def'''
%% will be generated, using the optional offset in the latter case. This
%% is often useful for typesetting programming language constructs.
%%
%% This is a utility function; see {@link par/2} for further details.
%%
%% @see follow/2
-spec follow(document(), document(), integer()) -> #beside{}.
follow(D1, D2, N) when is_integer(N) ->
beside(par([D1, nil()], N), D2).
%% =====================================================================
%% @spec floating(document()) -> document()
%% @equiv floating(D, 0, 0)
-spec floating(document()) -> #float{}.
floating(D) ->
floating(D, 0, 0).
%% =====================================================================
%% @spec floating(D::document(), Hp::integer(), Vp::integer()) ->
%% document()
%%
%% @doc Creates a "floating" document. The result represents the same
%% set of layouts as `D'; however, a floating document may be moved
%% relative to other floating documents immediately beside or above it,
%% according to their relative horizontal and vertical priorities. These
%% priorities are set with the `Hp' and `Vp' parameters; if omitted,
%% both default to zero.
%%
%% Notes: Floating documents appear to work well, but are currently less
%% general than you might wish, losing effect when embedded in certain
%% contexts. It is possible to nest floating-operators (even with
%% different priorities), but the effects may be difficult to predict.
%% In any case, note that the way the algorithm reorders floating
%% documents amounts to a "bubblesort", so don't expect it to be able to
%% sort large sequences of floating documents quickly.
-spec floating(document(), integer(), integer()) -> #float{}.
floating(D, H, V) when is_integer(H), is_integer(V) ->
#float{d = D, h = H, v = V}.
%% =====================================================================
%% @spec format(D::document()) -> string()
%% @equiv format(D, 80)
-spec format(document()) -> string().
format(D) ->
format(D, 80).
%% =====================================================================
%% @spec format(D::document(), PaperWidth::integer()) -> string()
%% @equiv format(D, PaperWidth, 65)
-spec format(document(), integer()) -> string().
format(D, W) ->
format(D, W, 65).
%% =====================================================================
%% @spec format(D:: document(), PaperWidth::integer(),
%% LineWidth::integer()) -> string()
%% @throws no_layout
%%
%% @doc Computes a layout for a document and returns the corresponding
%% text. See {@link document()} for further information. Throws
%% `no_layout' if no layout could be selected.
%%
%% `PaperWidth' specifies the total width (in character positions) of
%% the field for which the text is to be laid out. `LineWidth' specifies
%% the desired maximum width (in number of characters) of the text
%% printed on any single line, disregarding leading and trailing white
%% space. These parameters need to be properly balanced in order to
%% produce good layouts. By default, `PaperWidth' is 80 and `LineWidth'
%% is 65.
%%
%% @see best/3
-spec format(document(), integer(), integer()) -> string().
format(D, W, R) ->
case best(D, W, R) of
empty ->
throw(no_layout);
L -> layout(L)
end.
%% =====================================================================
%% Representation:
%%
%% document() = #text{s = string()}
%% | #nest{n = integer(), d = document()}
%% | #beside{d1 = document(), d2 = document()}
%% | #above{d1 = document(), d2 = document()}
%% | #sep{ds = [document()], i = integer(), p = boolean()}
%% | null
%%
%% A `text' node simply represents a string (which should not contain
%% linefeed or carriage return characters). A `nest' node specifies a
%% relative indentation (in number of character positions) of a
%% document. The indentation could be a negative number. A `beside' node
%% specifies a horizontal composition of two documents, and an `above'
%% node a vertical composition. A `sep' node specifies a list of
%% alternative documents; the `i' field holds the extra indentation of
%% all documents but the first in `ds', and if the `p' field is `true'
%% then the list is typeset in paragraph mode.
%%
%% The function `best/3' yields a representation of a "best layout",
%% suitable for direct conversion to text, having the following
%% restricted form:
%%
%% layout() = #text{s = string()}
%% | #above{d1 = #text{s = string()}, d2 = layout()}
%% | #nest{n = integer(), d = layout()}
%% | null
%%
%% The function `layout/1' performs the final transformation to a single
%% flat string from the restricted document form.
layout(L) ->
lists:reverse(layout(0, L, [])).
layout(N, #above{d1 = #text{s = S}, d2 = L}, Cs) ->
layout(N, L, [$\n | flatrev(string_chars(S), indent(N, Cs))]);
layout(N, #nest{n = N1, d = L}, Cs) ->
layout(N + N1, L, Cs);
layout(N, #text{s = S}, Cs) ->
flatrev(string_chars(S), indent(N, Cs));
layout(_N, null, Cs) ->
Cs.
indent(N, Cs) when N >= 8 ->
indent(N - 8, [$\t | Cs]);
indent(N, Cs) when N > 0 ->
indent(N - 1, [$\s | Cs]);
indent(_N, Cs) ->
Cs.
flatrev(Cs, As) ->
flatrev(Cs, As, []).
flatrev([C = [_|_] | Cs], As, Ss) ->
flatrev(C, As, [Cs | Ss]);
flatrev([[] | Cs], As, Ss) ->
flatrev(Cs, As, Ss);
flatrev([C | Cs], As, Ss) ->
flatrev(Cs, [C | As], Ss);
flatrev([], As, [S | Ss]) ->
flatrev(S, As, Ss);
flatrev([], As, []) ->
As.
%% =====================================================================
%% @spec best(document(), PaperWidth::integer(),
%% LineWidth::integer()) -> empty | document()
%%
%% @doc Selects a "best" layout for a document, creating a corresponding
%% fixed-layout document. If no layout could be produced, the atom
%% `empty' is returned instead. For details about `PaperWidth' and
%% `LineWidth', see {@link format/3}. The function is idempotent.
%%
%% One possible use of this function is to compute a fixed layout for a
%% document, which can then be included as part of a larger document.
%% For example:
%% ```above(text("Example:"), nest(8, best(D, W - 12, L - 6)))'''
%% will format `D' as a displayed-text example indented by 8, whose
%% right margin is indented by 4 relative to the paper width `W' of the
%% surrounding document, and whose maximum individual line length is
%% shorter by 6 than the line length `L' of the surrounding document.
%%
% This function is used by the {@link format/3} function to prepare a
%% document before being laid out as text.
%% Recall that a document represents a set of possible layouts. `best'
%% selects the "best" layout of a document, returning a simplified
%% representation that can be given directly to `layout', unless the
%% returned value is `empty', signaling that no layout could be
%% produced. In addition, documents on the form `#union{d1 = D1, d2 =
%% D2}' and `#fit{d = D}' are used internally.
%%
%% Note: It is vital for this algorithm to maintain the invariant on
%% unions that the left argument has a longer first line than the right
%% argument!
%% Contexts:
%%
%% #c_best_nest{w = integer(), r = integer(), i = integer()}
%% #c_above_nest{d = document(), i = integer(), c = ctxt()}
%% #c_beside{d = document(), c = ctxt()}
%% #c_text_beside{s = string(), c = ctxt()}
%% #c_sep_nest{ds = [document()], i = integer(), p = boolean(),
%% c = ctxt()}
%% #c_best_nest_or{w = integer(), r = integer(), i = integer(),
%% d = document()}
%% #c_fit{c = ctxt()}
%% best(w, r, nest(i, *))
-record(c_best_nest, {w :: integer(), r :: integer(), i :: integer()}).
%% above(*, nest(i, d))
-record(c_above_nest, {d :: document(), i = 0 :: integer(), c :: ctxt()}).
-record(c_beside, {d :: document(), c :: ctxt()}). %% beside(*, d)
-record(c_text_beside, {s :: string(), c :: ctxt()}). %% beside(text(s), *)
%% p = false => sep([* | map(nest i, ds)])
%% p = true => par([* | map(nest i, ds)])
-record(c_sep_nest, {ds :: [document()], i :: integer(),
p :: boolean(), c :: ctxt()}).
%% nicest(best(w, r, nest(i, *)), best(w, r, d))
-record(c_best_nest_or, {w :: integer(), r :: integer(),
i :: integer(), d :: document()}).
-record(c_fit, {c :: ctxt()}). %% fit(*)
%% beside(float(d, h, v), *)
-record(c_float_beside, {d :: document(), h :: integer(),
v :: integer(), c :: ctxt()}).
%% above(float(d, h, v), nest(i, *))
-record(c_float_above_nest, {d :: document(), h :: integer(),
v :: integer(), i :: integer(), c :: ctxt()}).
%% Contexts introduced: In case:
%%
%% c_best_nest top-level call
%% c_above_nest above (c_best_nest)
%% c_beside beside (c_best_nest)
%% c_text_beside text (c_beside)
%% c_sep_nest sep (c_best_nest)
%% c_best_nest_or union (c_best_nest)
%% c_fit fit
%% c_float_beside float (c_beside)
%% c_float_above_nest float (c_above_nest)
-type ctxt() :: #c_best_nest{} | #c_above_nest{}
| #c_beside{} | #c_text_beside{}
| #c_sep_nest{} | #c_best_nest_or{}
| #c_fit{} | #c_float_beside{} | #c_float_above_nest{}.
%% Entry point for the layout algorithm:
-spec best(document(), integer(), integer()) -> 'empty' | document().
best(D, W, R) ->
rewrite(D, #c_best_nest{w = W, r = R, i = 0}).
rewrite(#text{s = S}, C) ->
case C of
#c_best_nest{i = N} ->
nest(N, mktext(S)); % finish
#c_above_nest{d = D1, i = N1, c = C1} ->
case C1 of
#c_best_nest{w = W, r = R, i = N} ->
%% Move out completed line.
%% (Note new indentation N1.)
nest(N,
above(mktext(S),
rewrite(D1,
#c_best_nest{w = W - N,
r = R,
i = N1})));
#c_beside{d = D2, c = C2} ->
%% Associativity (not symmetric)
rewrite(above(mktext(S),
nest(N1, beside(D1, D2))), C2);
#c_text_beside{s = S1, c = C2} ->
%% Join segments (note the indentation!)
rewrite(above(mktext(concat(S1, S)),
nest(N1 + width(S1), D1)),
C2);
#c_sep_nest{ds = Ds, i = N, c = C2} ->
case is_empty_string(S) of
false ->
%% Move out the prefix (note the
%% indentation!)
W = width(S),
rewrite(beside(
mktext(S),
mksep([above(nil(),
nest(N1 - W,
D1))
| Ds],
N - W,
C1#c_sep_nest.p)),
C2);
true ->
%% Like when we have just an empty
%% string and nothing else, this
%% forces us to expand the `sep'. The
%% line break will then force a normal
%% `sep' to select the vertical
%% alternative, but for a `par', we
%% need to force a line break before
%% the remaining elements are laid
%% out. (Note the indentation!)
case C1#c_sep_nest.p of
false ->
rewrite(expand_sep(
above(nil(),
nest(N1, D1)),
Ds, N),
C2);
true ->
rewrite(expand_par(
above(nil(),
nest(N1, D1)),
Ds, N),
C2)
end
end;
#c_best_nest_or{w = W, r = R, i = N, d = D} ->
L = width(S),
case ((L + N) > W) or (L > R) of
true ->
%% The first line of the LHS layout is
%% not nice, so select the RHS.
rewrite(D, #c_best_nest{w = W, r = R,
i = N});
false ->
%% Select the LHS. (Note the
%% indentation!)
rewrite(above(mktext(S),
nest(N1, D1)),
#c_best_nest{w = W, r = R,
i = N})
end;
#c_float_beside{d = D2, c = C2} ->
rewrite(beside(D2, above(mktext(S),
nest(N1, D1))),
C2);
#c_float_above_nest{d = D2, i = N2, c = C2} ->
rewrite(above(D2,
nest(N2, above(mktext(S),
nest(N1, D1)))),
C2);
#c_above_nest{} ->
exit(badarg); % this can't happen
#c_fit{} ->
exit(badarg) % this can't happen
end;
#c_beside{d = D1, c = C1} ->
case C1 of
#c_above_nest{d = D2, i = N, c = C2} ->
case is_empty_string(S) of
false ->
%% Move out the prefix (note the
%% indentation!)
W = width(S),
rewrite(beside(mktext(S),
above(
beside(nil(), D1),
nest(N - W, D2))),
C2);
true ->
%% Pass on
rewrite(D1, #c_text_beside{s = S,
c = C1})
end;
#c_text_beside{s = S1, c = C2} ->
%% Associativity (we simplify early)
rewrite(beside(mktext(concat(S1, S)), D1),
C2);
#c_sep_nest{ds = Ds, i = N, c = C2} ->
case is_empty_string(S) of
false ->
%% Move out the prefix (note the
%% indentation!)
W = width(S),
rewrite(beside(mktext(S),
mksep(
[beside(nil(), D1)
| Ds],
N - W,
C1#c_sep_nest.p)),
C2);
true ->
%% Pass on
rewrite(D1, #c_text_beside{s = S,
c = C1})
end;
#c_best_nest_or{w = W, r = R, i = N, d = D} ->
L = width(S),
case ((L + N) > W) or (L > R) of
true ->
%% The first line of the LHS layout is
%% not nice, so select the RHS.
rewrite(D, #c_best_nest{w = W, r = R,
i = N});
false ->
%% Pass on
rewrite(D1, #c_text_beside{s = S,
c = C1})
end;
#c_float_beside{d = D2, c = C2} ->
rewrite(beside(D2, beside(mktext(S), D1)),
C2);
#c_float_above_nest{d = D2, i = N, c = C2} ->
rewrite(above(D2,
nest(N, beside(mktext(S), D1))),
C2);
_ ->
%% Pass on
rewrite(D1, #c_text_beside{s = S, c = C1})
end;
#c_text_beside{s = S1, c = C1} ->
rewrite(mktext(concat(S1, S)), C1); % join segments
#c_sep_nest{ds = Ds, i = N, c = C1} ->
case is_empty_string(S) of
false ->
%% Move out the prefix (note the indentation!)
rewrite(beside(mktext(S),
mksep([nil() | Ds],
N - width(S),
C#c_sep_nest.p)),
C1);
true ->
%% This is the only place where we are forced to
%% introduce a union. Recall the invariant that the
%% left argument must have a longer first line than
%% the right argument; also recall that `Ds' is
%% always nonempty here. Now, since [D | Ds]
%% contains at least two elements, the first line of
%% the horizontal layout will always contain at
%% least one space character more than the first
%% line of the vertical layout.
case C#c_sep_nest.p of
false ->
rewrite(expand_sep(nil(), Ds, N), C1);
true ->
rewrite(expand_par(nil(), Ds, N), C1)
end
end;
#c_best_nest_or{w = W, r = R, i = N, d = D} ->
L = width(S),
case ((L + N) > W) or (L > R) of
true ->
%% The first line of the LHS layout is not
%% nice, so select the RHS (which contains
%% at least two lines).
rewrite(D, #c_best_nest{w = W, r = R, i = N});
false ->
nest(N, mktext(S)) % finish
end;
#c_fit{c = C1} ->
%% Identity:
rewrite(mktext(S), C1);
#c_float_beside{d = D1, c = C1} ->
rewrite(beside(D1, mktext(S)), C1);
#c_float_above_nest{d = D1, i = N, c = C1} ->
rewrite(above(D1, nest(N, mktext(S))), C1)
end;
rewrite(#nest{n = N, d = D}, C) ->
case C of
#c_best_nest{w = W, r = R, i = N1} ->
%% Note that we simplify by not creating an actual `nest'
%% node, but instead just modifying the context:
%% rewrite(nest(N1, nest(N, D))) = rewrite(nest(N1 + N, D)).
rewrite(D, #c_best_nest{w = W, r = R, i = N + N1});
#c_above_nest{d = D1, i = N1, c = C1} ->
%% Distributivity
%% (Note the indentation!)
rewrite(nest(N, above(D, nest(N1 - N, D1))), C1);
#c_beside{d = D1, c = C1} ->
%% Associativity (not symmetric):
rewrite(nest(N, beside(D, D1)), C1);
#c_text_beside{} ->
rewrite(D, C); % (`beside' kills RHS indentation)
#c_sep_nest{ds = Ds, i = N1, c = C1} ->
%% Distributivity (in the vertical form, the RHS
%% indentation is killed)
rewrite(nest(N, mksep([D | Ds],
N1 - N,
C#c_sep_nest.p)),
C1);
#c_fit{c = C1} ->
%% Distributivity:
rewrite(nest(N, fit(D)), C1);
#c_float_beside{} ->
rewrite(D, C); % (`beside' kills RHS indentation)
#c_float_above_nest{d = D1, h = H, v = V, i = N1,
c = C1} ->
rewrite(D, #c_float_above_nest{d = D1, h = H, v = V,
i = N + N1, c = C1});
#c_best_nest_or{} ->
exit(badarg) % this can't happen
end;
rewrite(#above{d1 = D1, d2 = D2}, C) ->
case C of
#c_above_nest{d = D3, i = N, c = C1} ->
%% Associativity:
%% (Note the indentation!)
rewrite(D1, #c_above_nest{d = above(D2, nest(N, D3)),
c = C1});
#c_beside{d = D3, c = C1} ->
%% Associativity (not symmetric):
rewrite(above(D1, beside(D2, D3)), C1);
#c_fit{c = C1} ->
rewrite(empty, C1); % this is the whole point of `fit'
_ ->
rewrite(D1, #c_above_nest{d = D2, c = C}) % pass on
end;
rewrite(#beside{d1 = D1, d2 = D2}, C) ->
case C of
#c_beside{d = D3, c = C1} ->
%% Associativity:
rewrite(D1, #c_beside{d = beside(D2, D3), c = C1});
#c_fit{c = C1} ->
%% Distributivity:
rewrite(beside(fit(D1), fit(D2)), C1);
_ ->
rewrite(D1, #c_beside{d = D2, c = C}) % pass on
end;
rewrite(#sep{ds = Ds, i = N, p = P}, C) ->
case C of
#c_fit{c = C1} ->
%% The vertical layout is thus impossible, and the
%% extra indentation has no effect.
rewrite(fit(horizontal(Ds)), C1);
#c_float_beside{d = D1, c = C1} ->
%% Floats are not moved in or out of sep's
rewrite(beside(D1, mksep(Ds, N, P)), C1);
#c_float_above_nest{d = D1, i = N1, c = C1} ->
%% Floats are not moved in or out of sep's
rewrite(above(D1, nest(N1, mksep(Ds, N, P))), C1);
_ ->
enter_sep(Ds, N, P, C) % pass on
end;
rewrite(#union{d1 = D1, d2 = D2}, C) ->
%% Introduced by the occurrence of an empty `text' string in a
%% `sep' context. See the note above about the invariant for
%% unions!
case C of
#c_best_nest{w = W, r = R, i = N} ->
%% Pass on
rewrite(D1, #c_best_nest_or{w = W, r = R, i = N,
d = D2});
#c_above_nest{d = D3, i = N, c = C1} ->
%% Distributivity:
%% (Note the indentation!)
rewrite(union(above(D1, nest(N, D3)),
above(D2, nest(N, D3))),
C1);
#c_beside{d = D3, c = C1} ->
%% Distributivity:
rewrite(union(beside(D1, D3), beside(D2, D3)), C1);
#c_text_beside{s = S, c = C1} ->
%% Distributivity:
rewrite(union(beside(mktext(S), D1),
beside(mktext(S), D2)),
C1);
#c_sep_nest{ds = Ds, i = N, c = C1} ->
%% Distributivity:
rewrite(union(mksep([D1 | Ds], N, C#c_sep_nest.p),
mksep([D2 | Ds], N, C#c_sep_nest.p)),
C1);
#c_best_nest_or{w = W, r = R, i = N, d = D3} ->
%% Associativity:
rewrite(D1, #c_best_nest_or{w = W, r = R, i = N,
d = union(D2, D3)});
#c_fit{c = C1} ->
%% Distributivity:
rewrite(union(fit(D1), fit(D2)), C1);
#c_float_beside{d = D3, h = H, v = V, c = C1} ->
%% Distributivity:
rewrite(union(beside(floating(D3, H, V), D1),
beside(floating(D3, H, V), D2)),
C1);
#c_float_above_nest{d = D3, h = H, v = V, i = N, c = C1} ->
%% Distributivity:
rewrite(union(above(floating(D3, H, V), nest(N, D1)),
above(floating(D3, H, V), nest(N, D2))),
C1)
end;
rewrite(empty, C) ->
%% Introduced by `sep'.
case C of
#c_best_nest{} ->
empty; % preserve `empty'
#c_above_nest{c = C1} ->
rewrite(empty, C1); % preserve `empty'
#c_beside{c = C1} ->
rewrite(empty, C1); % preserve `empty'
#c_text_beside{c = C1} ->
rewrite(empty, C1); % preserve `empty'
#c_sep_nest{c = C1} ->
rewrite(empty, C1); % preserve `empty'
#c_best_nest_or{w = W, r = R, i = N, d = D} ->
%% Try the other layout
rewrite(D, #c_best_nest{w = W, r = R, i = N});
#c_fit{c = C1} ->
rewrite(empty, C1); % preserve `empty'
#c_float_beside{c = C1} ->
rewrite(empty, C1); % preserve `empty'
#c_float_above_nest{c = C1} ->
rewrite(empty, C1) % preserve `empty'
end;
rewrite(#fit{d = D}, C) ->
%% Introduced by the occurrence of an empty `text' string in a
%% `sep' context.
case C of
#c_fit{} ->
%% Idempotency:
rewrite(D, C);
_ ->
rewrite(D, #c_fit{c = C}) % pass on
end;
rewrite(#float{d = D, h = H, v = V}, C) ->
case C of
#c_beside{d = D1, c = C1} ->
case C1 of
#c_float_beside{d = D2, h = H1, v = V1, c = C2}
when H1 > H ->
%% Move left
rewrite(beside(floating(D, H, V),
beside(floating(D2, H1, V1),
D1)),
C2);
#c_float_beside{d = D2, h = H1, v = V1, c = C2}
when V1 /= V ->
%% Align vertically
rewrite(above(floating(D2, H1, V1),
beside(floating(D, H, V), D1)),
C2);
#c_float_above_nest{d = D2, h = H1, v = V1,
i = N1, c = C2}
when V1 > V ->
%% Move up (note the indentation, and note
%% that all three become aligned vertically)
rewrite(above(nest(N1, floating(D, H, V)),
above(floating(D2, H1, V1),
D1)),
C2);
#c_float_above_nest{d = D2, h = H1, v = V1,
i = _N1, c = C2}
when V1 == V, H1 /= H ->
%% Align horizontally
rewrite(beside(floating(D2, H1, V1),
beside(floating(D, H, V),
D1)),
C2);
_ ->
rewrite(D1, #c_float_beside{d = D, h = H,
v = V, c = C1})
end;
#c_above_nest{d = D1, i = N, c = C1} ->
case C1 of
#c_float_beside{d = D2, h = H1, v = V1, c = C2}
when H1 > H ->
%% Move left (indentation is lost; note that
%% all three become aligned horizontally)
rewrite(beside(floating(D, H, V),
beside(floating(D2, H1, V1),
D1)),
C2);
#c_float_beside{d = D2, h = H1, v = V1, c = C2}
when V1 /= V ->
%% Align vertically
rewrite(above(floating(D2, H1, V1),
above(floating(D, H, V),
nest(N, D1))),
C2);
#c_float_above_nest{d = D2, h = H1, v = V1,
i = N1, c = C2}
when V1 > V ->
%% Move up (note the indentation)
rewrite(above(nest(N1, floating(D, H, V)),
above(floating(D2, H1, V1),
nest(N + N1, D1))),
C2);
#c_float_above_nest{d = D2, h = H1, v = V1,
i = _N1, c = C2}
when V1 == V, H1 /= H ->
%% Align horizontally
rewrite(beside(
floating(D2, H1, V1),
above(floating(D, H, V),
nest(N, D1))),
C2);
_ ->
rewrite(D1, #c_float_above_nest{d = D, h = H,
v = V, i = N,
c = C1})
end;
#c_fit{c = C1} ->
rewrite(floating(fit(D), H, V), C1);
#c_float_beside{d = D1, h = H1, v = V1, c = C1} ->
if H1 > H ->
%% Swap
rewrite(beside(floating(D, H, V),
floating(D1, H1, V1)),
C1);
V1 /= V ->
%% Align vertically
rewrite(above(floating(D, H, V),
floating(D1, H1, V1)),
C1);
true ->
%% Drop the 'float' wrapper of the rightmost.
rewrite(beside(floating(D1, H1, V1), D), C1)
end;
#c_float_above_nest{d = D1, h = H1, v = V1, i = N,
c = C1} ->
if V1 > V ->
%% Swap (note the indentation)
rewrite(above(nest(N, floating(D, H, V)),
floating(D1, H1, V1)),
C1);
V1 == V, H1 /= H ->
%% Align horizontally
rewrite(beside(floating(D, H, V),
floating(D1, H1, V1)),
C1);
true ->
%% Drop the 'float' wrapper of the lower.
rewrite(above(floating(D1, H1, V1),
nest(N, D)),
C1)
end;
_ ->
%% All other cases simply drop the `float' wrapper.
rewrite(D, C)
end;
rewrite(null, C) ->
case C of
#c_best_nest{} ->
null; % done
#c_above_nest{d = D, i = N, c = C1} ->
rewrite(nest(N, D), C1);
#c_beside{d = D, c = C1} ->
rewrite(D, C1);
#c_text_beside{s = S, c = C1} ->
rewrite(mktext(S), C1);
#c_sep_nest{} ->
%% In a `nest' context, an empty document behaves like
%% the empty string.
rewrite(nil(), C);
#c_best_nest_or{w = W, r = R, i = N} ->
%% An empty document as "nice" as it can be, so we
%% discard the alternative.
rewrite(null, #c_best_nest{w = W, r = R, i = N});
#c_fit{c = C1} ->
rewrite(null, C1); % identity
#c_float_beside{d = D, h = _H, v = _V, c = C1} ->
%% We just remove the float wrapper; cf. below.
rewrite(beside(D, null), C1);
#c_float_above_nest{d = D, h = _H, v = _V, i = N, c = C1} ->
%% It is important that this case just removes the
%% float wrapper; the empty document must be preserved
%% until later, or it will not be useful for forcing
%% line breaks.
rewrite(above(D, nest(N, null)), C1)
end.
%% Both `null' and `empty' are already in use, so what do you do?
nil() ->
text("").
hspace() ->
text([$\s]).
union(D1, D2) ->
#union{d1 = D1, d2 = D2}.
fit(D) ->
#fit{d = D}.
enter_sep(Ds, N, P, C) ->
case Ds of
[D] ->
rewrite(D, C); % Handle this case separately
[D | Ds1] ->
%% Note that we never build a `sep'-context with an
%% empty "tail" list! `Ds1' is nonempty here!
rewrite(D, #c_sep_nest{ds = Ds1, i = N, p = P, c = C})
end.
%% When we expand a `sep', the extra indentation appears as `nest'
%% operators, but not until then.
expand_sep(D, Ds, N) ->
union(fit(horizontal([D | Ds])),
vertical([D | [nest(N, D1) || D1 <- Ds]])).
expand_par(D, [D1 | Ds] = DL, N) ->
union(beside(fit(D),
beside(hspace(),
mksep([fit(D1) | Ds], N - 1, true))),
above(D, nest(N, par(DL)))).
horizontal(Ds) ->
foldr1(fun (D1, D2) ->
beside(D1, beside(hspace(), D2))
end, Ds).
vertical(Ds) ->
foldr1(fun above/2, Ds).
foldr1(_F, [H]) ->
H;
foldr1(F, [H | T]) ->
F(H, foldr1(F, T)).
%% Internal representation of strings; stores the field width and does
%% not perform list concatenation until the text is requested. Strings
%% are thus deep lists whose first element is the length of the string.
%% Null strings are strings whose "official width" is zero, typically
%% used for markup that is not supposed to affect the indentation.
string(S) ->
[strwidth(S) | S].
null_string(S) ->
[0 | S].
concat([_ | []], [_ | _] = S) ->
S;
concat([_ | _] = S, [_ | []]) ->
S;
concat([L1 | S1], [L2 | S2]) ->
[L1 + L2 | [S1 | S2]].
string_chars([_ | S]) ->
S.
width(S) ->
hd(S).
is_empty_string([_ | []]) ->
true;
is_empty_string([_ | _]) ->
false.
%% We need to use `strwidth' instead of list `length', to properly
%% handle Tab characters in the text segments. Note that the width of
%% tabs is hard-coded as 8 character positions, and that strings are
%% individually considered to be aligned at column 0; Tab characters are
%% not really nice to give to a prettyprinter, and this seems to be the
%% best interpretation.
strwidth(S) ->
strwidth(S, 0).
strwidth([$\t | Cs], N) ->
strwidth(Cs, N - (N rem 8) + 8);
strwidth([_ | Cs], N) ->
strwidth(Cs, N + 1);
strwidth([], N) ->
N.
%% =====================================================================