diff options
author | Björn Gustavsson <[email protected]> | 2018-02-01 08:33:10 +0100 |
---|---|---|
committer | Björn Gustavsson <[email protected]> | 2018-08-24 09:57:06 +0200 |
commit | 6bee2ac7d11668888d93ec4f93730bcae3e5fa79 (patch) | |
tree | df6c6be429ccacfa9c1cf7ea07f890892f73b461 /lib/compiler/src/beam_ssa.erl | |
parent | 004257f6fc1ea9efea1c99a93211e2f39b1d14ad (diff) | |
download | otp-6bee2ac7d11668888d93ec4f93730bcae3e5fa79.tar.gz otp-6bee2ac7d11668888d93ec4f93730bcae3e5fa79.tar.bz2 otp-6bee2ac7d11668888d93ec4f93730bcae3e5fa79.zip |
Introduce a new SSA-based intermediate format
v3_codegen is replaced by three new passes:
* beam_kernel_to_ssa which translates the Kernel Erlang format
to a new SSA-based intermediate format.
* beam_ssa_pre_codegen which prepares the SSA-based format
for code generation, including register allocation. Registers
are allocated using the linear scan algorithm.
* beam_ssa_codegen which generates BEAM assembly code from the
SSA-based format.
It easier and more effective to optimize the SSA-based format before X
and Y registers have been assigned. The current optimization passes
constantly have to make sure no "holes" in the X register assignments
are created (that is, that no X register becomes undefined that an
allocation instruction depends on).
This commit also introduces the following optimizations:
* Replacing of tuple matching of records with the is_tagged_tuple
instruction. (Replacing beam_record.)
* Sinking of get_tuple_element instructions to just before the first
use of the extracted values. As well as potentially avoiding
extracting tuple elements when they are not actually used on all
executions paths, this optimization could also reduce the number
values that will need to be stored in Y registers. (Similar to
beam_reorder, but more effective.)
* Live optimizations, removing the definition of a variable that is
not subsequently used (provided that the operation has no side
effects), as well strength reduction of binary matching by replacing
the extraction of value from a binary with a skip instruction. (Used
to be done by beam_block, beam_utils, and v3_codegen.)
* Removal of redundant bs_restore2 instructions. (Formerly done
by beam_bs.)
* Type-based optimizations across branches. More effective than
the old beam_type pass that only did type-based optimizations in
basic blocks.
* Optimization of floating point instructions. (Formerly done
by beam_type.)
* Optimization of receive statements to introduce recv_mark and
recv_set instructions. More effective with far fewer restrictions
on what instructions are allowed between creating the reference
and entering the receive statement.
* Common subexpression elimination. (Formerly done by beam_block.)
Diffstat (limited to 'lib/compiler/src/beam_ssa.erl')
-rw-r--r-- | lib/compiler/src/beam_ssa.erl | 616 |
1 files changed, 616 insertions, 0 deletions
diff --git a/lib/compiler/src/beam_ssa.erl b/lib/compiler/src/beam_ssa.erl new file mode 100644 index 0000000000..a2766a0501 --- /dev/null +++ b/lib/compiler/src/beam_ssa.erl @@ -0,0 +1,616 @@ +%% +%% %CopyrightBegin% +%% +%% Copyright Ericsson AB 2018. All Rights Reserved. +%% +%% Licensed under the Apache License, Version 2.0 (the "License"); +%% you may not use this file except in compliance with the License. +%% You may obtain a copy of the License at +%% +%% http://www.apache.org/licenses/LICENSE-2.0 +%% +%% Unless required by applicable law or agreed to in writing, software +%% distributed under the License is distributed on an "AS IS" BASIS, +%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +%% See the License for the specific language governing permissions and +%% limitations under the License. +%% +%% %CopyrightEnd% +%% +%% Purpose: Type definitions and utilities for the SSA format. + +-module(beam_ssa). +-export([add_anno/3,get_anno/2, + clobbers_xregs/1,def/2,def_used/2,dominators/1, + flatmapfold_instrs_rpo/4, + fold_po/3,fold_po/4,fold_rpo/3,fold_rpo/4, + fold_instrs_rpo/4, + linearize/1, + mapfold_instrs_rpo/4, + predecessors/1, + rename_vars/3, + rpo/1,rpo/2, + split_blocks/3, + successors/1,successors/2, + update_phi_labels/4,used/1]). + +-export_type([b_module/0,b_function/0,b_blk/0,b_set/0, + b_ret/0,b_br/0,b_switch/0,terminator/0, + b_var/0,b_literal/0,b_remote/0,b_local/0, + value/0,argument/0,label/0, + var_name/0,var_base/0,literal_value/0, + op/0,anno/0,block_map/0]). + +-include("beam_ssa.hrl"). + +-type b_module() :: #b_module{}. +-type b_function() :: #b_function{}. +-type b_blk() :: #b_blk{}. +-type b_set() :: #b_set{}. + +-type b_br() :: #b_br{}. +-type b_ret() :: #b_ret{}. +-type b_switch() :: #b_switch{}. +-type terminator() :: b_br() | b_ret() | b_switch(). + +-type b_var() :: #b_var{}. +-type b_literal() :: #b_literal{}. +-type b_remote() :: #b_remote{}. +-type b_local() :: #b_local{}. + +-type value() :: b_var() | b_literal(). +-type phi_value() :: {value(),label()}. +-type argument() :: value() | b_remote() | b_local() | phi_value(). +-type label() :: non_neg_integer(). + +-type var_name() :: var_base() | {var_base(),non_neg_integer()}. +-type var_base() :: atom() | non_neg_integer(). + +-type literal_value() :: atom() | integer() | float() | list() | + nil() | tuple() | map() | binary(). + +-type op() :: {'bif',atom()} | {'float',float_op()} | prim_op() | cg_prim_op(). +-type anno() :: #{atom() := any()}. + +-type block_map() :: #{label():=b_blk()}. + +%% Note: By default, dialyzer will collapse this type to atom(). +%% To avoid the collapsing, change the value of SET_LIMIT to 50 in the +%% file erl_types.erl in the hipe application. + +-type prim_op() :: 'bs_add' | 'bs_extract' | 'bs_init' | 'bs_init_writable' | + 'bs_match' | 'bs_put' | 'bs_start_match' | 'bs_test_tail' | + 'bs_utf16_size' | 'bs_utf8_size' | 'build_stacktrace' | + 'call' | 'catch_end' | 'context_to_binary' | + 'extract' | + 'get_hd' | 'get_map_element' | 'get_tl' | 'get_tuple_element' | + 'has_map_field' | + 'is_nonempty_list' | 'is_tagged_tuple' | + 'kill_try_tag' | + 'landingpad' | + 'make_fun' | 'new_try_tag' | + 'peek_message' | 'phi' | 'put_list' | 'put_map' | 'put_tuple' | + 'raw_raise' | 'recv_next' | 'remove_message' | 'resume' | + 'set_tuple_element' | 'succeeded' | + 'timeout' | + 'wait' | 'wait_timeout'. + +-type float_op() :: 'checkerror' | 'clearerror' | 'convert' | 'get' | 'put' | + '+' | '-' | '*' | '/'. + +%% Primops only used internally during code generation. +-type cg_prim_op() :: 'bs_get' | 'bs_match_string' | 'bs_restore' | 'bs_skip' | +'copy' | 'put_tuple_arity' | 'put_tuple_element'. + +-import(lists, [foldl/3,mapfoldl/3,reverse/1]). + +-spec add_anno(Key, Value, Construct) -> Construct when + Key :: atom(), + Value :: any(), + Construct :: b_function() | b_blk() | b_set() | terminator(). + +add_anno(Key, Val, #b_function{anno=Anno}=Bl) -> + Bl#b_function{anno=Anno#{Key=>Val}}; +add_anno(Key, Val, #b_blk{anno=Anno}=Bl) -> + Bl#b_blk{anno=Anno#{Key=>Val}}; +add_anno(Key, Val, #b_set{anno=Anno}=Bl) -> + Bl#b_set{anno=Anno#{Key=>Val}}; +add_anno(Key, Val, #b_br{anno=Anno}=Bl) -> + Bl#b_br{anno=Anno#{Key=>Val}}; +add_anno(Key, Val, #b_ret{anno=Anno}=Bl) -> + Bl#b_ret{anno=Anno#{Key=>Val}}; +add_anno(Key, Val, #b_switch{anno=Anno}=Bl) -> + Bl#b_switch{anno=Anno#{Key=>Val}}. + +-spec get_anno(atom(), b_blk()|b_set()|terminator()) -> any(). + +get_anno(Key, Construct) -> + maps:get(Key, get_anno(Construct)). + +get_anno(#b_blk{anno=Anno}) -> Anno; +get_anno(#b_set{anno=Anno}) -> Anno; +get_anno(#b_br{anno=Anno}) -> Anno; +get_anno(#b_ret{anno=Anno}) -> Anno; +get_anno(#b_switch{anno=Anno}) -> Anno. + +%% clobbers_xregs(#b_set{}) -> true|false. +%% Test whether the instruction invalidates all X registers. + +-spec clobbers_xregs(b_set()) -> boolean(). + +clobbers_xregs(#b_set{op=Op}) -> + case Op of + bs_init_writable -> true; + build_stacktrace -> true; + call -> true; + landingpad -> true; + make_fun -> true; + peek_message -> true; + raw_raise -> true; + _ -> false + end. + +-spec predecessors(Blocks) -> #{BlockNumber:=[Predecessor]} when + Blocks :: block_map(), + BlockNumber :: label(), + Predecessor :: label(). + +predecessors(Blocks) -> + P0 = [{S,L} || {L,Blk} <- maps:to_list(Blocks), + S <- successors(Blk)], + P1 = sofs:relation(P0), + P2 = sofs:rel2fam(P1), + P3 = sofs:to_external(P2), + P = [{0,[]}|P3], + maps:from_list(P). + +-spec successors(b_blk()) -> [label()]. + +successors(#b_blk{last=Terminator}) -> + case Terminator of + #b_br{bool=#b_literal{val=true},succ=Succ} -> + [Succ]; + #b_br{bool=#b_literal{val=false},fail=Fail} -> + [Fail]; + #b_br{succ=Succ,fail=Fail} -> + [Fail,Succ]; + #b_switch{fail=Fail,list=List} -> + [Fail|[L || {_,L} <- List]]; + #b_ret{} -> + [] + end. + +-spec successors(label(), block_map()) -> [label()]. + +successors(L, Blocks) -> + successors(maps:get(L, Blocks)). + +-spec def(Ls, Blocks) -> Def when + Ls :: [label()], + Blocks :: block_map(), + Def :: ordsets:ordset(var_name()). + +def(Ls, Blocks) -> + Top = rpo(Ls, Blocks), + Blks = [maps:get(L, Blocks) || L <- Top], + def_1(Blks, []). + +-spec def_used(Ls, Blocks) -> {Def,Used} when + Ls :: [label()], + Blocks :: block_map(), + Def :: ordsets:ordset(var_name()), + Used :: ordsets:ordset(var_name()). + +def_used(Ls, Blocks) -> + Top = rpo(Ls, Blocks), + Blks = [maps:get(L, Blocks) || L <- Top], + Preds = gb_sets:from_list(Top), + def_used_1(Blks, Preds, [], gb_sets:empty()). + +-spec dominators(Blocks) -> Result when + Blocks :: block_map(), + Result :: #{label():=ordsets:ordset(label())}. + +dominators(Blocks) -> + Preds = predecessors(Blocks), + Top0 = rpo(Blocks), + Top = [{L,maps:get(L, Preds)} || L <- Top0], + + %% The flow graph for an Erlang function is reducible, and + %% therefore one traversal in reverse postorder is sufficient. + iter_dominators(Top, #{}). + +-spec fold_instrs_rpo(Fun, From, Acc0, Blocks) -> any() when + Fun :: fun((b_blk()|terminator(), any()) -> any()), + From :: [label()], + Acc0 :: any(), + Blocks :: block_map(). + +fold_instrs_rpo(Fun, From, Acc0, Blocks) -> + Top = rpo(From, Blocks), + fold_instrs_rpo_1(Top, Fun, Blocks, Acc0). + +-spec mapfold_instrs_rpo(Fun, From, Acc0, Blocks0) -> {Blocks,Acc} when + Fun :: fun((b_blk()|terminator(), any()) -> any()), + From :: [label()], + Acc0 :: any(), + Acc :: any(), + Blocks0 :: block_map(), + Blocks :: block_map(). + +mapfold_instrs_rpo(Fun, From, Acc0, Blocks) -> + Top = rpo(From, Blocks), + mapfold_instrs_rpo_1(Top, Fun, Blocks, Acc0). + +-spec flatmapfold_instrs_rpo(Fun, From, Acc0, Blocks0) -> {Blocks,Acc} when + Fun :: fun((b_blk()|terminator(), any()) -> any()), + From :: [label()], + Acc0 :: any(), + Acc :: any(), + Blocks0 :: block_map(), + Blocks :: block_map(). + +flatmapfold_instrs_rpo(Fun, From, Acc0, Blocks) -> + Top = rpo(From, Blocks), + flatmapfold_instrs_rpo_1(Top, Fun, Blocks, Acc0). + +-type fold_fun() :: fun((label(), b_blk(), any()) -> any()). + +%% fold_rpo(Fun, [Label], Acc0, Blocks) -> Acc. +%% Fold over all blocks a reverse postorder traversal of the block +%% graph; that is, first visit a block, then visit its successors. + +-spec fold_rpo(Fun, Acc0, Blocks) -> any() when + Fun :: fold_fun(), + Acc0 :: any(), + Blocks :: #{label():=b_blk()}. + +fold_rpo(Fun, Acc0, Blocks) -> + fold_rpo(Fun, [0], Acc0, Blocks). + +%% fold_rpo(Fun, [Label], Acc0, Blocks) -> Acc. Fold over all blocks +%% reachable from a given set of labels in a reverse postorder +%% traversal of the block graph; that is, first visit a block, then +%% visit its successors. + +-spec fold_rpo(Fun, Labels, Acc0, Blocks) -> any() when + Fun :: fold_fun(), + Labels :: [label()], + Acc0 :: any(), + Blocks :: #{label():=b_blk()}. + +fold_rpo(Fun, From, Acc0, Blocks) -> + Top = rpo(From, Blocks), + fold_rpo_1(Top, Fun, Blocks, Acc0). + +%% fold_po(Fun, Acc0, Blocks) -> Acc. +%% Fold over all blocks in a postorder traversal of the block graph; +%% that is, first visit all successors of block, then the block +%% itself. + +-spec fold_po(Fun, Acc0, Blocks) -> any() when + Fun :: fold_fun(), + Acc0 :: any(), + Blocks :: #{label():=b_blk()}. + +%% fold_po(Fun, From, Acc0, Blocks) -> Acc. +%% Fold over the blocks reachable from the block numbers given +%% by From in a postorder traversal of the block graph. + +fold_po(Fun, Acc0, Blocks) -> + fold_po(Fun, [0], Acc0, Blocks). + +-spec fold_po(Fun, Labels, Acc0, Blocks) -> any() when + Fun :: fold_fun(), + Labels :: [label()], + Acc0 :: any(), + Blocks :: block_map(). + +fold_po(Fun, From, Acc0, Blocks) -> + Top = reverse(rpo(From, Blocks)), + fold_rpo_1(Top, Fun, Blocks, Acc0). + +%% linearize(Blocks) -> [{BlockLabel,#b_blk{}}]. +%% Linearize the intermediate representation of the code. + +-spec linearize(Blocks) -> Linear when + Blocks :: block_map(), + Linear :: [{label(),b_blk()}]. + +linearize(Blocks) -> + Seen = gb_sets:empty(), + {Linear,_} = linearize_1([0], Blocks, Seen, []), + Linear. + +-spec rpo(Blocks) -> [Label] when + Blocks :: block_map(), + Label :: label(). + +rpo(Blocks) -> + rpo([0], Blocks). + +-spec rpo(From, Blocks) -> Labels when + From :: [label()], + Blocks :: block_map(), + Labels :: [label()]. + +rpo(From, Blocks) -> + Seen = gb_sets:empty(), + {Ls,_} = rpo_1(From, Blocks, Seen, []), + Ls. + +-spec rename_vars(Rename, [label()], block_map()) -> block_map() when + Rename :: [{var_name(),value()}] | #{var_name():=value()}. + +rename_vars(Rename, From, Blocks) when is_list(Rename) -> + rename_vars(maps:from_list(Rename), From, Blocks); +rename_vars(Rename, From, Blocks) when is_map(Rename)-> + Top = rpo(From, Blocks), + Preds = gb_sets:from_list(Top), + F = fun(#b_set{op=phi,args=Args0}=Set) -> + Args = rename_phi_vars(Args0, Preds, Rename), + Set#b_set{args=Args}; + (#b_set{args=Args0}=Set) -> + Args = [rename_var(A, Rename) || A <- Args0], + Set#b_set{args=Args}; + (#b_switch{arg=Bool}=Sw) -> + Sw#b_switch{arg=rename_var(Bool, Rename)}; + (#b_br{bool=Bool}=Br) -> + Br#b_br{bool=rename_var(Bool, Rename)}; + (#b_ret{arg=Arg}=Ret) -> + Ret#b_ret{arg=rename_var(Arg, Rename)} + end, + map_instrs_1(Top, F, Blocks). + +%% split_blocks(Predicate, Blocks0, Count0) -> {Blocks,Count}. +%% Call Predicate(Instruction) for each instruction in all +%% blocks. If Predicate/1 returns true, split the block +%% before this instruction. + +-spec split_blocks(Pred, Blocks0, Count0) -> {Blocks,Count} when + Pred :: fun((b_set()) -> boolean()), + Blocks :: block_map(), + Count0 :: beam_ssa:label(), + Blocks0 :: block_map(), + Blocks :: block_map(), + Count :: beam_ssa:label(). + +split_blocks(P, Blocks, Count) -> + Ls = beam_ssa:rpo(Blocks), + split_blocks_1(Ls, P, Blocks, Count). + +%% update_phi_labels([BlockLabel], Old, New, Blocks0) -> Blocks. +%% In the given blocks, replace label Old in with New in all +%% phi nodes. This is useful after merging or splitting +%% blocks. + +-spec update_phi_labels(From, Old, New, Blocks0) -> Blocks when + From :: [label()], + Old :: label(), + New :: label(), + Blocks0 :: block_map(), + Blocks :: block_map(). + +update_phi_labels([L|Ls], Old, New, Blocks0) -> + case Blocks0 of + #{L:=#b_blk{is=[#b_set{op=phi}|_]=Is0}=Blk0} -> + Is = update_phi_labels_is(Is0, Old, New), + Blk = Blk0#b_blk{is=Is}, + Blocks = Blocks0#{L:=Blk}, + update_phi_labels(Ls, Old, New, Blocks); + #{L:=#b_blk{}} -> + %% No phi nodes in this block. + update_phi_labels(Ls, Old, New, Blocks0) + end; +update_phi_labels([], _, _, Blocks) -> Blocks. + +-spec used(b_blk() | b_set() | terminator()) -> [var_name()]. + +used(#b_blk{is=Is,last=Last}) -> + used_1([Last|Is], ordsets:new()); +used(#b_br{bool=#b_var{name=V}}) -> + [V]; +used(#b_ret{arg=#b_var{name=V}}) -> + [V]; +used(#b_set{op=phi,args=Args}) -> + ordsets:from_list([V || {#b_var{name=V},_} <- Args]); +used(#b_set{args=Args}) -> + ordsets:from_list(used_args(Args)); +used(#b_switch{arg=#b_var{name=V}}) -> + [V]; +used(_) -> []. + +%%% +%%% Internal functions. +%%% + +def_used_1([#b_blk{is=Is,last=Last}|Bs], Preds, Def0, Used0) -> + {Def,Used1} = def_used_is(Is, Preds, Def0, Used0), + Used = gb_sets:union(gb_sets:from_list(used(Last)), Used1), + def_used_1(Bs, Preds, Def, Used); +def_used_1([], _Preds, Def, Used) -> + {ordsets:from_list(Def),gb_sets:to_list(Used)}. + +def_used_is([#b_set{op=phi,dst=#b_var{name=Dst},args=Args}|Is], + Preds, Def0, Used0) -> + Def = [Dst|Def0], + %% We must be careful to only include variables that will + %% be used when arriving from one of the predecessor blocks + %% in Preds. + Used1 = [V || {#b_var{name=V},L} <- Args, + gb_sets:is_member(L, Preds)], + Used = gb_sets:union(gb_sets:from_list(Used1), Used0), + def_used_is(Is, Preds, Def, Used); +def_used_is([#b_set{dst=#b_var{name=Dst}}=I|Is], Preds, Def0, Used0) -> + Def = [Dst|Def0], + Used = gb_sets:union(gb_sets:from_list(used(I)), Used0), + def_used_is(Is, Preds, Def, Used); +def_used_is([], _Preds, Def, Used) -> + {Def,Used}. + +def_1([#b_blk{is=Is}|Bs], Def0) -> + Def = def_is(Is, Def0), + def_1(Bs, Def); +def_1([], Def) -> + ordsets:from_list(Def). + +def_is([#b_set{dst=#b_var{name=Dst}}|Is], Def) -> + def_is(Is, [Dst|Def]); +def_is([], Def) -> Def. + +iter_dominators([{0,[]}|Ls], _Doms) -> + Dom = [0], + iter_dominators(Ls, #{0=>Dom}); +iter_dominators([{L,Preds}|Ls], Doms) -> + DomPreds = [maps:get(P, Doms) || P <- Preds, maps:is_key(P, Doms)], + Dom = ordsets:add_element(L, ordsets:intersection(DomPreds)), + iter_dominators(Ls, Doms#{L=>Dom}); +iter_dominators([], Doms) -> Doms. + +fold_rpo_1([L|Ls], Fun, Blocks, Acc0) -> + Block = maps:get(L, Blocks), + Acc = Fun(L, Block, Acc0), + fold_rpo_1(Ls, Fun, Blocks, Acc); +fold_rpo_1([], _, _, Acc) -> Acc. + +fold_instrs_rpo_1([L|Ls], Fun, Blocks, Acc0) -> + #b_blk{is=Is,last=Last} = maps:get(L, Blocks), + Acc1 = foldl(Fun, Acc0, Is), + Acc = Fun(Last, Acc1), + fold_instrs_rpo_1(Ls, Fun, Blocks, Acc); +fold_instrs_rpo_1([], _, _, Acc) -> Acc. + +mapfold_instrs_rpo_1([L|Ls], Fun, Blocks0, Acc0) -> + #b_blk{is=Is0,last=Last0} = Block0 = maps:get(L, Blocks0), + {Is,Acc1} = mapfoldl(Fun, Acc0, Is0), + {Last,Acc} = Fun(Last0, Acc1), + Block = Block0#b_blk{is=Is,last=Last}, + Blocks = maps:put(L, Block, Blocks0), + mapfold_instrs_rpo_1(Ls, Fun, Blocks, Acc); +mapfold_instrs_rpo_1([], _, Blocks, Acc) -> + {Blocks,Acc}. + +flatmapfold_instrs_rpo_1([L|Ls], Fun, Blocks0, Acc0) -> + #b_blk{is=Is0,last=Last0} = Block0 = maps:get(L, Blocks0), + {Is,Acc1} = flatmapfoldl(Fun, Acc0, Is0), + {[Last],Acc} = Fun(Last0, Acc1), + Block = Block0#b_blk{is=Is,last=Last}, + Blocks = maps:put(L, Block, Blocks0), + flatmapfold_instrs_rpo_1(Ls, Fun, Blocks, Acc); +flatmapfold_instrs_rpo_1([], _, Blocks, Acc) -> + {Blocks,Acc}. + +linearize_1([L|Ls], Blocks, Seen0, Acc0) -> + case gb_sets:is_member(L, Seen0) of + true -> + linearize_1(Ls, Blocks, Seen0, Acc0); + false -> + Seen1 = gb_sets:insert(L, Seen0), + Block = maps:get(L, Blocks), + Successors = successors(Block), + {Acc,Seen} = linearize_1(Successors, Blocks, Seen1, Acc0), + linearize_1(Ls, Blocks, Seen, [{L,Block}|Acc]) + end; +linearize_1([], _, Seen, Acc) -> + {Acc,Seen}. + +rpo_1([L|Ls], Blocks, Seen0, Acc0) -> + case gb_sets:is_member(L, Seen0) of + true -> + rpo_1(Ls, Blocks, Seen0, Acc0); + false -> + Block = maps:get(L, Blocks), + Seen1 = gb_sets:insert(L, Seen0), + Successors = successors(Block), + {Acc,Seen} = rpo_1(Successors, Blocks, Seen1, Acc0), + rpo_1(Ls, Blocks, Seen, [L|Acc]) + end; +rpo_1([], _, Seen, Acc) -> + {Acc,Seen}. + +rename_var(#b_var{name=Old}=V, Rename) -> + case Rename of + #{Old:=New} -> New; + #{} -> V + end; +rename_var(#b_remote{mod=Mod0,name=Name0}=Remote, Rename) -> + Mod = rename_var(Mod0, Rename), + Name = rename_var(Name0, Rename), + Remote#b_remote{mod=Mod,name=Name}; +rename_var(Old, _) -> Old. + +rename_phi_vars([{Var,L}|As], Preds, Ren) -> + case gb_sets:is_member(L, Preds) of + true -> + [{rename_var(Var, Ren),L}|rename_phi_vars(As, Preds, Ren)]; + false -> + [{Var,L}|rename_phi_vars(As, Preds, Ren)] + end; +rename_phi_vars([], _, _) -> []. + +map_instrs_1([L|Ls], Fun, Blocks0) -> + #b_blk{is=Is0,last=Last0} = Blk0 = maps:get(L, Blocks0), + Is = [Fun(I) || I <- Is0], + Last = Fun(Last0), + Blk = Blk0#b_blk{is=Is,last=Last}, + Blocks = maps:put(L, Blk, Blocks0), + map_instrs_1(Ls, Fun, Blocks); +map_instrs_1([], _, Blocks) -> Blocks. + +flatmapfoldl(F, Accu0, [Hd|Tail]) -> + {R,Accu1} = F(Hd, Accu0), + {Rs,Accu2} = flatmapfoldl(F, Accu1, Tail), + {R++Rs,Accu2}; +flatmapfoldl(_, Accu, []) -> {[],Accu}. + +split_blocks_1([L|Ls], P, Blocks0, Count0) -> + #b_blk{is=Is0} = Blk = maps:get(L, Blocks0), + case split_blocks_is(Is0, P, []) of + {yes,Bef,Aft} -> + NewLbl = Count0, + Count = Count0 + 1, + Br = #b_br{bool=#b_literal{val=true},succ=NewLbl,fail=NewLbl}, + BefBlk = Blk#b_blk{is=Bef,last=Br}, + NewBlk = Blk#b_blk{is=Aft}, + Blocks1 = Blocks0#{L:=BefBlk,NewLbl=>NewBlk}, + Successors = beam_ssa:successors(NewBlk), + Blocks = beam_ssa:update_phi_labels(Successors, L, NewLbl, Blocks1), + split_blocks_1([NewLbl|Ls], P, Blocks, Count); + no -> + split_blocks_1(Ls, P, Blocks0, Count0) + end; +split_blocks_1([], _, Blocks, Count) -> + {Blocks,Count}. + +split_blocks_is([I|Is], P, []) -> + split_blocks_is(Is, P, [I]); +split_blocks_is([I|Is], P, Acc) -> + case P(I) of + true -> + {yes,reverse(Acc),[I|Is]}; + false -> + split_blocks_is(Is, P, [I|Acc]) + end; +split_blocks_is([], _, _) -> no. + +update_phi_labels_is([#b_set{op=phi,args=Args0}=I0|Is], Old, New) -> + Args = [{Arg,rename_label(Lbl, Old, New)} || {Arg,Lbl} <- Args0], + I = I0#b_set{args=Args}, + [I|update_phi_labels_is(Is, Old, New)]; +update_phi_labels_is(Is, _, _) -> Is. + +rename_label(Old, Old, New) -> New; +rename_label(Lbl, _Old, _New) -> Lbl. + +used_args([#b_var{name=V}|As]) -> + [V|used_args(As)]; +used_args([#b_remote{mod=Mod,name=Name}|As]) -> + used_args([Mod,Name|As]); +used_args([_|As]) -> + used_args(As); +used_args([]) -> []. + +used_1([H|T], Used0) -> + Used = ordsets:union(used(H), Used0), + used_1(T, Used); +used_1([], Used) -> Used. |