aboutsummaryrefslogtreecommitdiffstats
path: root/lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/core_lib.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/core_lib.erl')
-rw-r--r--lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/core_lib.erl509
1 files changed, 0 insertions, 509 deletions
diff --git a/lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/core_lib.erl b/lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/core_lib.erl
deleted file mode 100644
index 3a6158286f..0000000000
--- a/lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/core_lib.erl
+++ /dev/null
@@ -1,509 +0,0 @@
-%% ``The contents of this file are subject to the Erlang Public License,
-%% Version 1.1, (the "License"); you may not use this file except in
-%% compliance with the License. You should have received a copy of the
-%% Erlang Public License along with this software. If not, it can be
-%% retrieved via the world wide web at http://www.erlang.org/.
-%%
-%% Software distributed under the License is distributed on an "AS IS"
-%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
-%% the License for the specific language governing rights and limitations
-%% under the License.
-%%
-%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
-%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
-%% AB. All Rights Reserved.''
-%%
-%% $Id: core_lib.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $
-%%
-%% Purpose: Core Erlang abstract syntax functions.
-
--module(core_lib).
-
--export([get_anno/1,set_anno/2]).
--export([is_atomic/1,is_literal/1,is_literal_list/1,
- is_simple/1,is_simple_list/1,is_simple_top/1]).
--export([literal_value/1,make_literal/1]).
--export([make_values/1]).
--export([map/2, fold/3, mapfold/3]).
--export([is_var_used/2]).
-
-%% -compile([export_all]).
-
--include("core_parse.hrl").
-
-%% get_anno(Core) -> Anno.
-%% set_anno(Core, Anno) -> Core.
-%% Generic get/set annotation.
-
-get_anno(C) -> element(2, C).
-set_anno(C, A) -> setelement(2, C, A).
-
-%% is_atomic(Expr) -> true | false.
-
-is_atomic(#c_char{}) -> true;
-is_atomic(#c_int{}) -> true;
-is_atomic(#c_float{}) -> true;
-is_atomic(#c_atom{}) -> true;
-is_atomic(#c_string{}) -> true;
-is_atomic(#c_nil{}) -> true;
-is_atomic(#c_fname{}) -> true;
-is_atomic(_) -> false.
-
-%% is_literal(Expr) -> true | false.
-
-is_literal(#c_cons{hd=H,tl=T}) ->
- case is_literal(H) of
- true -> is_literal(T);
- false -> false
- end;
-is_literal(#c_tuple{es=Es}) -> is_literal_list(Es);
-is_literal(#c_binary{segments=Es}) -> is_lit_bin(Es);
-is_literal(E) -> is_atomic(E).
-
-is_literal_list(Es) -> lists:all(fun is_literal/1, Es).
-
-is_lit_bin(Es) ->
- lists:all(fun (#c_bitstr{val=E,size=S}) ->
- is_literal(E) and is_literal(S)
- end, Es).
-
-%% is_simple(Expr) -> true | false.
-
-is_simple(#c_var{}) -> true;
-is_simple(#c_cons{hd=H,tl=T}) ->
- case is_simple(H) of
- true -> is_simple(T);
- false -> false
- end;
-is_simple(#c_tuple{es=Es}) -> is_simple_list(Es);
-is_simple(#c_binary{segments=Es}) -> is_simp_bin(Es);
-is_simple(E) -> is_atomic(E).
-
-is_simple_list(Es) -> lists:all(fun is_simple/1, Es).
-
-is_simp_bin(Es) ->
- lists:all(fun (#c_bitstr{val=E,size=S}) ->
- is_simple(E) and is_simple(S)
- end, Es).
-
-%% is_simple_top(Expr) -> true | false.
-%% Only check if the top-level is a simple.
-
-is_simple_top(#c_var{}) -> true;
-is_simple_top(#c_cons{}) -> true;
-is_simple_top(#c_tuple{}) -> true;
-is_simple_top(#c_binary{}) -> true;
-is_simple_top(E) -> is_atomic(E).
-
-%% literal_value(LitExpr) -> Value.
-%% Return the value of LitExpr.
-
-literal_value(#c_char{val=C}) -> C;
-literal_value(#c_int{val=I}) -> I;
-literal_value(#c_float{val=F}) -> F;
-literal_value(#c_atom{val=A}) -> A;
-literal_value(#c_string{val=S}) -> S;
-literal_value(#c_nil{}) -> [];
-literal_value(#c_cons{hd=H,tl=T}) ->
- [literal_value(H)|literal_value(T)];
-literal_value(#c_tuple{es=Es}) ->
- list_to_tuple(literal_value_list(Es)).
-
-literal_value_list(Vals) -> lists:map(fun literal_value/1, Vals).
-
-%% make_literal(Value) -> LitExpr.
-%% Make a literal expression from an Erlang value.
-
-make_literal(I) when integer(I) -> #c_int{val=I};
-make_literal(F) when float(F) -> #c_float{val=F};
-make_literal(A) when atom(A) -> #c_atom{val=A};
-make_literal([]) -> #c_nil{};
-make_literal([H|T]) ->
- #c_cons{hd=make_literal(H),tl=make_literal(T)};
-make_literal(T) when tuple(T) ->
- #c_tuple{es=make_literal_list(tuple_to_list(T))}.
-
-make_literal_list(Vals) -> lists:map(fun make_literal/1, Vals).
-
-%% make_values([CoreExpr] | CoreExpr) -> #c_values{} | CoreExpr.
-%% Make a suitable values structure, expr or values, depending on
-%% Expr.
-
-make_values([E]) -> E;
-make_values([H|_]=Es) -> #c_values{anno=get_anno(H),es=Es};
-make_values([]) -> #c_values{es=[]};
-make_values(E) -> E.
-
-%% map(MapFun, CoreExpr) -> CoreExpr.
-%% This function traverses the core parse format, at each level
-%% applying the submited argument function, assumed to do the real
-%% work.
-%%
-%% The "eager" style, where each component of a construct are
-%% descended to before the construct itself, admits that some
-%% companion functions (the F:s) may be made simpler, since it may be
-%% safely assumed that no lower illegal instanced will be
-%% created/uncovered by actions on the current level.
-
-map(F, #c_tuple{es=Es}=R) ->
- F(R#c_tuple{es=map_list(F, Es)});
-map(F, #c_cons{hd=Hd, tl=Tl}=R) ->
- F(R#c_cons{hd=map(F, Hd),
- tl=map(F, Tl)});
-map(F, #c_values{es=Es}=R) ->
- F(R#c_values{es=map_list(F, Es)});
-
-map(F, #c_alias{var=Var, pat=Pat}=R) ->
- F(R#c_alias{var=map(F, Var),
- pat=map(F, Pat)});
-
-map(F, #c_module{defs=Defs}=R) ->
- F(R#c_module{defs=map_list(F, Defs)});
-map(F, #c_def{val=Val}=R) ->
- F(R#c_def{val=map(F, Val)});
-
-map(F, #c_fun{vars=Vars, body=Body}=R) ->
- F(R#c_fun{vars=map_list(F, Vars),
- body=map(F, Body)});
-map(F, #c_let{vars=Vs, arg=Arg, body=Body}=R) ->
- F(R#c_let{vars=map_list(F, Vs),
- arg=map(F, Arg),
- body=map(F, Body)});
-map(F, #c_letrec{defs=Fs,body=Body}=R) ->
- F(R#c_letrec{defs=map_list(F, Fs),
- body=map(F, Body)});
-map(F, #c_seq{arg=Arg, body=Body}=R) ->
- F(R#c_seq{arg=map(F, Arg),
- body=map(F, Body)});
-map(F, #c_case{arg=Arg, clauses=Clauses}=R) ->
- F(R#c_case{arg=map(F, Arg),
- clauses=map_list(F, Clauses)});
-map(F, #c_clause{pats=Ps, guard=Guard, body=Body}=R) ->
- F(R#c_clause{pats=map_list(F, Ps),
- guard=map(F, Guard),
- body=map(F, Body)});
-map(F, #c_receive{clauses=Cls, timeout=Tout, action=Act}=R) ->
- F(R#c_receive{clauses=map_list(F, Cls),
- timeout=map(F, Tout),
- action=map(F, Act)});
-map(F, #c_apply{op=Op,args=Args}=R) ->
- F(R#c_apply{op=map(F, Op),
- args=map_list(F, Args)});
-map(F, #c_call{module=M,name=N,args=Args}=R) ->
- F(R#c_call{module=map(F, M),
- name=map(F, N),
- args=map_list(F, Args)});
-map(F, #c_primop{name=N,args=Args}=R) ->
- F(R#c_primop{name=map(F, N),
- args=map_list(F, Args)});
-map(F, #c_try{arg=Expr,vars=Vars,body=Body,evars=Evars,handler=Handler}=R) ->
- F(R#c_try{arg=map(F, Expr),
- vars=map(F, Vars),
- body=map(F, Body),
- evars=map(F, Evars),
- handler=map(F, Handler)});
-map(F, #c_catch{body=Body}=R) ->
- F(R#c_catch{body=map(F, Body)});
-map(F, T) -> F(T). %Atomic nodes.
-
-map_list(F, L) -> lists:map(fun (E) -> map(F, E) end, L).
-
-%% fold(FoldFun, Accumulator, CoreExpr) -> Accumulator.
-%% This function traverses the core parse format, at each level
-%% applying the submited argument function, assumed to do the real
-%% work, and keeping the accumulated result in the A (accumulator)
-%% argument.
-
-fold(F, Acc, #c_tuple{es=Es}=R) ->
- F(R, fold_list(F, Acc, Es));
-fold(F, Acc, #c_cons{hd=Hd, tl=Tl}=R) ->
- F(R, fold(F, fold(F, Acc, Hd), Tl));
-fold(F, Acc, #c_values{es=Es}=R) ->
- F(R, fold_list(F, Acc, Es));
-
-fold(F, Acc, #c_alias{pat=P,var=V}=R) ->
- F(R, fold(F, fold(F, Acc, P), V));
-
-fold(F, Acc, #c_module{defs=Defs}=R) ->
- F(R, fold_list(F, Acc, Defs));
-fold(F, Acc, #c_def{val=Val}=R) ->
- F(R, fold(F, Acc, Val));
-
-fold(F, Acc, #c_fun{vars=Vars, body=Body}=R) ->
- F(R, fold(F, fold_list(F, Acc, Vars), Body));
-fold(F, Acc, #c_let{vars=Vs, arg=Arg, body=Body}=R) ->
- F(R, fold(F, fold(F, fold_list(F, Acc, Vs), Arg), Body));
-fold(F, Acc, #c_letrec{defs=Fs,body=Body}=R) ->
- F(R, fold(F, fold_list(F, Acc, Fs), Body));
-fold(F, Acc, #c_seq{arg=Arg, body=Body}=R) ->
- F(R, fold(F, fold(F, Acc, Arg), Body));
-fold(F, Acc, #c_case{arg=Arg, clauses=Clauses}=R) ->
- F(R, fold_list(F, fold(F, Acc, Arg), Clauses));
-fold(F, Acc, #c_clause{pats=Ps,guard=G,body=B}=R) ->
- F(R, fold(F, fold(F, fold_list(F, Acc, Ps), G), B));
-fold(F, Acc, #c_receive{clauses=Cl, timeout=Ti, action=Ac}=R) ->
- F(R, fold_list(F, fold(F, fold(F, Acc, Ac), Ti), Cl));
-fold(F, Acc, #c_apply{op=Op, args=Args}=R) ->
- F(R, fold_list(F, fold(F, Acc, Op), Args));
-fold(F, Acc, #c_call{module=Mod,name=Name,args=Args}=R) ->
- F(R, fold_list(F, fold(F, fold(F, Acc, Mod), Name), Args));
-fold(F, Acc, #c_primop{name=Name,args=Args}=R) ->
- F(R, fold_list(F, fold(F, Acc, Name), Args));
-fold(F, Acc, #c_try{arg=E,vars=Vs,body=Body,evars=Evs,handler=H}=R) ->
- NewB = fold(F, fold_list(F, fold(F, Acc, E), Vs), Body),
- F(R, fold(F, fold_list(F, NewB, Evs), H));
-fold(F, Acc, #c_catch{body=Body}=R) ->
- F(R, fold(F, Acc, Body));
-fold(F, Acc, T) -> %Atomic nodes
- F(T, Acc).
-
-fold_list(F, Acc, L) ->
- lists:foldl(fun (E, A) -> fold(F, A, E) end, Acc, L).
-
-%% mapfold(MapfoldFun, Accumulator, CoreExpr) -> {CoreExpr,Accumulator}.
-%% This function traverses the core parse format, at each level
-%% applying the submited argument function, assumed to do the real
-%% work, and keeping the accumulated result in the A (accumulator)
-%% argument.
-
-mapfold(F, Acc0, #c_tuple{es=Es0}=R) ->
- {Es1,Acc1} = mapfold_list(F, Acc0, Es0),
- F(R#c_tuple{es=Es1}, Acc1);
-mapfold(F, Acc0, #c_cons{hd=H0,tl=T0}=R) ->
- {H1,Acc1} = mapfold(F, Acc0, H0),
- {T1,Acc2} = mapfold(F, Acc1, T0),
- F(R#c_cons{hd=H1,tl=T1}, Acc2);
-mapfold(F, Acc0, #c_values{es=Es0}=R) ->
- {Es1,Acc1} = mapfold_list(F, Acc0, Es0),
- F(R#c_values{es=Es1}, Acc1);
-
-mapfold(F, Acc0, #c_alias{pat=P0,var=V0}=R) ->
- {P1,Acc1} = mapfold(F, Acc0, P0),
- {V1,Acc2} = mapfold(F, Acc1, V0),
- F(R#c_alias{pat=P1,var=V1}, Acc2);
-
-mapfold(F, Acc0, #c_module{defs=D0}=R) ->
- {D1,Acc1} = mapfold_list(F, Acc0, D0),
- F(R#c_module{defs=D1}, Acc1);
-mapfold(F, Acc0, #c_def{val=V0}=R) ->
- {V1,Acc1} = mapfold(F, Acc0, V0),
- F(R#c_def{val=V1}, Acc1);
-
-mapfold(F, Acc0, #c_fun{vars=Vs0, body=B0}=R) ->
- {Vs1,Acc1} = mapfold_list(F, Acc0, Vs0),
- {B1,Acc2} = mapfold(F, Acc1, B0),
- F(R#c_fun{vars=Vs1,body=B1}, Acc2);
-mapfold(F, Acc0, #c_let{vars=Vs0, arg=A0, body=B0}=R) ->
- {Vs1,Acc1} = mapfold_list(F, Acc0, Vs0),
- {A1,Acc2} = mapfold(F, Acc1, A0),
- {B1,Acc3} = mapfold(F, Acc2, B0),
- F(R#c_let{vars=Vs1,arg=A1,body=B1}, Acc3);
-mapfold(F, Acc0, #c_letrec{defs=Fs0,body=B0}=R) ->
- {Fs1,Acc1} = mapfold_list(F, Acc0, Fs0),
- {B1,Acc2} = mapfold(F, Acc1, B0),
- F(R#c_letrec{defs=Fs1,body=B1}, Acc2);
-mapfold(F, Acc0, #c_seq{arg=A0, body=B0}=R) ->
- {A1,Acc1} = mapfold(F, Acc0, A0),
- {B1,Acc2} = mapfold(F, Acc1, B0),
- F(R#c_seq{arg=A1,body=B1}, Acc2);
-mapfold(F, Acc0, #c_case{arg=A0,clauses=Cs0}=R) ->
- {A1,Acc1} = mapfold(F, Acc0, A0),
- {Cs1,Acc2} = mapfold_list(F, Acc1, Cs0),
- F(R#c_case{arg=A1,clauses=Cs1}, Acc2);
-mapfold(F, Acc0, #c_clause{pats=Ps0,guard=G0,body=B0}=R) ->
- {Ps1,Acc1} = mapfold_list(F, Acc0, Ps0),
- {G1,Acc2} = mapfold(F, Acc1, G0),
- {B1,Acc3} = mapfold(F, Acc2, B0),
- F(R#c_clause{pats=Ps1,guard=G1,body=B1}, Acc3);
-mapfold(F, Acc0, #c_receive{clauses=Cs0,timeout=T0,action=A0}=R) ->
- {T1,Acc1} = mapfold(F, Acc0, T0),
- {Cs1,Acc2} = mapfold_list(F, Acc1, Cs0),
- {A1,Acc3} = mapfold(F, Acc2, A0),
- F(R#c_receive{clauses=Cs1,timeout=T1,action=A1}, Acc3);
-mapfold(F, Acc0, #c_apply{op=Op0, args=As0}=R) ->
- {Op1,Acc1} = mapfold(F, Acc0, Op0),
- {As1,Acc2} = mapfold_list(F, Acc1, As0),
- F(R#c_apply{op=Op1,args=As1}, Acc2);
-mapfold(F, Acc0, #c_call{module=M0,name=N0,args=As0}=R) ->
- {M1,Acc1} = mapfold(F, Acc0, M0),
- {N1,Acc2} = mapfold(F, Acc1, N0),
- {As1,Acc3} = mapfold_list(F, Acc2, As0),
- F(R#c_call{module=M1,name=N1,args=As1}, Acc3);
-mapfold(F, Acc0, #c_primop{name=N0, args=As0}=R) ->
- {N1,Acc1} = mapfold(F, Acc0, N0),
- {As1,Acc2} = mapfold_list(F, Acc1, As0),
- F(R#c_primop{name=N1,args=As1}, Acc2);
-mapfold(F, Acc0, #c_try{arg=E0,vars=Vs0,body=B0,evars=Evs0,handler=H0}=R) ->
- {E1,Acc1} = mapfold(F, Acc0, E0),
- {Vs1,Acc2} = mapfold_list(F, Acc1, Vs0),
- {B1,Acc3} = mapfold(F, Acc2, B0),
- {Evs1,Acc4} = mapfold_list(F, Acc3, Evs0),
- {H1,Acc5} = mapfold(F, Acc4, H0),
- F(R#c_try{arg=E1,vars=Vs1,body=B1,evars=Evs1,handler=H1}, Acc5);
-mapfold(F, Acc0, #c_catch{body=B0}=R) ->
- {B1,Acc1} = mapfold(F, Acc0, B0),
- F(R#c_catch{body=B1}, Acc1);
-mapfold(F, Acc, T) -> %Atomic nodes
- F(T, Acc).
-
-mapfold_list(F, Acc, L) ->
- lists:mapfoldl(fun (E, A) -> mapfold(F, A, E) end, Acc, L).
-
-%% is_var_used(VarName, Expr) -> true | false.
-%% Test if the variable VarName is used in Expr.
-
-is_var_used(V, B) -> vu_body(V, B).
-
-vu_body(V, #c_values{es=Es}) ->
- vu_expr_list(V, Es);
-vu_body(V, Body) ->
- vu_expr(V, Body).
-
-vu_expr(V, #c_var{name=V2}) -> V =:= V2;
-vu_expr(V, #c_cons{hd=H,tl=T}) ->
- case vu_expr(V, H) of
- true -> true;
- false -> vu_expr(V, T)
- end;
-vu_expr(V, #c_tuple{es=Es}) ->
- vu_expr_list(V, Es);
-vu_expr(V, #c_binary{segments=Ss}) ->
- vu_seg_list(V, Ss);
-vu_expr(V, #c_fun{vars=Vs,body=B}) ->
- %% Variables in fun shadow previous variables
- case vu_var_list(V, Vs) of
- true -> false;
- false -> vu_body(V, B)
- end;
-vu_expr(V, #c_let{vars=Vs,arg=Arg,body=B}) ->
- case vu_body(V, Arg) of
- true -> true;
- false ->
- %% Variables in let shadow previous variables.
- case vu_var_list(V, Vs) of
- true -> false;
- false -> vu_body(V, B)
- end
- end;
-vu_expr(V, #c_letrec{defs=Fs,body=B}) ->
- case lists:any(fun (#c_def{val=Fb}) -> vu_body(V, Fb) end, Fs) of
- true -> true;
- false -> vu_body(V, B)
- end;
-vu_expr(V, #c_seq{arg=Arg,body=B}) ->
- case vu_expr(V, Arg) of
- true -> true;
- false -> vu_body(V, B)
- end;
-vu_expr(V, #c_case{arg=Arg,clauses=Cs}) ->
- case vu_expr(V, Arg) of
- true -> true;
- false -> vu_clauses(V, Cs)
- end;
-vu_expr(V, #c_receive{clauses=Cs,timeout=T,action=A}) ->
- case vu_clauses(V, Cs) of
- true -> true;
- false ->
- case vu_expr(V, T) of
- true -> true;
- false -> vu_body(V, A)
- end
- end;
-vu_expr(V, #c_apply{op=Op,args=As}) ->
- vu_expr_list(V, [Op|As]);
-vu_expr(V, #c_call{module=M,name=N,args=As}) ->
- vu_expr_list(V, [M,N|As]);
-vu_expr(V, #c_primop{args=As}) -> %Name is an atom
- vu_expr_list(V, As);
-vu_expr(V, #c_catch{body=B}) ->
- vu_body(V, B);
-vu_expr(V, #c_try{arg=E,vars=Vs,body=B,evars=Evs,handler=H}) ->
- case vu_body(V, E) of
- true -> true;
- false ->
- %% Variables shadow previous ones.
- case case vu_var_list(V, Vs) of
- true -> false;
- false -> vu_body(V, B)
- end of
- true -> true;
- false ->
- case vu_var_list(V, Evs) of
- true -> false;
- false -> vu_body(V, H)
- end
- end
- end;
-vu_expr(_, _) -> false. %Everything else
-
-vu_expr_list(V, Es) ->
- lists:any(fun(E) -> vu_expr(V, E) end, Es).
-
-vu_seg_list(V, Ss) ->
- lists:any(fun (#c_bitstr{val=Val,size=Size}) ->
- case vu_expr(V, Val) of
- true -> true;
- false -> vu_expr(V, Size)
- end
- end, Ss).
-
-%% vu_clause(VarName, Clause) -> true | false.
-%% vu_clauses(VarName, [Clause]) -> true | false.
-%% Have to get the pattern results right.
-
-vu_clause(V, #c_clause{pats=Ps,guard=G,body=B}) ->
- case vu_pattern_list(V, Ps) of
- {true,_Shad} -> true; %It is used
- {false,true} -> false; %Shadowed
- {false,false} -> %Not affected
- case vu_expr(V, G) of
- true -> true;
- false ->vu_body(V, B)
- end
- end.
-
-vu_clauses(V, Cs) ->
- lists:any(fun(C) -> vu_clause(V, C) end, Cs).
-
-%% vu_pattern(VarName, Pattern) -> {Used,Shadow}.
-%% vu_pattern_list(VarName, [Pattern]) -> {Used,Shadow}.
-%% Binaries complicate patterns as a variable can both be properly
-%% used, in a bit segment size, and shadow. They can also do both.
-
-%%vu_pattern(V, Pat) -> vu_pattern(V, Pat, {false,false}).
-
-vu_pattern(V, #c_var{name=V2}, St) ->
- setelement(2, St, V =:= V2);
-vu_pattern(V, #c_cons{hd=H,tl=T}, St0) ->
- case vu_pattern(V, H, St0) of
- {true,true}=St1 -> St1; %Nothing more to know
- St1 -> vu_pattern(V, T, St1)
- end;
-vu_pattern(V, #c_tuple{es=Es}, St) ->
- vu_pattern_list(V, Es, St);
-vu_pattern(V, #c_binary{segments=Ss}, St) ->
- vu_pat_seg_list(V, Ss, St);
-vu_pattern(V, #c_alias{var=Var,pat=P}, St0) ->
- case vu_pattern(V, Var, St0) of
- {true,true}=St1 -> St1;
- St1 -> vu_pattern(V, P, St1)
- end;
-vu_pattern(_, _, St) -> St.
-
-vu_pattern_list(V, Ps) -> vu_pattern_list(V, Ps, {false,false}).
-
-vu_pattern_list(V, Ps, St0) ->
- lists:foldl(fun(P, St) -> vu_pattern(V, P, St) end, St0, Ps).
-
-vu_pat_seg_list(V, Ss, St) ->
- lists:foldl(fun (#c_bitstr{val=Val,size=Size}, St0) ->
- case vu_pattern(V, Val, St0) of
- {true,true}=St1 -> St1;
- {_Used,Shad} -> {vu_expr(V, Size),Shad}
- end
- end, St, Ss).
-
-%% vu_var_list(VarName, [Var]) -> true | false.
-
-vu_var_list(V, Vs) ->
- lists:any(fun (#c_var{name=V2}) -> V =:= V2 end, Vs).