aboutsummaryrefslogtreecommitdiffstats
path: root/lib/hipe
diff options
context:
space:
mode:
authorMagnus Lång <[email protected]>2016-02-27 17:56:22 +0100
committerHans Bolinder <[email protected]>2016-04-28 16:14:24 +0200
commit252df5612032cfba71285b5886937e88ba176529 (patch)
treef44ae2d8b8259865111cc47807b18289e096235a /lib/hipe
parentac2f1c71d5b5169d49a5cd5fd73d28a702a58024 (diff)
downloadotp-252df5612032cfba71285b5886937e88ba176529.tar.gz
otp-252df5612032cfba71285b5886937e88ba176529.tar.bz2
otp-252df5612032cfba71285b5886937e88ba176529.zip
erl_types: Add a map type representation
The type of a map is represented as a three-tuple {Pairs, DefaultKey, DefaultValue}. DefaultKey and DefaultValue are types. Pairs is a list of three-tuples {Key, mandatory | optional, Value}, where Key and Value are types. All types Key must be singleton, or "known at compile time," as the EEP put it. Examples: #{integer()=>list()} {[], integer(), list()} #{a=>char(), b=>atom()} {[{a, optional, char()}, {b, optional, atom()}], none(), none()} map() {[], any(), any()} A more formal description of the representation and its invariants can be found in erl_types.erl Special thanks to Daniel S. McCain (@dsmccain) that co-authored a very early version of this with me back in April 2014, although only the singleton type logic remains from that version.
Diffstat (limited to 'lib/hipe')
-rw-r--r--lib/hipe/cerl/erl_types.erl576
1 files changed, 534 insertions, 42 deletions
diff --git a/lib/hipe/cerl/erl_types.erl b/lib/hipe/cerl/erl_types.erl
index fae12d7421..6c4386892d 100644
--- a/lib/hipe/cerl/erl_types.erl
+++ b/lib/hipe/cerl/erl_types.erl
@@ -140,6 +140,8 @@
t_is_port/1, t_is_port/2,
t_is_maybe_improper_list/1, t_is_maybe_improper_list/2,
t_is_reference/1, t_is_reference/2,
+ t_is_singleton/1,
+ t_is_singleton/2,
t_is_string/1,
t_is_subtype/2,
t_is_tuple/1, t_is_tuple/2,
@@ -152,6 +154,11 @@
t_list_termination/1, t_list_termination/2,
t_map/0,
t_map/1,
+ t_map/3,
+ t_map_entries/2, t_map_entries/1,
+ t_map_def_key/2, t_map_def_key/1,
+ t_map_def_val/2, t_map_def_val/1,
+ t_map_put/2, t_map_put/3,
t_matchstate/0,
t_matchstate/2,
t_matchstate_present/1,
@@ -178,6 +185,7 @@
%% t_maybe_improper_list/2,
t_product/1,
t_reference/0,
+ t_singleton_to_term/2,
t_string/0,
t_struct_from_opaque/2,
t_subst/2,
@@ -208,7 +216,8 @@
lift_list_to_pos_empty/1, lift_list_to_pos_empty/2,
is_opaque_type/2,
is_erl_type/1,
- atom_to_string/1
+ atom_to_string/1,
+ map_pairwise_merge/3
]).
%%-define(DO_ERL_TYPES_TEST, true).
@@ -341,7 +350,8 @@
-define(nonempty_list(Types, Term),?list(Types, Term, ?nonempty_qual)).
-define(number(Set, Qualifier), #c{tag=?number_tag, elements=Set,
qualifier=Qualifier}).
--define(map(Pairs), #c{tag=?map_tag, elements=Pairs}).
+-define(map(Pairs,DefKey,DefVal),
+ #c{tag=?map_tag, elements={Pairs,DefKey,DefVal}}).
-define(opaque(Optypes), #c{tag=?opaque_tag, elements=Optypes}).
-define(product(Types), #c{tag=?product_tag, elements=Types}).
-define(tuple(Types, Arity, Qual), #c{tag=?tuple_tag, elements=Types,
@@ -484,9 +494,8 @@ t_contains_opaque(?int_range(_From, _To), _Opaques) -> false;
t_contains_opaque(?int_set(_Set), _Opaques) -> false;
t_contains_opaque(?list(Type, Tail, _), Opaques) ->
t_contains_opaque(Type, Opaques) orelse t_contains_opaque(Tail, Opaques);
-t_contains_opaque(?map(_) = Map, Opaques) ->
- list_contains_opaque(map_values(Map), Opaques) orelse
- list_contains_opaque(map_keys(Map), Opaques);
+t_contains_opaque(?map(_, _, _) = Map, Opaques) ->
+ list_contains_opaque(map_all_types(Map), Opaques);
t_contains_opaque(?matchstate(_P, _Slots), _Opaques) -> false;
t_contains_opaque(?nil, _Opaques) -> false;
t_contains_opaque(?number(_Set, _Tag), _Opaques) -> false;
@@ -1581,16 +1590,107 @@ lift_list_to_pos_empty(?list(Content, Termination, _)) ->
%%-----------------------------------------------------------------------------
%% Maps
%%
+%% Representation:
+%% ?map(Pairs, DefaultKey, DefaultValue)
+%%
+%% Pairs is a sorted dictionary of types with a mandatoriness tag on each pair
+%% (t_map_dict()). DefaultKey and DefaultValue are plain types.
+%%
+%% A map M belongs to this type iff
+%% For each pair {KT, mandatory, VT} in Pairs, there exists a pair {K, V} in M
+%% such that K \in KT and V \in VT.
+%% For each pair {KT, optional, VT} in Pairs, either there exists no key K in
+%% M s.t. K in KT, or there exists a pair {K, V} in M such that K \in KT and
+%% V \in VT.
+%% For each remaining pair {K, V} in M (where remaining means that there is no
+%% key KT in Pairs s.t. K \in KT), K \in DefaultKey and V \in DefaultValue.
+%%
+%% Invariants:
+%% * The keys in Pairs are singleton types.
+%% * The values of Pairs must not be unit, and may only be none if the
+%% mandatoriness tag is 'optional'.
+%% * Optional must contain no pair {K,V} s.t. K is a subtype of DefaultKey and
+%% V is equal to DefaultKey.
+%% * DefaultKey must be the empty type iff DefaultValue is the empty type.
+%% * DefaultKey must not be a singleton type.
+%% * For every key K in Pairs, DefaultKey - K must not be representable; i.e.
+%% t_subtract(DefaultKey, K) must return DefaultKey.
+%% * For every pair {K, 'optional', ?none} in Pairs, K must be a subtype of
+%% DefaultKey.
+%% * Pairs must be sorted and not contain any duplicate keys.
+%%
+%% These invariants ensure that equal map types are represented by equal terms.
+
+-define(mand, mandatory).
+-define(opt, optional).
+
+-type t_map_mandatoriness() :: ?mand | ?opt.
+-type t_map_pair() :: {erl_type(), t_map_mandatoriness(), erl_type()}.
+-type t_map_dict() :: [t_map_pair()].
-spec t_map() -> erl_type().
t_map() ->
- ?map([]).
+ t_map([], t_any(), t_any()).
-spec t_map([{erl_type(), erl_type()}]) -> erl_type().
-t_map(_) ->
- ?map([]).
+t_map(L) ->
+ lists:foldl(fun t_map_put/2, t_map(), L).
+
+-spec t_map(t_map_dict(), erl_type(), erl_type()) -> erl_type().
+
+t_map(Pairs0, DefK0, DefV0) ->
+ DefK1 = lists:foldl(fun({K,_,_},Acc)->t_subtract(Acc,K)end, DefK0, Pairs0),
+ {DefK2, DefV1} =
+ case t_is_none_or_unit(DefK1) orelse t_is_none_or_unit(DefV0) of
+ true -> {?none, ?none};
+ false -> {DefK1, DefV0}
+ end,
+ {Pairs1, DefK, DefV}
+ = case t_is_singleton(DefK2) of
+ true -> {mapdict_insert({DefK2, ?opt, DefV1}, Pairs0), ?none, ?none};
+ false -> {Pairs0, DefK2, DefV1}
+ end,
+ Pairs = normalise_map_optionals(Pairs1, DefK, DefV),
+ %% Validate invariants of the map representation.
+ %% Since we needed to iterate over the arguments in order to normalise anyway,
+ %% we might as well save us some future pain and do this even without
+ %% define(DEBUG, true).
+ try
+ validate_map_elements(Pairs)
+ catch error:badarg -> error(badarg, [Pairs0,DefK0,DefV0]);
+ error:{badarg, E} -> error({badarg, E}, [Pairs0,DefK0,DefV0])
+ end,
+ ?map(Pairs, DefK, DefV).
+
+normalise_map_optionals([], _, _) -> [];
+normalise_map_optionals([E={K,?opt,?none}|T], DefK, DefV) ->
+ Diff = t_subtract(DefK, K),
+ case t_is_subtype(K, DefK) andalso DefK =:= Diff of
+ true -> [E|normalise_map_optionals(T, DefK, DefV)];
+ false -> normalise_map_optionals(T, Diff, DefV)
+ end;
+normalise_map_optionals([E={K,?opt,V}|T], DefK, DefV) ->
+ case t_is_equal(V, DefV) andalso t_is_subtype(K, DefK) of
+ true -> normalise_map_optionals(T, DefK, DefV);
+ false -> [E|normalise_map_optionals(T, DefK, DefV)]
+ end;
+normalise_map_optionals([E|T], DefK, DefV) ->
+ [E|normalise_map_optionals(T, DefK, DefV)].
+
+validate_map_elements([{_,?mand,?none}|_]) -> error({badarg, none_in_mand});
+validate_map_elements([{K1,_,_}|Rest=[{K2,_,_}|_]]) ->
+ case t_is_singleton(K1) andalso K1 < K2 of
+ false -> error(badarg);
+ true -> validate_map_elements(Rest)
+ end;
+validate_map_elements([{K,_,_}]) ->
+ case t_is_singleton(K) of
+ false -> error(badarg);
+ true -> true
+ end;
+validate_map_elements([]) -> true.
-spec t_is_map(erl_type()) -> boolean().
@@ -1602,9 +1702,155 @@ t_is_map(Type) ->
t_is_map(Type, Opaques) ->
do_opaque(Type, Opaques, fun is_map1/1).
-is_map1(?map(_)) -> true;
+is_map1(?map(_, _, _)) -> true;
is_map1(_) -> false.
+-spec t_map_entries(erl_type()) -> t_map_dict().
+
+t_map_entries(M) ->
+ t_map_entries(M, 'universe').
+
+-spec t_map_entries(erl_type(), opaques()) -> t_map_dict().
+
+t_map_entries(M, Opaques) ->
+ do_opaque(M, Opaques, fun map_entries/1).
+
+map_entries(?map(Pairs,_,_)) ->
+ Pairs.
+
+-spec t_map_def_key(erl_type()) -> erl_type().
+
+t_map_def_key(M) ->
+ t_map_def_key(M, 'universe').
+
+-spec t_map_def_key(erl_type(), opaques()) -> erl_type().
+
+t_map_def_key(M, Opaques) ->
+ do_opaque(M, Opaques, fun map_def_key/1).
+
+map_def_key(?map(_,DefK,_)) ->
+ DefK.
+
+-spec t_map_def_val(erl_type()) -> erl_type().
+
+t_map_def_val(M) ->
+ t_map_def_val(M, 'universe').
+
+-spec t_map_def_val(erl_type(), opaques()) -> erl_type().
+
+t_map_def_val(M, Opaques) ->
+ do_opaque(M, Opaques, fun map_def_val/1).
+
+map_def_val(?map(_,_,DefV)) ->
+ DefV.
+
+-spec mapdict_store(t_map_pair(), t_map_dict()) -> t_map_dict().
+
+mapdict_store(E={K,_,_}, [{K,_,_}|T]) -> [E|T];
+mapdict_store(E1={K1,_,_}, [E2={K2,_,_}|T]) when K1 > K2->
+ [E2|mapdict_store(E1, T)];
+mapdict_store(E={_,_,_}, T) -> [E|T].
+
+-spec mapdict_insert(t_map_pair(), t_map_dict()) -> t_map_dict().
+
+mapdict_insert(E={K,_,_}, D=[{K,_,_}|_]) -> error(badarg, [E, D]);
+mapdict_insert(E1={K1,_,_}, [E2={K2,_,_}|T]) when K1 > K2->
+ [E2|mapdict_insert(E1, T)];
+mapdict_insert(E={_,_,_}, T) -> [E|T].
+
+%% Merges the pairs of two maps together. Missing pairs become (?opt, DefV) or
+%% (?opt, ?none), depending on whether K \in DefK.
+-spec map_pairwise_merge(fun((erl_type(),
+ t_map_mandatoriness(), erl_type(),
+ t_map_mandatoriness(), erl_type())
+ -> t_map_pair() | false),
+ erl_type(), erl_type()) -> t_map_dict().
+map_pairwise_merge(F, ?map(APairs, ADefK, ADefV),
+ ?map(BPairs, BDefK, BDefV)) ->
+ map_pairwise_merge(F, APairs, ADefK, ADefV, BPairs, BDefK, BDefV).
+
+map_pairwise_merge(_, [], _, _, [], _, _) -> [];
+map_pairwise_merge(F, As0, ADefK, ADefV, Bs0, BDefK, BDefV) ->
+ case {As0, Bs0} of
+ {[{K,AMNess,AV}|As], [{K, BMNess,BV}|Bs]} -> ok;
+ {[{K,AMNess,AV}|As], [{BK,_, _ }|_]=Bs} when K < BK ->
+ {BMNess, BV} = {?opt, mapmerge_otherv(K, BDefK, BDefV)};
+ {As, [{K, BMNess,BV}|Bs]} ->
+ {AMNess, AV} = {?opt, mapmerge_otherv(K, ADefK, ADefV)};
+ {[{K,AMNess,AV}|As], []=Bs} ->
+ {BMNess, BV} = {?opt, mapmerge_otherv(K, BDefK, BDefV)}
+ end,
+ MK = K, %% Rename to make clear that we are matching below
+ case F(K, AMNess, AV, BMNess, BV) of
+ false -> map_pairwise_merge(F,As,ADefK,ADefV,Bs,BDefK,BDefV);
+ M={MK,_,_} -> [M|map_pairwise_merge(F,As,ADefK,ADefV,Bs,BDefK,BDefV)]
+ end.
+
+%% Folds over the pairs in two maps simultaneously in reverse key order. Missing
+%% pairs become (?opt, DefV) or (?opt, ?none), depending on whether K \in DefK.
+-spec map_pairwise_merge_foldr(fun((erl_type(),
+ t_map_mandatoriness(), erl_type(),
+ t_map_mandatoriness(), erl_type(),
+ Acc) -> Acc),
+ Acc, erl_type(), erl_type()) -> Acc.
+
+map_pairwise_merge_foldr(F, AccIn, ?map(APairs, ADefK, ADefV),
+ ?map(BPairs, BDefK, BDefV)) ->
+ map_pairwise_merge_foldr(F, AccIn, APairs, ADefK, ADefV, BPairs, BDefK, BDefV).
+
+map_pairwise_merge_foldr(_, Acc, [], _, _, [], _, _) -> Acc;
+map_pairwise_merge_foldr(F, AccIn, As0, ADefK, ADefV, Bs0, BDefK, BDefV) ->
+ case {As0, Bs0} of
+ {[{K,AMNess,AV}|As], [{K, BMNess,BV}|Bs]} -> ok;
+ {[{K,AMNess,AV}|As], [{BK,_, _ }|_]=Bs} when K < BK ->
+ {BMNess, BV} = {?opt, mapmerge_otherv(K, BDefK, BDefV)};
+ {As, [{K, BMNess,BV}|Bs]} ->
+ {AMNess, AV} = {?opt, mapmerge_otherv(K, ADefK, ADefV)};
+ {[{K,AMNess,AV}|As], []=Bs} ->
+ {BMNess, BV} = {?opt, mapmerge_otherv(K, BDefK, BDefV)}
+ end,
+ F(K, AMNess, AV, BMNess, BV,
+ map_pairwise_merge_foldr(F,AccIn,As,ADefK,ADefV,Bs,BDefK,BDefV)).
+
+%% By observing that a missing pair in a map is equivalent to an optional pair,
+%% with ?none or DefV value, depending on whether K \in DefK, we can simplify
+%% merging by denormalising the map pairs temporarily, removing all 'false'
+%% cases, at the cost of the creation of more tuples:
+mapmerge_otherv(K, ODefK, ODefV) ->
+ case t_inf(K, ODefK) of
+ ?none -> ?none;
+ K -> ODefV
+ end.
+
+-spec t_map_put({erl_type(), erl_type()}, erl_type()) -> erl_type().
+
+t_map_put(KV, Map) ->
+ t_map_put(KV, Map, 'universe').
+
+-spec t_map_put({erl_type(), erl_type()}, erl_type(), opaques()) -> erl_type().
+
+t_map_put(KV, Map, Opaques) ->
+ do_opaque(Map, Opaques, fun(UM) -> map_put(KV, UM, Opaques) end).
+
+%% Key and Value are *not* unopaqued, but the map is
+map_put(_, ?none, _) -> ?none;
+map_put({Key, Value}, ?map(Pairs,DefK,DefV), Opaques) ->
+ case t_is_none_or_unit(Key) orelse t_is_none_or_unit(Value) of
+ true -> ?none;
+ false ->
+ case t_is_singleton(Key) of
+ true ->
+ t_map(mapdict_store({Key, ?mand, Value}, Pairs), DefK, DefV);
+ false ->
+ t_map([{K, MNess, case t_is_none(t_inf(K, Key, Opaques)) of
+ true -> V;
+ false -> t_sup(V, Value)
+ end} || {K, MNess, V} <- Pairs],
+ t_sup(DefK, Key),
+ t_sup(DefV, Value))
+ end
+ end.
+
%%-----------------------------------------------------------------------------
%% Tuples
%%
@@ -1862,8 +2108,9 @@ t_has_var(?tuple(Elements, _, _)) ->
t_has_var_list(Elements);
t_has_var(?tuple_set(_) = T) ->
t_has_var_list(t_tuple_subtypes(T));
-t_has_var(?map(_)= Map) ->
- t_has_var_list(map_keys(Map)) orelse t_has_var_list(map_values(Map));
+t_has_var(?map(_, DefK, _)= Map) ->
+ t_has_var_list(map_all_values(Map)) orelse
+ t_has_var(DefK);
t_has_var(?opaque(Set)) ->
%% Assume variables in 'args' are also present i 'struct'
t_has_var_list([O#opaque.struct || O <- set_to_list(Set)]);
@@ -1898,9 +2145,9 @@ t_collect_vars(?tuple(Types, _, _), Acc) ->
t_collect_vars_list(Types, Acc);
t_collect_vars(?tuple_set(_) = TS, Acc) ->
t_collect_vars_list(t_tuple_subtypes(TS), Acc);
-t_collect_vars(?map(_) = Map, Acc0) ->
- Acc = t_collect_vars_list(map_keys(Map), Acc0),
- t_collect_vars_list(map_values(Map), Acc);
+t_collect_vars(?map(_, DefK, _) = Map, Acc0) ->
+ Acc = t_collect_vars_list(map_all_values(Map), Acc0),
+ t_collect_vars(DefK, Acc);
t_collect_vars(?opaque(Set), Acc) ->
%% Assume variables in 'args' are also present i 'struct'
t_collect_vars_list([O#opaque.struct || O <- set_to_list(Set)], Acc);
@@ -1935,7 +2182,14 @@ t_from_term(T) when is_function(T) ->
{arity, Arity} = erlang:fun_info(T, arity),
t_fun(Arity, t_any());
t_from_term(T) when is_integer(T) -> t_integer(T);
-t_from_term(T) when is_map(T) -> t_map();
+t_from_term(T) when is_map(T) ->
+ Pairs = [{t_from_term(K), ?mand, t_from_term(V)}
+ || {K, V} <- maps:to_list(T)],
+ {Stons, Rest} = lists:partition(fun({K,_,_}) -> t_is_singleton(K) end, Pairs),
+ {DefK, DefV}
+ = lists:foldl(fun({K,_,V},{AK,AV}) -> {t_sup(K,AK), t_sup(V,AV)} end,
+ {t_none(), t_none()}, Rest),
+ t_map(lists:keysort(1, Stons), DefK, DefV);
t_from_term(T) when is_pid(T) -> t_pid();
t_from_term(T) when is_port(T) -> t_port();
t_from_term(T) when is_reference(T) -> t_reference();
@@ -2225,6 +2479,13 @@ t_sup(?tuple_set(List1), T2 = ?tuple(_, Arity, _)) ->
sup_tuple_sets(List1, [{Arity, [T2]}]);
t_sup(?tuple(_, Arity, _) = T1, ?tuple_set(List2)) ->
sup_tuple_sets([{Arity, [T1]}], List2);
+t_sup(?map(_, ADefK, ADefV) = A, ?map(_, BDefK, BDefV) = B) ->
+ Pairs =
+ map_pairwise_merge(
+ fun(K, MNess, V1, MNess, V2) -> {K, MNess, t_sup(V1, V2)};
+ (K, _, V1, _, V2) -> {K, ?opt, t_sup(V1, V2)}
+ end, A, B),
+ t_map(Pairs, t_sup(ADefK, BDefK), t_sup(ADefV, BDefV));
t_sup(T1, T2) ->
?union(U1) = force_union(T1),
?union(U2) = force_union(T2),
@@ -2343,7 +2604,7 @@ force_union(T = ?list(_, _, _)) -> ?list_union(T);
force_union(T = ?nil) -> ?list_union(T);
force_union(T = ?number(_, _)) -> ?number_union(T);
force_union(T = ?opaque(_)) -> ?opaque_union(T);
-force_union(T = ?map(_)) -> ?map_union(T);
+force_union(T = ?map(_,_,_)) -> ?map_union(T);
force_union(T = ?tuple(_, _, _)) -> ?tuple_union(T);
force_union(T = ?tuple_set(_)) -> ?tuple_union(T);
force_union(T = ?matchstate(_, _)) -> ?matchstate_union(T);
@@ -2380,7 +2641,7 @@ t_elements(?number(_, _) = T) ->
end;
t_elements(?opaque(_) = T) ->
do_elements(T);
-t_elements(?map(_) = T) -> [T];
+t_elements(?map(_,_,_) = T) -> [T];
t_elements(?tuple(_, _, _) = T) -> [T];
t_elements(?tuple_set(_) = TS) ->
case t_tuple_subtypes(TS) of
@@ -2462,6 +2723,25 @@ t_inf(?identifier(Set1), ?identifier(Set2), _Opaques) ->
?none -> ?none;
Set -> ?identifier(Set)
end;
+t_inf(?map(_, ADefK, ADefV) = A, ?map(_, BDefK, BDefV) = B, _Opaques) ->
+ %% Because it simplifies the anonymous function, we allow Pairs to temporarily
+ %% contain mandatory pairs with none values, since all such cases should
+ %% result in a none result.
+ Pairs =
+ map_pairwise_merge(
+ %% For optional keys in both maps, when the infinimum is none, we have
+ %% essentially concluded that K must not be a key in the map.
+ fun(K, ?opt, V1, ?opt, V2) -> {K, ?opt, t_inf(V1, V2)};
+ %% When a key is optional in one map, but mandatory in another, it
+ %% becomes mandatory in the infinumum
+ (K, _, V1, _, V2) -> {K, ?mand, t_inf(V1, V2)}
+ end, A, B),
+ %% If the infinimum of any mandatory values is ?none, the entire map infinimum
+ %% is ?none.
+ case lists:any(fun({_,?mand,?none})->true; ({_,_,_}) -> false end, Pairs) of
+ true -> t_none();
+ false -> t_map(Pairs, t_inf(ADefK, BDefK), t_inf(ADefV, BDefV))
+ end;
t_inf(?matchstate(Pres1, Slots1), ?matchstate(Pres2, Slots2), _Opaques) ->
?matchstate(t_inf(Pres1, Pres2), t_inf(Slots1, Slots2));
t_inf(?nil, ?nil, _Opaques) -> ?nil;
@@ -2970,9 +3250,9 @@ t_subst_dict(?tuple(Elements, _Arity, _Tag), Dict) ->
t_tuple([t_subst_dict(E, Dict) || E <- Elements]);
t_subst_dict(?tuple_set(_) = TS, Dict) ->
t_sup([t_subst_dict(T, Dict) || T <- t_tuple_subtypes(TS)]);
-t_subst_dict(?map(Pairs), Dict) ->
- ?map([{t_subst_dict(K, Dict), t_subst_dict(V, Dict)} ||
- {K, V} <- Pairs]);
+t_subst_dict(?map(Pairs, DefK, DefV), Dict) ->
+ t_map([{K, MNess, t_subst_dict(V, Dict)} || {K, MNess, V} <- Pairs],
+ t_subst_dict(DefK, Dict), t_subst_dict(DefV, Dict));
t_subst_dict(?opaque(Es), Dict) ->
List = [Opaque#opaque{args = [t_subst_dict(Arg, Dict) || Arg <- Args],
struct = t_subst_dict(S, Dict)} ||
@@ -3022,9 +3302,9 @@ t_subst_aux(?tuple(Elements, _Arity, _Tag), VarMap) ->
t_tuple([t_subst_aux(E, VarMap) || E <- Elements]);
t_subst_aux(?tuple_set(_) = TS, VarMap) ->
t_sup([t_subst_aux(T, VarMap) || T <- t_tuple_subtypes(TS)]);
-t_subst_aux(?map(Pairs), VarMap) ->
- ?map([{t_subst_aux(K, VarMap), t_subst_aux(V, VarMap)} ||
- {K, V} <- Pairs]);
+t_subst_aux(?map(Pairs, DefK, DefV), VarMap) ->
+ t_map([{K, MNess, t_subst_aux(V, VarMap)} || {K, MNess, V} <- Pairs],
+ t_subst_aux(DefK, VarMap), t_subst_aux(DefV, VarMap));
t_subst_aux(?opaque(Es), VarMap) ->
List = [Opaque#opaque{args = [t_subst_aux(Arg, VarMap) || Arg <- Args],
struct = t_subst_aux(S, VarMap)} ||
@@ -3104,6 +3384,23 @@ t_unify(?tuple_set(List1) = T1, ?tuple_set(List2) = T2, VarMap) ->
{Tuples, NewVarMap} -> {t_sup(Tuples), NewVarMap}
catch _:_ -> throw({mismatch, T1, T2})
end;
+t_unify(?map(_, ADefK, ADefV) = A, ?map(_, BDefK, BDefV) = B, VarMap0) ->
+ {DefK, VarMap1} = t_unify(ADefK, BDefK, VarMap0),
+ {DefV, VarMap2} = t_unify(ADefV, BDefV, VarMap1),
+ {Pairs, VarMap} =
+ map_pairwise_merge_foldr(
+ fun(K, MNess, V1, MNess, V2, {Pairs0, VarMap3}) ->
+ %% We know that the keys unify and do not contain variables, or they
+ %% would not be singletons
+ %% TODO: Should V=?none (known missing keys) be handled special?
+ {V, VarMap4} = t_unify(V1, V2, VarMap3),
+ {[{K,MNess,V}|Pairs0], VarMap4};
+ (K, _, V1, _, V2, {Pairs0, VarMap3}) ->
+ %% One mandatory and one optional; what should be done in this case?
+ {V, VarMap4} = t_unify(V1, V2, VarMap3),
+ {[{K,?mand,V}|Pairs0], VarMap4}
+ end, {[], VarMap2}, A, B),
+ {t_map(Pairs, DefK, DefV), VarMap};
t_unify(?opaque(_) = T1, ?opaque(_) = T2, VarMap) ->
t_unify(t_opaque_structure(T1), t_opaque_structure(T2), VarMap);
t_unify(T1, ?opaque(_) = T2, VarMap) ->
@@ -3460,8 +3757,50 @@ t_subtract(?product(Elements1) = T1, ?product(Elements2)) ->
_ -> T1
end
end;
-t_subtract(?map(_) = T, _) -> % XXX: very crude; will probably need refinement
- T;
+t_subtract(?map(APairs, ADefK, ADefV) = A, ?map(_, BDefK, BDefV) = B) ->
+ case t_is_subtype(ADefK, BDefK) andalso t_is_subtype(ADefV, BDefV) of
+ false -> A;
+ true ->
+ %% We fold over the maps to produce a list of constraints, where
+ %% constraints are additional key-value pairs to put in Pairs. Only one
+ %% constraint need to be applied to produce a type that excludes the
+ %% right-hand-side type, so if more than one constraint is produced, we
+ %% just return the left-hand-side argument.
+ %%
+ %% Each case of the fold may either conclude that
+ %% * The arguments constrain A at least as much as B, i.e. that A so far
+ %% is a subtype of B. In that case they return false
+ %% * That for the particular arguments, A being a subtype of B does not
+ %% hold, but the infinimum of A and B is nonempty, and by narrowing a
+ %% pair in A, we can create a type that excludes some elements in the
+ %% infinumum. In that case, they will return that pair.
+ %% * That for the particular arguments, A being a subtype of B does not
+ %% hold, and either the infinumum of A and B is empty, or it is not
+ %% possible with the current representation to create a type that
+ %% excludes elements from B without also excluding elements that are
+ %% only in A. In that case, it will return the pair from A unchanged.
+ case
+ map_pairwise_merge(
+ %% If V1 is a subtype of V2, the case that K does not exist in A
+ %% remain.
+ fun(K, ?opt, V1, ?mand, V2) -> {K, ?opt, t_subtract(V1, V2)};
+ (K, _, V1, _, V2) ->
+ %% If we subtract an optional key, that leaves a mandatory key
+ case t_subtract(V1, V2) of
+ ?none -> false;
+ Partial -> {K, ?mand, Partial}
+ end
+ end, A, B)
+ of
+ %% We produce a list of keys that are constrained. As only one of
+ %% these should apply at a time, we can't represent the difference if
+ %% more than one constraint is produced. If we applied all of them,
+ %% that would make an underapproximation, which we must not do.
+ [] -> ?none; %% A is a subtype of B
+ [E] -> t_map(mapdict_store(E, APairs), ADefK, ADefV);
+ _ -> A
+ end
+ end;
t_subtract(?product(P1), _) ->
?product(P1);
t_subtract(T, ?product(_)) ->
@@ -3622,12 +3961,17 @@ t_unopaque(?union([A,B,F,I,L,N,T,M,O,Map]), Opaques) ->
UL = t_unopaque(L, Opaques),
UT = t_unopaque(T, Opaques),
UF = t_unopaque(F, Opaques),
+ UM = t_unopaque(M, Opaques),
UMap = t_unopaque(Map, Opaques),
{OF,UO} = case t_unopaque(O, Opaques) of
?opaque(_) = O1 -> {O1, []};
Type -> {?none, [Type]}
end,
- t_sup([?union([A,B,UF,I,UL,N,UT,M,OF,UMap])|UO]);
+ t_sup([?union([A,B,UF,I,UL,N,UT,UM,OF,UMap])|UO]);
+t_unopaque(?map(Pairs,DefK,DefV), Opaques) ->
+ t_map([{K, MNess, t_unopaque(V, Opaques)} || {K, MNess, V} <- Pairs],
+ t_unopaque(DefK, Opaques),
+ t_unopaque(DefV, Opaques));
t_unopaque(T, _) ->
T.
@@ -3679,6 +4023,16 @@ t_limit_k(?opaque(Es), K) ->
Opaque#opaque{struct = NewS}
end || #opaque{struct = S} = Opaque <- set_to_list(Es)],
?opaque(ordsets:from_list(List));
+t_limit_k(?map(Pairs0, DefK0, DefV0), K) ->
+ Fun = fun({EK, MNess, EV}, {Exact, DefK1, DefV1}) ->
+ LV = t_limit_k(EV, K - 1),
+ case t_limit_k(EK, K - 1) of
+ EK -> {[{EK,MNess,LV}|Exact], DefK1, DefV1};
+ LK -> {Exact, t_sup(LK, DefK1), t_sup(LV, DefV1)}
+ end
+ end,
+ {Pairs, DefK2, DefV2} = lists:foldr(Fun, {[], DefK0, DefV0}, Pairs0),
+ t_map(Pairs, t_limit_k(DefK2, K - 1), t_limit_k(DefV2, K - 1));
t_limit_k(T, _K) -> T.
%%============================================================================
@@ -3753,6 +4107,9 @@ t_map(Fun, ?opaque(Set)) ->
[] -> ?none;
_ -> ?opaque(ordsets:from_list(L))
end);
+t_map(Fun, ?map(Pairs,DefK,DefV)) ->
+ %% TODO:
+ Fun(t_map(Pairs, Fun(DefK), Fun(DefV)));
t_map(Fun, T) ->
Fun(T).
@@ -3894,8 +4251,23 @@ t_to_string(?float, _RecDict) -> "float()";
t_to_string(?number(?any, ?unknown_qual), _RecDict) -> "number()";
t_to_string(?product(List), RecDict) ->
"<" ++ comma_sequence(List, RecDict) ++ ">";
-t_to_string(?map(Pairs), RecDict) ->
- "#{" ++ map_pairs_to_string(Pairs,RecDict) ++ "}";
+t_to_string(?map([],?any,?any), _RecDict) -> "map()";
+t_to_string(?map(Pairs0,DefK,DefV), RecDict) ->
+ {Pairs, ExtraEl} =
+ case {DefK, DefV} of
+ {?none, ?none} -> {Pairs0, []};
+ {?any, ?any} -> {Pairs0, ["..."]};
+ _ -> {Pairs0 ++ [{DefK,?opt,DefV}], []}
+ end,
+ Tos = fun(T) -> case T of
+ ?any -> "_";
+ _ -> t_to_string(T, RecDict)
+ end end,
+ StrMand = [{Tos(K),Tos(V)}||{K,?mand,V}<-Pairs],
+ StrOpt = [{Tos(K),Tos(V)}||{K,?opt,V}<-Pairs],
+ "#{" ++ string:join([K ++ ":=" ++ V||{K,V}<-StrMand]
+ ++ [K ++ "=>" ++ V||{K,V}<-StrOpt]
+ ++ ExtraEl, ", ") ++ "}";
t_to_string(?tuple(?any, ?any, ?any), _RecDict) -> "tuple()";
t_to_string(?tuple(Elements, _Arity, ?any), RecDict) ->
"{" ++ comma_sequence(Elements, RecDict) ++ "}";
@@ -3916,12 +4288,6 @@ t_to_string(?var(Id), _RecDict) when is_integer(Id) ->
flat_format("var(~w)", [Id]).
-map_pairs_to_string([],_) -> [];
-map_pairs_to_string(Pairs,RecDict) ->
- StrPairs = [{t_to_string(K,RecDict),t_to_string(V,RecDict)}||{K,V}<-Pairs],
- string:join([K ++ "=>" ++ V||{K,V}<-StrPairs], ", ").
-
-
record_to_string(Tag, [_|Fields], FieldNames, RecDict) ->
FieldStrings = record_fields_to_string(Fields, FieldNames, RecDict, []),
"#" ++ atom_to_string(Tag) ++ "{" ++ string:join(FieldStrings, ",") ++ "}".
@@ -4164,8 +4530,26 @@ t_from_form({type, _L, list, []}, _TypeNames, _ET, _S, _MR, _V, _D, L) ->
t_from_form({type, _L, list, [Type]}, TypeNames, ET, S, MR, V, D, L) ->
{T, L1} = t_from_form(Type, TypeNames, ET, S, MR, V, D - 1, L - 1),
{t_list(T), L1};
-t_from_form({type, _L, map, _}, TypeNames, ET, S, MR, V, D, L) ->
- builtin_type(map, t_map([]), TypeNames, ET, S, MR, V, D, L);
+t_from_form({type, _L, map, any}, TypeNames, ET, S, MR, V, D, L) ->
+ builtin_type(map, t_map(), TypeNames, ET, S, MR, V, D, L);
+t_from_form({type, _L, map, List}, TypeNames, ET, S, MR, V, D, L) ->
+ {Pairs1, L5} =
+ fun PairsFromForm(_, L1) when L1 =< 0 -> {[{?any,?opt,?any}], L1};
+ PairsFromForm([], L1) -> {[], L1};
+ PairsFromForm([{type, _, Oper, [KF, VF]}|T], L1) ->
+ {Key, L2} = t_from_form(KF, TypeNames, ET, S, MR, V, D - 1, L1),
+ {Val, L3} = t_from_form(VF, TypeNames, ET, S, MR, V, D - 1, L2),
+ {Pairs0, L4} = PairsFromForm(T, L3 - 1),
+ case Oper of
+ map_field_assoc -> {[{Key,?opt, Val}|Pairs0], L4};
+ map_field_exact -> {[{Key,?mand,Val}|Pairs0], L4}
+ end
+ end(List, L),
+ try
+ {Pairs, DefK, DefV} = map_from_form(Pairs1, [], [], [], ?none, ?none),
+ {t_map(Pairs, DefK, DefV), L5}
+ catch none -> {t_none(), L5}
+ end;
t_from_form({type, _L, mfa, []}, _TypeNames, _ET, _S, _MR, _V, _D, L) ->
{t_mfa(), L};
t_from_form({type, _L, module, []}, _TypeNames, _ET, _S, _MR, _V, _D, L) ->
@@ -4495,6 +4879,50 @@ list_from_form([H|Tail], TypeNames, ET, S, MR, V, D, L) ->
{T1, L2} = list_from_form(Tail, TypeNames, ET, S, MR, V, D, L1),
{[H1|T1], L2}.
+%% Sorts, combines non-singleton pairs, and applies precendence and
+%% mandatoriness rules.
+map_from_form([], ShdwPs, MKs, Pairs, DefK, DefV) ->
+ verify_possible(MKs, ShdwPs),
+ {promote_to_mand(MKs, Pairs), DefK, DefV};
+map_from_form([{SKey,MNess,Val}|SPairs], ShdwPs0, MKs0, Pairs0, DefK0, DefV0) ->
+ Key = lists:foldl(fun({K,_},S)->t_subtract(S,K)end, SKey, ShdwPs0),
+ ShdwPs = case Key of ?none -> ShdwPs0; _ -> [{Key,Val}|ShdwPs0] end,
+ MKs = case MNess of ?mand -> [SKey|MKs0]; ?opt -> MKs0 end,
+ if MNess =:= ?mand, SKey =:= ?none -> throw(none);
+ true -> ok
+ end,
+ {Pairs, DefK, DefV} =
+ case t_is_singleton(Key) of
+ true ->
+ MNess1 = case Val =:= ?none of true -> ?opt; false -> MNess end,
+ {mapdict_insert({Key,MNess1,Val}, Pairs0), DefK0, DefV0};
+ false ->
+ case Key =:= ?none orelse Val =:= ?none of
+ true -> {Pairs0, DefK0, DefV0};
+ false -> {Pairs0, t_sup(DefK0, Key), t_sup(DefV0, Val)}
+ end
+ end,
+ map_from_form(SPairs, ShdwPs, MKs, Pairs, DefK, DefV).
+
+%% Verifies that all mandatory keys are possible, throws 'none' otherwise
+verify_possible(MKs, ShdwPs) ->
+ lists:foreach(fun(M) -> verify_possible_1(M, ShdwPs) end, MKs).
+
+verify_possible_1(M, ShdwPs) ->
+ case lists:any(fun({K,_}) -> t_inf(M, K) =/= ?none end, ShdwPs) of
+ true -> ok;
+ false -> throw(none)
+ end.
+
+-spec promote_to_mand([erl_type()], t_map_dict()) -> t_map_dict().
+
+promote_to_mand(_, []) -> [];
+promote_to_mand(MKs, [E={K,_,V}|T]) ->
+ [case lists:any(fun(M) -> t_is_equal(K,M) end, MKs) of
+ true -> {K, ?mand, V};
+ false -> E
+ end|promote_to_mand(MKs, T)].
+
-spec t_check_record_fields(parse_form(), sets:set(mfa()), site(),
mod_records()) -> ok.
@@ -4627,8 +5055,13 @@ t_form_to_string({type, _L, iodata, []}) -> "iodata()";
t_form_to_string({type, _L, iolist, []}) -> "iolist()";
t_form_to_string({type, _L, list, [Type]}) ->
"[" ++ t_form_to_string(Type) ++ "]";
-t_form_to_string({type, _L, map, _}) ->
- "#{}";
+t_form_to_string({type, _L, map, any}) -> "map()";
+t_form_to_string({type, _L, map, Args}) ->
+ "#{" ++ string:join(t_form_to_string_list(Args), ",") ++ "}";
+t_form_to_string({type, _L, map_field_assoc, [Key, Val]}) ->
+ t_form_to_string(Key) ++ "=>" ++ t_form_to_string(Val);
+t_form_to_string({type, _L, map_field_exact, [Key, Val]}) ->
+ t_form_to_string(Key) ++ ":=" ++ t_form_to_string(Val);
t_form_to_string({type, _L, mfa, []}) -> "mfa()";
t_form_to_string({type, _L, module, []}) -> "module()";
t_form_to_string({type, _L, node, []}) -> "node()";
@@ -4789,11 +5222,70 @@ do_opaque(?union(List) = Type, Opaques, Pred) ->
do_opaque(Type, _Opaques, Pred) ->
Pred(Type).
-map_keys(?map(Pairs)) ->
- [K || {K, _} <- Pairs].
+map_all_values(?map(Pairs,_,DefV)) ->
+ [DefV|[V || {V, _, _} <- Pairs]].
+
+map_all_keys(?map(Pairs,DefK,_)) ->
+ [DefK|[K || {_, _, K} <- Pairs]].
+
+map_all_types(M) ->
+ map_all_keys(M) ++ map_all_values(M).
+
+%% Tests if a type has exactly one possible value.
+-spec t_is_singleton(erl_type()) -> boolean().
+
+t_is_singleton(Type) ->
+ t_is_singleton(Type, 'universe').
+
+-spec t_is_singleton(erl_type(), opaques()) -> boolean().
+
+t_is_singleton(Type, Opaques) ->
+ do_opaque(Type, Opaques, fun is_singleton_type/1).
+
+%% Incomplete; not all representable singleton types are included.
+is_singleton_type(?nil) -> true;
+is_singleton_type(?atom(?any)) -> false;
+is_singleton_type(?atom(Set)) ->
+ ordsets:size(Set) =:= 1;
+is_singleton_type(?int_range(V, V)) -> true;
+is_singleton_type(?int_set(Set)) ->
+ ordsets:size(Set) =:= 1;
+is_singleton_type(?tuple(Types, Arity, _)) when is_integer(Arity) ->
+ lists:all(fun is_singleton_type/1, Types);
+is_singleton_type(?tuple_set([{Arity, [OnlyTuple]}])) when is_integer(Arity) ->
+ is_singleton_type(OnlyTuple);
+is_singleton_type(?map(Pairs, ?none, ?none)) ->
+ lists:all(fun({_,MNess,V}) -> MNess =:= ?mand andalso is_singleton_type(V)
+ end, Pairs);
+is_singleton_type(_) ->
+ false.
-map_values(?map(Pairs)) ->
- [V || {_, V} <- Pairs].
+%% Returns the only possible value of a singleton type.
+-spec t_singleton_to_term(erl_type(), opaques()) -> term().
+
+t_singleton_to_term(Type, Opaques) ->
+ do_opaque(Type, Opaques, fun singleton_type_to_term/1).
+
+singleton_type_to_term(?nil) -> [];
+singleton_type_to_term(?atom(Set)) when Set =/= ?any ->
+ case ordsets:size(Set) of
+ 1 -> hd(ordsets:to_list(Set));
+ _ -> error(badarg)
+ end;
+singleton_type_to_term(?int_range(V, V)) -> V;
+singleton_type_to_term(?int_set(Set)) ->
+ case ordsets:size(Set) of
+ 1 -> hd(ordsets:to_list(Set));
+ _ -> error(badarg)
+ end;
+singleton_type_to_term(?tuple(Types, Arity, _)) when is_integer(Arity) ->
+ lists:map(fun singleton_type_to_term/1, Types);
+singleton_type_to_term(?tuple_set([{Arity, [OnlyTuple]}]))
+ when is_integer(Arity) ->
+ singleton_type_to_term(OnlyTuple);
+singleton_type_to_term(?map(Pairs, ?none, ?none)) ->
+ maps:from_list([{singleton_type_to_term(K), singleton_type_to_term(V)}
+ || {K,?mand,V} <- Pairs]).
%% -----------------------------------
%% Set