diff options
author | Magnus Lång <[email protected]> | 2016-02-27 17:56:22 +0100 |
---|---|---|
committer | Hans Bolinder <[email protected]> | 2016-04-28 16:14:24 +0200 |
commit | 252df5612032cfba71285b5886937e88ba176529 (patch) | |
tree | f44ae2d8b8259865111cc47807b18289e096235a /lib/hipe | |
parent | ac2f1c71d5b5169d49a5cd5fd73d28a702a58024 (diff) | |
download | otp-252df5612032cfba71285b5886937e88ba176529.tar.gz otp-252df5612032cfba71285b5886937e88ba176529.tar.bz2 otp-252df5612032cfba71285b5886937e88ba176529.zip |
erl_types: Add a map type representation
The type of a map is represented as a three-tuple {Pairs, DefaultKey,
DefaultValue}. DefaultKey and DefaultValue are types. Pairs is a list of
three-tuples {Key, mandatory | optional, Value}, where Key and Value are
types. All types Key must be singleton, or "known at compile time," as
the EEP put it. Examples:
#{integer()=>list()} {[], integer(), list()}
#{a=>char(), b=>atom()} {[{a, optional, char()},
{b, optional, atom()}],
none(), none()}
map() {[], any(), any()}
A more formal description of the representation and its invariants can
be found in erl_types.erl
Special thanks to Daniel S. McCain (@dsmccain) that co-authored a very
early version of this with me back in April 2014, although only the
singleton type logic remains from that version.
Diffstat (limited to 'lib/hipe')
-rw-r--r-- | lib/hipe/cerl/erl_types.erl | 576 |
1 files changed, 534 insertions, 42 deletions
diff --git a/lib/hipe/cerl/erl_types.erl b/lib/hipe/cerl/erl_types.erl index fae12d7421..6c4386892d 100644 --- a/lib/hipe/cerl/erl_types.erl +++ b/lib/hipe/cerl/erl_types.erl @@ -140,6 +140,8 @@ t_is_port/1, t_is_port/2, t_is_maybe_improper_list/1, t_is_maybe_improper_list/2, t_is_reference/1, t_is_reference/2, + t_is_singleton/1, + t_is_singleton/2, t_is_string/1, t_is_subtype/2, t_is_tuple/1, t_is_tuple/2, @@ -152,6 +154,11 @@ t_list_termination/1, t_list_termination/2, t_map/0, t_map/1, + t_map/3, + t_map_entries/2, t_map_entries/1, + t_map_def_key/2, t_map_def_key/1, + t_map_def_val/2, t_map_def_val/1, + t_map_put/2, t_map_put/3, t_matchstate/0, t_matchstate/2, t_matchstate_present/1, @@ -178,6 +185,7 @@ %% t_maybe_improper_list/2, t_product/1, t_reference/0, + t_singleton_to_term/2, t_string/0, t_struct_from_opaque/2, t_subst/2, @@ -208,7 +216,8 @@ lift_list_to_pos_empty/1, lift_list_to_pos_empty/2, is_opaque_type/2, is_erl_type/1, - atom_to_string/1 + atom_to_string/1, + map_pairwise_merge/3 ]). %%-define(DO_ERL_TYPES_TEST, true). @@ -341,7 +350,8 @@ -define(nonempty_list(Types, Term),?list(Types, Term, ?nonempty_qual)). -define(number(Set, Qualifier), #c{tag=?number_tag, elements=Set, qualifier=Qualifier}). --define(map(Pairs), #c{tag=?map_tag, elements=Pairs}). +-define(map(Pairs,DefKey,DefVal), + #c{tag=?map_tag, elements={Pairs,DefKey,DefVal}}). -define(opaque(Optypes), #c{tag=?opaque_tag, elements=Optypes}). -define(product(Types), #c{tag=?product_tag, elements=Types}). -define(tuple(Types, Arity, Qual), #c{tag=?tuple_tag, elements=Types, @@ -484,9 +494,8 @@ t_contains_opaque(?int_range(_From, _To), _Opaques) -> false; t_contains_opaque(?int_set(_Set), _Opaques) -> false; t_contains_opaque(?list(Type, Tail, _), Opaques) -> t_contains_opaque(Type, Opaques) orelse t_contains_opaque(Tail, Opaques); -t_contains_opaque(?map(_) = Map, Opaques) -> - list_contains_opaque(map_values(Map), Opaques) orelse - list_contains_opaque(map_keys(Map), Opaques); +t_contains_opaque(?map(_, _, _) = Map, Opaques) -> + list_contains_opaque(map_all_types(Map), Opaques); t_contains_opaque(?matchstate(_P, _Slots), _Opaques) -> false; t_contains_opaque(?nil, _Opaques) -> false; t_contains_opaque(?number(_Set, _Tag), _Opaques) -> false; @@ -1581,16 +1590,107 @@ lift_list_to_pos_empty(?list(Content, Termination, _)) -> %%----------------------------------------------------------------------------- %% Maps %% +%% Representation: +%% ?map(Pairs, DefaultKey, DefaultValue) +%% +%% Pairs is a sorted dictionary of types with a mandatoriness tag on each pair +%% (t_map_dict()). DefaultKey and DefaultValue are plain types. +%% +%% A map M belongs to this type iff +%% For each pair {KT, mandatory, VT} in Pairs, there exists a pair {K, V} in M +%% such that K \in KT and V \in VT. +%% For each pair {KT, optional, VT} in Pairs, either there exists no key K in +%% M s.t. K in KT, or there exists a pair {K, V} in M such that K \in KT and +%% V \in VT. +%% For each remaining pair {K, V} in M (where remaining means that there is no +%% key KT in Pairs s.t. K \in KT), K \in DefaultKey and V \in DefaultValue. +%% +%% Invariants: +%% * The keys in Pairs are singleton types. +%% * The values of Pairs must not be unit, and may only be none if the +%% mandatoriness tag is 'optional'. +%% * Optional must contain no pair {K,V} s.t. K is a subtype of DefaultKey and +%% V is equal to DefaultKey. +%% * DefaultKey must be the empty type iff DefaultValue is the empty type. +%% * DefaultKey must not be a singleton type. +%% * For every key K in Pairs, DefaultKey - K must not be representable; i.e. +%% t_subtract(DefaultKey, K) must return DefaultKey. +%% * For every pair {K, 'optional', ?none} in Pairs, K must be a subtype of +%% DefaultKey. +%% * Pairs must be sorted and not contain any duplicate keys. +%% +%% These invariants ensure that equal map types are represented by equal terms. + +-define(mand, mandatory). +-define(opt, optional). + +-type t_map_mandatoriness() :: ?mand | ?opt. +-type t_map_pair() :: {erl_type(), t_map_mandatoriness(), erl_type()}. +-type t_map_dict() :: [t_map_pair()]. -spec t_map() -> erl_type(). t_map() -> - ?map([]). + t_map([], t_any(), t_any()). -spec t_map([{erl_type(), erl_type()}]) -> erl_type(). -t_map(_) -> - ?map([]). +t_map(L) -> + lists:foldl(fun t_map_put/2, t_map(), L). + +-spec t_map(t_map_dict(), erl_type(), erl_type()) -> erl_type(). + +t_map(Pairs0, DefK0, DefV0) -> + DefK1 = lists:foldl(fun({K,_,_},Acc)->t_subtract(Acc,K)end, DefK0, Pairs0), + {DefK2, DefV1} = + case t_is_none_or_unit(DefK1) orelse t_is_none_or_unit(DefV0) of + true -> {?none, ?none}; + false -> {DefK1, DefV0} + end, + {Pairs1, DefK, DefV} + = case t_is_singleton(DefK2) of + true -> {mapdict_insert({DefK2, ?opt, DefV1}, Pairs0), ?none, ?none}; + false -> {Pairs0, DefK2, DefV1} + end, + Pairs = normalise_map_optionals(Pairs1, DefK, DefV), + %% Validate invariants of the map representation. + %% Since we needed to iterate over the arguments in order to normalise anyway, + %% we might as well save us some future pain and do this even without + %% define(DEBUG, true). + try + validate_map_elements(Pairs) + catch error:badarg -> error(badarg, [Pairs0,DefK0,DefV0]); + error:{badarg, E} -> error({badarg, E}, [Pairs0,DefK0,DefV0]) + end, + ?map(Pairs, DefK, DefV). + +normalise_map_optionals([], _, _) -> []; +normalise_map_optionals([E={K,?opt,?none}|T], DefK, DefV) -> + Diff = t_subtract(DefK, K), + case t_is_subtype(K, DefK) andalso DefK =:= Diff of + true -> [E|normalise_map_optionals(T, DefK, DefV)]; + false -> normalise_map_optionals(T, Diff, DefV) + end; +normalise_map_optionals([E={K,?opt,V}|T], DefK, DefV) -> + case t_is_equal(V, DefV) andalso t_is_subtype(K, DefK) of + true -> normalise_map_optionals(T, DefK, DefV); + false -> [E|normalise_map_optionals(T, DefK, DefV)] + end; +normalise_map_optionals([E|T], DefK, DefV) -> + [E|normalise_map_optionals(T, DefK, DefV)]. + +validate_map_elements([{_,?mand,?none}|_]) -> error({badarg, none_in_mand}); +validate_map_elements([{K1,_,_}|Rest=[{K2,_,_}|_]]) -> + case t_is_singleton(K1) andalso K1 < K2 of + false -> error(badarg); + true -> validate_map_elements(Rest) + end; +validate_map_elements([{K,_,_}]) -> + case t_is_singleton(K) of + false -> error(badarg); + true -> true + end; +validate_map_elements([]) -> true. -spec t_is_map(erl_type()) -> boolean(). @@ -1602,9 +1702,155 @@ t_is_map(Type) -> t_is_map(Type, Opaques) -> do_opaque(Type, Opaques, fun is_map1/1). -is_map1(?map(_)) -> true; +is_map1(?map(_, _, _)) -> true; is_map1(_) -> false. +-spec t_map_entries(erl_type()) -> t_map_dict(). + +t_map_entries(M) -> + t_map_entries(M, 'universe'). + +-spec t_map_entries(erl_type(), opaques()) -> t_map_dict(). + +t_map_entries(M, Opaques) -> + do_opaque(M, Opaques, fun map_entries/1). + +map_entries(?map(Pairs,_,_)) -> + Pairs. + +-spec t_map_def_key(erl_type()) -> erl_type(). + +t_map_def_key(M) -> + t_map_def_key(M, 'universe'). + +-spec t_map_def_key(erl_type(), opaques()) -> erl_type(). + +t_map_def_key(M, Opaques) -> + do_opaque(M, Opaques, fun map_def_key/1). + +map_def_key(?map(_,DefK,_)) -> + DefK. + +-spec t_map_def_val(erl_type()) -> erl_type(). + +t_map_def_val(M) -> + t_map_def_val(M, 'universe'). + +-spec t_map_def_val(erl_type(), opaques()) -> erl_type(). + +t_map_def_val(M, Opaques) -> + do_opaque(M, Opaques, fun map_def_val/1). + +map_def_val(?map(_,_,DefV)) -> + DefV. + +-spec mapdict_store(t_map_pair(), t_map_dict()) -> t_map_dict(). + +mapdict_store(E={K,_,_}, [{K,_,_}|T]) -> [E|T]; +mapdict_store(E1={K1,_,_}, [E2={K2,_,_}|T]) when K1 > K2-> + [E2|mapdict_store(E1, T)]; +mapdict_store(E={_,_,_}, T) -> [E|T]. + +-spec mapdict_insert(t_map_pair(), t_map_dict()) -> t_map_dict(). + +mapdict_insert(E={K,_,_}, D=[{K,_,_}|_]) -> error(badarg, [E, D]); +mapdict_insert(E1={K1,_,_}, [E2={K2,_,_}|T]) when K1 > K2-> + [E2|mapdict_insert(E1, T)]; +mapdict_insert(E={_,_,_}, T) -> [E|T]. + +%% Merges the pairs of two maps together. Missing pairs become (?opt, DefV) or +%% (?opt, ?none), depending on whether K \in DefK. +-spec map_pairwise_merge(fun((erl_type(), + t_map_mandatoriness(), erl_type(), + t_map_mandatoriness(), erl_type()) + -> t_map_pair() | false), + erl_type(), erl_type()) -> t_map_dict(). +map_pairwise_merge(F, ?map(APairs, ADefK, ADefV), + ?map(BPairs, BDefK, BDefV)) -> + map_pairwise_merge(F, APairs, ADefK, ADefV, BPairs, BDefK, BDefV). + +map_pairwise_merge(_, [], _, _, [], _, _) -> []; +map_pairwise_merge(F, As0, ADefK, ADefV, Bs0, BDefK, BDefV) -> + case {As0, Bs0} of + {[{K,AMNess,AV}|As], [{K, BMNess,BV}|Bs]} -> ok; + {[{K,AMNess,AV}|As], [{BK,_, _ }|_]=Bs} when K < BK -> + {BMNess, BV} = {?opt, mapmerge_otherv(K, BDefK, BDefV)}; + {As, [{K, BMNess,BV}|Bs]} -> + {AMNess, AV} = {?opt, mapmerge_otherv(K, ADefK, ADefV)}; + {[{K,AMNess,AV}|As], []=Bs} -> + {BMNess, BV} = {?opt, mapmerge_otherv(K, BDefK, BDefV)} + end, + MK = K, %% Rename to make clear that we are matching below + case F(K, AMNess, AV, BMNess, BV) of + false -> map_pairwise_merge(F,As,ADefK,ADefV,Bs,BDefK,BDefV); + M={MK,_,_} -> [M|map_pairwise_merge(F,As,ADefK,ADefV,Bs,BDefK,BDefV)] + end. + +%% Folds over the pairs in two maps simultaneously in reverse key order. Missing +%% pairs become (?opt, DefV) or (?opt, ?none), depending on whether K \in DefK. +-spec map_pairwise_merge_foldr(fun((erl_type(), + t_map_mandatoriness(), erl_type(), + t_map_mandatoriness(), erl_type(), + Acc) -> Acc), + Acc, erl_type(), erl_type()) -> Acc. + +map_pairwise_merge_foldr(F, AccIn, ?map(APairs, ADefK, ADefV), + ?map(BPairs, BDefK, BDefV)) -> + map_pairwise_merge_foldr(F, AccIn, APairs, ADefK, ADefV, BPairs, BDefK, BDefV). + +map_pairwise_merge_foldr(_, Acc, [], _, _, [], _, _) -> Acc; +map_pairwise_merge_foldr(F, AccIn, As0, ADefK, ADefV, Bs0, BDefK, BDefV) -> + case {As0, Bs0} of + {[{K,AMNess,AV}|As], [{K, BMNess,BV}|Bs]} -> ok; + {[{K,AMNess,AV}|As], [{BK,_, _ }|_]=Bs} when K < BK -> + {BMNess, BV} = {?opt, mapmerge_otherv(K, BDefK, BDefV)}; + {As, [{K, BMNess,BV}|Bs]} -> + {AMNess, AV} = {?opt, mapmerge_otherv(K, ADefK, ADefV)}; + {[{K,AMNess,AV}|As], []=Bs} -> + {BMNess, BV} = {?opt, mapmerge_otherv(K, BDefK, BDefV)} + end, + F(K, AMNess, AV, BMNess, BV, + map_pairwise_merge_foldr(F,AccIn,As,ADefK,ADefV,Bs,BDefK,BDefV)). + +%% By observing that a missing pair in a map is equivalent to an optional pair, +%% with ?none or DefV value, depending on whether K \in DefK, we can simplify +%% merging by denormalising the map pairs temporarily, removing all 'false' +%% cases, at the cost of the creation of more tuples: +mapmerge_otherv(K, ODefK, ODefV) -> + case t_inf(K, ODefK) of + ?none -> ?none; + K -> ODefV + end. + +-spec t_map_put({erl_type(), erl_type()}, erl_type()) -> erl_type(). + +t_map_put(KV, Map) -> + t_map_put(KV, Map, 'universe'). + +-spec t_map_put({erl_type(), erl_type()}, erl_type(), opaques()) -> erl_type(). + +t_map_put(KV, Map, Opaques) -> + do_opaque(Map, Opaques, fun(UM) -> map_put(KV, UM, Opaques) end). + +%% Key and Value are *not* unopaqued, but the map is +map_put(_, ?none, _) -> ?none; +map_put({Key, Value}, ?map(Pairs,DefK,DefV), Opaques) -> + case t_is_none_or_unit(Key) orelse t_is_none_or_unit(Value) of + true -> ?none; + false -> + case t_is_singleton(Key) of + true -> + t_map(mapdict_store({Key, ?mand, Value}, Pairs), DefK, DefV); + false -> + t_map([{K, MNess, case t_is_none(t_inf(K, Key, Opaques)) of + true -> V; + false -> t_sup(V, Value) + end} || {K, MNess, V} <- Pairs], + t_sup(DefK, Key), + t_sup(DefV, Value)) + end + end. + %%----------------------------------------------------------------------------- %% Tuples %% @@ -1862,8 +2108,9 @@ t_has_var(?tuple(Elements, _, _)) -> t_has_var_list(Elements); t_has_var(?tuple_set(_) = T) -> t_has_var_list(t_tuple_subtypes(T)); -t_has_var(?map(_)= Map) -> - t_has_var_list(map_keys(Map)) orelse t_has_var_list(map_values(Map)); +t_has_var(?map(_, DefK, _)= Map) -> + t_has_var_list(map_all_values(Map)) orelse + t_has_var(DefK); t_has_var(?opaque(Set)) -> %% Assume variables in 'args' are also present i 'struct' t_has_var_list([O#opaque.struct || O <- set_to_list(Set)]); @@ -1898,9 +2145,9 @@ t_collect_vars(?tuple(Types, _, _), Acc) -> t_collect_vars_list(Types, Acc); t_collect_vars(?tuple_set(_) = TS, Acc) -> t_collect_vars_list(t_tuple_subtypes(TS), Acc); -t_collect_vars(?map(_) = Map, Acc0) -> - Acc = t_collect_vars_list(map_keys(Map), Acc0), - t_collect_vars_list(map_values(Map), Acc); +t_collect_vars(?map(_, DefK, _) = Map, Acc0) -> + Acc = t_collect_vars_list(map_all_values(Map), Acc0), + t_collect_vars(DefK, Acc); t_collect_vars(?opaque(Set), Acc) -> %% Assume variables in 'args' are also present i 'struct' t_collect_vars_list([O#opaque.struct || O <- set_to_list(Set)], Acc); @@ -1935,7 +2182,14 @@ t_from_term(T) when is_function(T) -> {arity, Arity} = erlang:fun_info(T, arity), t_fun(Arity, t_any()); t_from_term(T) when is_integer(T) -> t_integer(T); -t_from_term(T) when is_map(T) -> t_map(); +t_from_term(T) when is_map(T) -> + Pairs = [{t_from_term(K), ?mand, t_from_term(V)} + || {K, V} <- maps:to_list(T)], + {Stons, Rest} = lists:partition(fun({K,_,_}) -> t_is_singleton(K) end, Pairs), + {DefK, DefV} + = lists:foldl(fun({K,_,V},{AK,AV}) -> {t_sup(K,AK), t_sup(V,AV)} end, + {t_none(), t_none()}, Rest), + t_map(lists:keysort(1, Stons), DefK, DefV); t_from_term(T) when is_pid(T) -> t_pid(); t_from_term(T) when is_port(T) -> t_port(); t_from_term(T) when is_reference(T) -> t_reference(); @@ -2225,6 +2479,13 @@ t_sup(?tuple_set(List1), T2 = ?tuple(_, Arity, _)) -> sup_tuple_sets(List1, [{Arity, [T2]}]); t_sup(?tuple(_, Arity, _) = T1, ?tuple_set(List2)) -> sup_tuple_sets([{Arity, [T1]}], List2); +t_sup(?map(_, ADefK, ADefV) = A, ?map(_, BDefK, BDefV) = B) -> + Pairs = + map_pairwise_merge( + fun(K, MNess, V1, MNess, V2) -> {K, MNess, t_sup(V1, V2)}; + (K, _, V1, _, V2) -> {K, ?opt, t_sup(V1, V2)} + end, A, B), + t_map(Pairs, t_sup(ADefK, BDefK), t_sup(ADefV, BDefV)); t_sup(T1, T2) -> ?union(U1) = force_union(T1), ?union(U2) = force_union(T2), @@ -2343,7 +2604,7 @@ force_union(T = ?list(_, _, _)) -> ?list_union(T); force_union(T = ?nil) -> ?list_union(T); force_union(T = ?number(_, _)) -> ?number_union(T); force_union(T = ?opaque(_)) -> ?opaque_union(T); -force_union(T = ?map(_)) -> ?map_union(T); +force_union(T = ?map(_,_,_)) -> ?map_union(T); force_union(T = ?tuple(_, _, _)) -> ?tuple_union(T); force_union(T = ?tuple_set(_)) -> ?tuple_union(T); force_union(T = ?matchstate(_, _)) -> ?matchstate_union(T); @@ -2380,7 +2641,7 @@ t_elements(?number(_, _) = T) -> end; t_elements(?opaque(_) = T) -> do_elements(T); -t_elements(?map(_) = T) -> [T]; +t_elements(?map(_,_,_) = T) -> [T]; t_elements(?tuple(_, _, _) = T) -> [T]; t_elements(?tuple_set(_) = TS) -> case t_tuple_subtypes(TS) of @@ -2462,6 +2723,25 @@ t_inf(?identifier(Set1), ?identifier(Set2), _Opaques) -> ?none -> ?none; Set -> ?identifier(Set) end; +t_inf(?map(_, ADefK, ADefV) = A, ?map(_, BDefK, BDefV) = B, _Opaques) -> + %% Because it simplifies the anonymous function, we allow Pairs to temporarily + %% contain mandatory pairs with none values, since all such cases should + %% result in a none result. + Pairs = + map_pairwise_merge( + %% For optional keys in both maps, when the infinimum is none, we have + %% essentially concluded that K must not be a key in the map. + fun(K, ?opt, V1, ?opt, V2) -> {K, ?opt, t_inf(V1, V2)}; + %% When a key is optional in one map, but mandatory in another, it + %% becomes mandatory in the infinumum + (K, _, V1, _, V2) -> {K, ?mand, t_inf(V1, V2)} + end, A, B), + %% If the infinimum of any mandatory values is ?none, the entire map infinimum + %% is ?none. + case lists:any(fun({_,?mand,?none})->true; ({_,_,_}) -> false end, Pairs) of + true -> t_none(); + false -> t_map(Pairs, t_inf(ADefK, BDefK), t_inf(ADefV, BDefV)) + end; t_inf(?matchstate(Pres1, Slots1), ?matchstate(Pres2, Slots2), _Opaques) -> ?matchstate(t_inf(Pres1, Pres2), t_inf(Slots1, Slots2)); t_inf(?nil, ?nil, _Opaques) -> ?nil; @@ -2970,9 +3250,9 @@ t_subst_dict(?tuple(Elements, _Arity, _Tag), Dict) -> t_tuple([t_subst_dict(E, Dict) || E <- Elements]); t_subst_dict(?tuple_set(_) = TS, Dict) -> t_sup([t_subst_dict(T, Dict) || T <- t_tuple_subtypes(TS)]); -t_subst_dict(?map(Pairs), Dict) -> - ?map([{t_subst_dict(K, Dict), t_subst_dict(V, Dict)} || - {K, V} <- Pairs]); +t_subst_dict(?map(Pairs, DefK, DefV), Dict) -> + t_map([{K, MNess, t_subst_dict(V, Dict)} || {K, MNess, V} <- Pairs], + t_subst_dict(DefK, Dict), t_subst_dict(DefV, Dict)); t_subst_dict(?opaque(Es), Dict) -> List = [Opaque#opaque{args = [t_subst_dict(Arg, Dict) || Arg <- Args], struct = t_subst_dict(S, Dict)} || @@ -3022,9 +3302,9 @@ t_subst_aux(?tuple(Elements, _Arity, _Tag), VarMap) -> t_tuple([t_subst_aux(E, VarMap) || E <- Elements]); t_subst_aux(?tuple_set(_) = TS, VarMap) -> t_sup([t_subst_aux(T, VarMap) || T <- t_tuple_subtypes(TS)]); -t_subst_aux(?map(Pairs), VarMap) -> - ?map([{t_subst_aux(K, VarMap), t_subst_aux(V, VarMap)} || - {K, V} <- Pairs]); +t_subst_aux(?map(Pairs, DefK, DefV), VarMap) -> + t_map([{K, MNess, t_subst_aux(V, VarMap)} || {K, MNess, V} <- Pairs], + t_subst_aux(DefK, VarMap), t_subst_aux(DefV, VarMap)); t_subst_aux(?opaque(Es), VarMap) -> List = [Opaque#opaque{args = [t_subst_aux(Arg, VarMap) || Arg <- Args], struct = t_subst_aux(S, VarMap)} || @@ -3104,6 +3384,23 @@ t_unify(?tuple_set(List1) = T1, ?tuple_set(List2) = T2, VarMap) -> {Tuples, NewVarMap} -> {t_sup(Tuples), NewVarMap} catch _:_ -> throw({mismatch, T1, T2}) end; +t_unify(?map(_, ADefK, ADefV) = A, ?map(_, BDefK, BDefV) = B, VarMap0) -> + {DefK, VarMap1} = t_unify(ADefK, BDefK, VarMap0), + {DefV, VarMap2} = t_unify(ADefV, BDefV, VarMap1), + {Pairs, VarMap} = + map_pairwise_merge_foldr( + fun(K, MNess, V1, MNess, V2, {Pairs0, VarMap3}) -> + %% We know that the keys unify and do not contain variables, or they + %% would not be singletons + %% TODO: Should V=?none (known missing keys) be handled special? + {V, VarMap4} = t_unify(V1, V2, VarMap3), + {[{K,MNess,V}|Pairs0], VarMap4}; + (K, _, V1, _, V2, {Pairs0, VarMap3}) -> + %% One mandatory and one optional; what should be done in this case? + {V, VarMap4} = t_unify(V1, V2, VarMap3), + {[{K,?mand,V}|Pairs0], VarMap4} + end, {[], VarMap2}, A, B), + {t_map(Pairs, DefK, DefV), VarMap}; t_unify(?opaque(_) = T1, ?opaque(_) = T2, VarMap) -> t_unify(t_opaque_structure(T1), t_opaque_structure(T2), VarMap); t_unify(T1, ?opaque(_) = T2, VarMap) -> @@ -3460,8 +3757,50 @@ t_subtract(?product(Elements1) = T1, ?product(Elements2)) -> _ -> T1 end end; -t_subtract(?map(_) = T, _) -> % XXX: very crude; will probably need refinement - T; +t_subtract(?map(APairs, ADefK, ADefV) = A, ?map(_, BDefK, BDefV) = B) -> + case t_is_subtype(ADefK, BDefK) andalso t_is_subtype(ADefV, BDefV) of + false -> A; + true -> + %% We fold over the maps to produce a list of constraints, where + %% constraints are additional key-value pairs to put in Pairs. Only one + %% constraint need to be applied to produce a type that excludes the + %% right-hand-side type, so if more than one constraint is produced, we + %% just return the left-hand-side argument. + %% + %% Each case of the fold may either conclude that + %% * The arguments constrain A at least as much as B, i.e. that A so far + %% is a subtype of B. In that case they return false + %% * That for the particular arguments, A being a subtype of B does not + %% hold, but the infinimum of A and B is nonempty, and by narrowing a + %% pair in A, we can create a type that excludes some elements in the + %% infinumum. In that case, they will return that pair. + %% * That for the particular arguments, A being a subtype of B does not + %% hold, and either the infinumum of A and B is empty, or it is not + %% possible with the current representation to create a type that + %% excludes elements from B without also excluding elements that are + %% only in A. In that case, it will return the pair from A unchanged. + case + map_pairwise_merge( + %% If V1 is a subtype of V2, the case that K does not exist in A + %% remain. + fun(K, ?opt, V1, ?mand, V2) -> {K, ?opt, t_subtract(V1, V2)}; + (K, _, V1, _, V2) -> + %% If we subtract an optional key, that leaves a mandatory key + case t_subtract(V1, V2) of + ?none -> false; + Partial -> {K, ?mand, Partial} + end + end, A, B) + of + %% We produce a list of keys that are constrained. As only one of + %% these should apply at a time, we can't represent the difference if + %% more than one constraint is produced. If we applied all of them, + %% that would make an underapproximation, which we must not do. + [] -> ?none; %% A is a subtype of B + [E] -> t_map(mapdict_store(E, APairs), ADefK, ADefV); + _ -> A + end + end; t_subtract(?product(P1), _) -> ?product(P1); t_subtract(T, ?product(_)) -> @@ -3622,12 +3961,17 @@ t_unopaque(?union([A,B,F,I,L,N,T,M,O,Map]), Opaques) -> UL = t_unopaque(L, Opaques), UT = t_unopaque(T, Opaques), UF = t_unopaque(F, Opaques), + UM = t_unopaque(M, Opaques), UMap = t_unopaque(Map, Opaques), {OF,UO} = case t_unopaque(O, Opaques) of ?opaque(_) = O1 -> {O1, []}; Type -> {?none, [Type]} end, - t_sup([?union([A,B,UF,I,UL,N,UT,M,OF,UMap])|UO]); + t_sup([?union([A,B,UF,I,UL,N,UT,UM,OF,UMap])|UO]); +t_unopaque(?map(Pairs,DefK,DefV), Opaques) -> + t_map([{K, MNess, t_unopaque(V, Opaques)} || {K, MNess, V} <- Pairs], + t_unopaque(DefK, Opaques), + t_unopaque(DefV, Opaques)); t_unopaque(T, _) -> T. @@ -3679,6 +4023,16 @@ t_limit_k(?opaque(Es), K) -> Opaque#opaque{struct = NewS} end || #opaque{struct = S} = Opaque <- set_to_list(Es)], ?opaque(ordsets:from_list(List)); +t_limit_k(?map(Pairs0, DefK0, DefV0), K) -> + Fun = fun({EK, MNess, EV}, {Exact, DefK1, DefV1}) -> + LV = t_limit_k(EV, K - 1), + case t_limit_k(EK, K - 1) of + EK -> {[{EK,MNess,LV}|Exact], DefK1, DefV1}; + LK -> {Exact, t_sup(LK, DefK1), t_sup(LV, DefV1)} + end + end, + {Pairs, DefK2, DefV2} = lists:foldr(Fun, {[], DefK0, DefV0}, Pairs0), + t_map(Pairs, t_limit_k(DefK2, K - 1), t_limit_k(DefV2, K - 1)); t_limit_k(T, _K) -> T. %%============================================================================ @@ -3753,6 +4107,9 @@ t_map(Fun, ?opaque(Set)) -> [] -> ?none; _ -> ?opaque(ordsets:from_list(L)) end); +t_map(Fun, ?map(Pairs,DefK,DefV)) -> + %% TODO: + Fun(t_map(Pairs, Fun(DefK), Fun(DefV))); t_map(Fun, T) -> Fun(T). @@ -3894,8 +4251,23 @@ t_to_string(?float, _RecDict) -> "float()"; t_to_string(?number(?any, ?unknown_qual), _RecDict) -> "number()"; t_to_string(?product(List), RecDict) -> "<" ++ comma_sequence(List, RecDict) ++ ">"; -t_to_string(?map(Pairs), RecDict) -> - "#{" ++ map_pairs_to_string(Pairs,RecDict) ++ "}"; +t_to_string(?map([],?any,?any), _RecDict) -> "map()"; +t_to_string(?map(Pairs0,DefK,DefV), RecDict) -> + {Pairs, ExtraEl} = + case {DefK, DefV} of + {?none, ?none} -> {Pairs0, []}; + {?any, ?any} -> {Pairs0, ["..."]}; + _ -> {Pairs0 ++ [{DefK,?opt,DefV}], []} + end, + Tos = fun(T) -> case T of + ?any -> "_"; + _ -> t_to_string(T, RecDict) + end end, + StrMand = [{Tos(K),Tos(V)}||{K,?mand,V}<-Pairs], + StrOpt = [{Tos(K),Tos(V)}||{K,?opt,V}<-Pairs], + "#{" ++ string:join([K ++ ":=" ++ V||{K,V}<-StrMand] + ++ [K ++ "=>" ++ V||{K,V}<-StrOpt] + ++ ExtraEl, ", ") ++ "}"; t_to_string(?tuple(?any, ?any, ?any), _RecDict) -> "tuple()"; t_to_string(?tuple(Elements, _Arity, ?any), RecDict) -> "{" ++ comma_sequence(Elements, RecDict) ++ "}"; @@ -3916,12 +4288,6 @@ t_to_string(?var(Id), _RecDict) when is_integer(Id) -> flat_format("var(~w)", [Id]). -map_pairs_to_string([],_) -> []; -map_pairs_to_string(Pairs,RecDict) -> - StrPairs = [{t_to_string(K,RecDict),t_to_string(V,RecDict)}||{K,V}<-Pairs], - string:join([K ++ "=>" ++ V||{K,V}<-StrPairs], ", "). - - record_to_string(Tag, [_|Fields], FieldNames, RecDict) -> FieldStrings = record_fields_to_string(Fields, FieldNames, RecDict, []), "#" ++ atom_to_string(Tag) ++ "{" ++ string:join(FieldStrings, ",") ++ "}". @@ -4164,8 +4530,26 @@ t_from_form({type, _L, list, []}, _TypeNames, _ET, _S, _MR, _V, _D, L) -> t_from_form({type, _L, list, [Type]}, TypeNames, ET, S, MR, V, D, L) -> {T, L1} = t_from_form(Type, TypeNames, ET, S, MR, V, D - 1, L - 1), {t_list(T), L1}; -t_from_form({type, _L, map, _}, TypeNames, ET, S, MR, V, D, L) -> - builtin_type(map, t_map([]), TypeNames, ET, S, MR, V, D, L); +t_from_form({type, _L, map, any}, TypeNames, ET, S, MR, V, D, L) -> + builtin_type(map, t_map(), TypeNames, ET, S, MR, V, D, L); +t_from_form({type, _L, map, List}, TypeNames, ET, S, MR, V, D, L) -> + {Pairs1, L5} = + fun PairsFromForm(_, L1) when L1 =< 0 -> {[{?any,?opt,?any}], L1}; + PairsFromForm([], L1) -> {[], L1}; + PairsFromForm([{type, _, Oper, [KF, VF]}|T], L1) -> + {Key, L2} = t_from_form(KF, TypeNames, ET, S, MR, V, D - 1, L1), + {Val, L3} = t_from_form(VF, TypeNames, ET, S, MR, V, D - 1, L2), + {Pairs0, L4} = PairsFromForm(T, L3 - 1), + case Oper of + map_field_assoc -> {[{Key,?opt, Val}|Pairs0], L4}; + map_field_exact -> {[{Key,?mand,Val}|Pairs0], L4} + end + end(List, L), + try + {Pairs, DefK, DefV} = map_from_form(Pairs1, [], [], [], ?none, ?none), + {t_map(Pairs, DefK, DefV), L5} + catch none -> {t_none(), L5} + end; t_from_form({type, _L, mfa, []}, _TypeNames, _ET, _S, _MR, _V, _D, L) -> {t_mfa(), L}; t_from_form({type, _L, module, []}, _TypeNames, _ET, _S, _MR, _V, _D, L) -> @@ -4495,6 +4879,50 @@ list_from_form([H|Tail], TypeNames, ET, S, MR, V, D, L) -> {T1, L2} = list_from_form(Tail, TypeNames, ET, S, MR, V, D, L1), {[H1|T1], L2}. +%% Sorts, combines non-singleton pairs, and applies precendence and +%% mandatoriness rules. +map_from_form([], ShdwPs, MKs, Pairs, DefK, DefV) -> + verify_possible(MKs, ShdwPs), + {promote_to_mand(MKs, Pairs), DefK, DefV}; +map_from_form([{SKey,MNess,Val}|SPairs], ShdwPs0, MKs0, Pairs0, DefK0, DefV0) -> + Key = lists:foldl(fun({K,_},S)->t_subtract(S,K)end, SKey, ShdwPs0), + ShdwPs = case Key of ?none -> ShdwPs0; _ -> [{Key,Val}|ShdwPs0] end, + MKs = case MNess of ?mand -> [SKey|MKs0]; ?opt -> MKs0 end, + if MNess =:= ?mand, SKey =:= ?none -> throw(none); + true -> ok + end, + {Pairs, DefK, DefV} = + case t_is_singleton(Key) of + true -> + MNess1 = case Val =:= ?none of true -> ?opt; false -> MNess end, + {mapdict_insert({Key,MNess1,Val}, Pairs0), DefK0, DefV0}; + false -> + case Key =:= ?none orelse Val =:= ?none of + true -> {Pairs0, DefK0, DefV0}; + false -> {Pairs0, t_sup(DefK0, Key), t_sup(DefV0, Val)} + end + end, + map_from_form(SPairs, ShdwPs, MKs, Pairs, DefK, DefV). + +%% Verifies that all mandatory keys are possible, throws 'none' otherwise +verify_possible(MKs, ShdwPs) -> + lists:foreach(fun(M) -> verify_possible_1(M, ShdwPs) end, MKs). + +verify_possible_1(M, ShdwPs) -> + case lists:any(fun({K,_}) -> t_inf(M, K) =/= ?none end, ShdwPs) of + true -> ok; + false -> throw(none) + end. + +-spec promote_to_mand([erl_type()], t_map_dict()) -> t_map_dict(). + +promote_to_mand(_, []) -> []; +promote_to_mand(MKs, [E={K,_,V}|T]) -> + [case lists:any(fun(M) -> t_is_equal(K,M) end, MKs) of + true -> {K, ?mand, V}; + false -> E + end|promote_to_mand(MKs, T)]. + -spec t_check_record_fields(parse_form(), sets:set(mfa()), site(), mod_records()) -> ok. @@ -4627,8 +5055,13 @@ t_form_to_string({type, _L, iodata, []}) -> "iodata()"; t_form_to_string({type, _L, iolist, []}) -> "iolist()"; t_form_to_string({type, _L, list, [Type]}) -> "[" ++ t_form_to_string(Type) ++ "]"; -t_form_to_string({type, _L, map, _}) -> - "#{}"; +t_form_to_string({type, _L, map, any}) -> "map()"; +t_form_to_string({type, _L, map, Args}) -> + "#{" ++ string:join(t_form_to_string_list(Args), ",") ++ "}"; +t_form_to_string({type, _L, map_field_assoc, [Key, Val]}) -> + t_form_to_string(Key) ++ "=>" ++ t_form_to_string(Val); +t_form_to_string({type, _L, map_field_exact, [Key, Val]}) -> + t_form_to_string(Key) ++ ":=" ++ t_form_to_string(Val); t_form_to_string({type, _L, mfa, []}) -> "mfa()"; t_form_to_string({type, _L, module, []}) -> "module()"; t_form_to_string({type, _L, node, []}) -> "node()"; @@ -4789,11 +5222,70 @@ do_opaque(?union(List) = Type, Opaques, Pred) -> do_opaque(Type, _Opaques, Pred) -> Pred(Type). -map_keys(?map(Pairs)) -> - [K || {K, _} <- Pairs]. +map_all_values(?map(Pairs,_,DefV)) -> + [DefV|[V || {V, _, _} <- Pairs]]. + +map_all_keys(?map(Pairs,DefK,_)) -> + [DefK|[K || {_, _, K} <- Pairs]]. + +map_all_types(M) -> + map_all_keys(M) ++ map_all_values(M). + +%% Tests if a type has exactly one possible value. +-spec t_is_singleton(erl_type()) -> boolean(). + +t_is_singleton(Type) -> + t_is_singleton(Type, 'universe'). + +-spec t_is_singleton(erl_type(), opaques()) -> boolean(). + +t_is_singleton(Type, Opaques) -> + do_opaque(Type, Opaques, fun is_singleton_type/1). + +%% Incomplete; not all representable singleton types are included. +is_singleton_type(?nil) -> true; +is_singleton_type(?atom(?any)) -> false; +is_singleton_type(?atom(Set)) -> + ordsets:size(Set) =:= 1; +is_singleton_type(?int_range(V, V)) -> true; +is_singleton_type(?int_set(Set)) -> + ordsets:size(Set) =:= 1; +is_singleton_type(?tuple(Types, Arity, _)) when is_integer(Arity) -> + lists:all(fun is_singleton_type/1, Types); +is_singleton_type(?tuple_set([{Arity, [OnlyTuple]}])) when is_integer(Arity) -> + is_singleton_type(OnlyTuple); +is_singleton_type(?map(Pairs, ?none, ?none)) -> + lists:all(fun({_,MNess,V}) -> MNess =:= ?mand andalso is_singleton_type(V) + end, Pairs); +is_singleton_type(_) -> + false. -map_values(?map(Pairs)) -> - [V || {_, V} <- Pairs]. +%% Returns the only possible value of a singleton type. +-spec t_singleton_to_term(erl_type(), opaques()) -> term(). + +t_singleton_to_term(Type, Opaques) -> + do_opaque(Type, Opaques, fun singleton_type_to_term/1). + +singleton_type_to_term(?nil) -> []; +singleton_type_to_term(?atom(Set)) when Set =/= ?any -> + case ordsets:size(Set) of + 1 -> hd(ordsets:to_list(Set)); + _ -> error(badarg) + end; +singleton_type_to_term(?int_range(V, V)) -> V; +singleton_type_to_term(?int_set(Set)) -> + case ordsets:size(Set) of + 1 -> hd(ordsets:to_list(Set)); + _ -> error(badarg) + end; +singleton_type_to_term(?tuple(Types, Arity, _)) when is_integer(Arity) -> + lists:map(fun singleton_type_to_term/1, Types); +singleton_type_to_term(?tuple_set([{Arity, [OnlyTuple]}])) + when is_integer(Arity) -> + singleton_type_to_term(OnlyTuple); +singleton_type_to_term(?map(Pairs, ?none, ?none)) -> + maps:from_list([{singleton_type_to_term(K), singleton_type_to_term(V)} + || {K,?mand,V} <- Pairs]). %% ----------------------------------- %% Set |