aboutsummaryrefslogtreecommitdiffstats
path: root/erts/emulator/beam/erl_db_catree.h
diff options
context:
space:
mode:
authorKjell Winblad <[email protected]>2018-09-05 21:45:57 +0200
committerKjell Winblad <[email protected]>2018-09-05 21:46:40 +0200
commit2a8e00ad72f5a0a9c73d558f247c23d27d6ffd5b (patch)
treec5fa25cd6618c3aab76ea0676ee9ada87316c8c3 /erts/emulator/beam/erl_db_catree.h
parent26e03d10c6c51868640869da8b091efdeab28bb0 (diff)
downloadotp-2a8e00ad72f5a0a9c73d558f247c23d27d6ffd5b.tar.gz
otp-2a8e00ad72f5a0a9c73d558f247c23d27d6ffd5b.tar.bz2
otp-2a8e00ad72f5a0a9c73d558f247c23d27d6ffd5b.zip
Add a more scalable ETS ordered_set implementation
The current ETS ordered_set implementation can quickly become a scalability bottleneck on multicore machines when an application updates an ordered_set table from concurrent processes [1][2]. The current implementation is based on an AVL tree protected from concurrent writes by a single readers-writer lock. Furthermore, the current implementation has an optimization, called the stack optimization [3], that can improve the performance when only a single process accesses a table but can cause bad scalability even in read-only scenarios. It is possible to pass the option {write_concurrency, true} to ets:new/2 when creating an ETS table of type ordered_set but this option has no effect for tables of type ordered_set without this commit. The new ETS ordered_set implementation, added by this commit, is only activated when one passes the options ordered_set and {write_concurrency, true} to the ets:new/2 function. Thus, the previous ordered_set implementation (from here on called the default implementation) can still be used in applications that do not benefit from the new implementation. The benchmark results on the following web page show that the new implementation is many times faster than the old implementation in some scenarios and that the old implementation is still better than the new implementation in some scenarios. http://winsh.me/ets_catree_benchmark/ets_ca_tree_benchmark_results.html The new implementation is expected to scale better than the default implementation when concurrent processes use the following ETS operations to operate on a table: delete/2, delete_object/2, first/1, insert/2 (single object), insert_new/2 (single object), lookup/2, lookup_element/2, member/2, next/2, take/2 and update_element/3 (single object). Currently, the new implementation does not have scalable support for the other operations (e.g., select/2). However, when these operations are used infrequently, the new implantation may still scale better than the default implementation as the benchmark results at the URL above shows. Description of the New Implementation ---------------------------------- The new implementation is based on a data structure which is called the contention adapting search tree (CA tree for short). The following publication contains a detailed description of the CA tree: A Contention Adapting Approach to Concurrent Ordered Sets Journal of Parallel and Distributed Computing, 2018 Kjell Winblad and Konstantinos Sagonas https://doi.org/10.1016/j.jpdc.2017.11.007 http://www.it.uu.se/research/group/languages/software/ca_tree/catree_proofs.pdf A discussion of how the CA tree can be used as an ETS back-end can be found in another publication [1]. The CA tree is a data structure that dynamically changes its synchronization granularity based on detected contention. Internally, the CA tree uses instances of a sequential data structure to store items. The CA tree implementation contained in this commit uses the same AVL tree implementation as is used for the default ordered set implementation. This AVL tree implementation is reused so that much of the existing code to implement the ETS operations can be reused. Tests ----- The ETS tests in `lib/stdlib/test/ets_SUITE.erl` have been extended to also test the new ordered_set implementation. The function ets_SUITE:throughput_benchmark/0 has also been added to this file. This function can be used to measure and compare the performance of the different ETS table types and options. This function writes benchmark data to standard output that can be visualized by the HTML page `lib/stdlib/test/ets_SUITE_data/visualize_throughput.html`. [1] More Scalable Ordered Set for ETS Using Adaptation. In Thirteenth ACM SIGPLAN workshop on Erlang (2014). Kjell Winblad and Konstantinos Sagonas. https://doi.org/10.1145/2633448.2633455 http://www.it.uu.se/research/group/languages/software/ca_tree/erlang_paper.pdf [2] On the Scalability of the Erlang Term Storage In Twelfth ACM SIGPLAN workshop on Erlang (2013) Kjell Winblad, David Klaftenegger and Konstantinos Sagonas https://doi.org/10.1145/2505305.2505308 http://winsh.me/papers/erlang_workshop_2013.pdf [3] The stack optimization works by keeping one preallocated stack instance in every ordered_set table. This stack is updated so that it contains the search path in some read operations (e.g., ets:next/2). This makes it possible for a subsequent ets:next/2 to avoid traversing some nodes in some cases. Unfortunately, the preallocated stack needs to be flagged so that it is not updated concurrently by several threads which cause bad scalability.
Diffstat (limited to 'erts/emulator/beam/erl_db_catree.h')
-rw-r--r--erts/emulator/beam/erl_db_catree.h91
1 files changed, 91 insertions, 0 deletions
diff --git a/erts/emulator/beam/erl_db_catree.h b/erts/emulator/beam/erl_db_catree.h
new file mode 100644
index 0000000000..1f2c7da091
--- /dev/null
+++ b/erts/emulator/beam/erl_db_catree.h
@@ -0,0 +1,91 @@
+/*
+ * %CopyrightBegin%
+ *
+ * Copyright Ericsson AB 1998-2016. All Rights Reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * %CopyrightEnd%
+ */
+
+/*
+ * Description: Implementation of ETS ordered_set table type with
+ * fine-grained synchronization.
+ *
+ * Author: Kjell Winblad
+ *
+ * "erl_db_catree.c" contains more details about the implementation.
+ *
+ */
+
+#ifndef _DB_CATREE_H
+#define _DB_CATREE_H
+
+struct DbTableCATreeNode;
+
+typedef struct {
+ erts_rwmtx_t lock; /* The lock for this base node */
+ Sint lock_statistics;
+ int is_valid; /* If this base node is still valid */
+ TreeDbTerm *root; /* The root of the sequential tree */
+ DbTable * tab; /* Table ptr, used when freeing using thread progress */
+ ErtsThrPrgrLaterOp free_item; /* Used when freeing using thread progress */
+ struct DbTableCATreeNode * next; /* Used when gradually deleting */
+} DbTableCATreeBaseNode;
+
+typedef struct {
+ ErtsThrPrgrLaterOp free_item; /* Used when freeing using thread progress */
+ DbTable* tab; /* Table ptr, used when freeing using thread progress */
+ erts_mtx_t lock; /* Used when joining route nodes */
+ int is_valid; /* If this route node is still valid */
+ erts_atomic_t left;
+ erts_atomic_t right;
+ DbTerm key;
+} DbTableCATreeRouteNode;
+
+typedef struct DbTableCATreeNode {
+ int is_base_node;
+ union {
+ DbTableCATreeRouteNode route;
+ DbTableCATreeBaseNode base;
+ } baseOrRoute;
+} DbTableCATreeNode;
+
+typedef struct {
+ Uint pos; /* Current position on stack */
+ Uint size; /* The size of the stack array */
+ DbTableCATreeNode** array; /* The stack */
+} CATreeNodeStack;
+
+typedef struct db_table_catree {
+ DbTableCommon common;
+
+ /* CA Tree-specific fields */
+ erts_atomic_t root; /* The tree root (DbTableCATreeNode*) */
+ Uint deletion; /* Being deleted */
+ DbTreeStack free_stack_elems;/* Used for deletion ...*/
+ CATreeNodeStack free_stack_rnodes;
+ DbTableCATreeNode *base_nodes_to_free_list;
+ int is_routing_nodes_freed;
+} DbTableCATree;
+
+void db_initialize_catree(void);
+
+int db_create_catree(Process *p, DbTable *tbl);
+
+
+#ifdef ERTS_ENABLE_LOCK_COUNT
+void erts_lcnt_enable_db_catree_lock_count(DbTableCATree *tb, int enable);
+#endif
+
+#endif /* _DB_CATREE_H */