aboutsummaryrefslogtreecommitdiffstats
path: root/erts/doc/src/erl_ext_dist.xml
blob: 3730f0e8ac6e5ce45484bbd23191d912ecc66358 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">

<chapter>
  <header>
    <copyright>
      <year>2007</year>
      <year>2017</year>
      <holder>Ericsson AB, All Rights Reserved</holder>
    </copyright>
    <legalnotice>
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
 
      http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.

  The Initial Developer of the Original Code is Ericsson AB.
    </legalnotice>

    <title>External Term Format</title>
    <prepared>Kenneth</prepared>
    <docno></docno>
    <date>2007-09-21</date>
    <rev>PA1</rev>
    <file>erl_ext_dist.xml</file>
  </header>

  <section>
    <title>Introduction</title>
    <p>
      The external term format is mainly used in the distribution
      mechanism of Erlang.
    </p>
    <p>
      As Erlang has a fixed number of types, there is no need for a
      programmer to define a specification for the external format used
      within some application.
      All Erlang terms have an external representation and the interpretation
      of the different terms is application-specific.
    </p>
    <p>
      In Erlang the BIF <seealso marker="erts:erlang#term_to_binary/1">
      <c>erlang:term_to_binary/1,2</c></seealso> is used to convert a
      term into the external format.
      To convert binary data encoding to a term, the BIF
      <seealso marker="erts:erlang#binary_to_term/1">
      <c>erlang:binary_to_term/1</c></seealso> is used.
    </p>
    <p>
      The distribution does this implicitly when sending messages across
      node boundaries.
    </p>
    <marker id="overall_format"/>
    <p>
      The overall format of the term format is as follows:
    </p>
    <table align="left">
      <row>
        <cell align="center">1</cell>
        <cell align="center">1</cell>
        <cell align="center">N</cell>
      </row>
      <row>
        <cell align="center"><c>131</c></cell>
        <cell align="center"><c>Tag</c></cell>
        <cell align="center"><c>Data</c></cell>
      </row>
    <tcaption>Term Format</tcaption></table>
    <note>
      <p>
        When messages are
        <seealso marker="erl_dist_protocol#connected_nodes">passed between
        connected nodes</seealso> and a
        <seealso marker="#distribution_header">distribution
        header</seealso> is used, the first byte containing the version
        number (131) is omitted from the terms that follow the distribution
        header. This is because the version number is implied by the version
        number in the distribution header.
      </p>
    </note>
    <p>
      The compressed term format is as follows:
    </p>
    <table align="left">
      <row>
        <cell align="center">1</cell>
        <cell align="center">1</cell>
        <cell align="center">4</cell>
        <cell align="center">N</cell>
      </row>
      <row>
        <cell align="center"><c>131</c></cell>
        <cell align="center"><c>80</c></cell>
        <cell align="center"><c>UncompressedSize</c></cell>
        <cell align="center"><c>Zlib-compressedData</c></cell>
      </row>
    <tcaption>Compressed Term Format</tcaption></table>
    <p>
      Uncompressed size (unsigned 32-bit integer in big-endian byte order)
      is the size of the data before it was compressed.
      The compressed data has the following format when it has been expanded:
    </p>
    <table align="left">
      <row>
        <cell align="center">1</cell>
        <cell align="center">Uncompressed Size</cell>
      </row>
      <row>
        <cell align="center"><c>Tag</c></cell>
        <cell align="center"><c>Data</c></cell>
      </row>
    <tcaption>Compressed Data Format when Expanded</tcaption></table>
    <marker id="utf8_atoms"/>
    <note>
      <p>As from ERTS 9.0 (OTP 20), atoms may contain any Unicode
        characters and are always encoded using the UTF-8 external formats
	<seealso marker="#ATOM_UTF8_EXT"><c>ATOM_UTF8_EXT</c></seealso>
        or <seealso marker="#SMALL_ATOM_UTF8_EXT"><c>SMALL_ATOM_UTF8_EXT</c></seealso>.
	The old Latin-1 formats <seealso marker="#ATOM_EXT"><c>ATOM_EXT</c></seealso>
        and <seealso marker="#SMALL_ATOM_EXT"><c>SMALL_ATOM_EXT</c></seealso>
	are deprecated and are only kept for backward
	compatibility when decoding terms encoded by older nodes.</p>
      <p>Support for UTF-8 encoded atoms in the external format has been
        available since ERTS 5.10 (OTP R16). This abillity allows such old nodes
	to decode, store and encode any Unicode atoms received from a new OTP 20
        node.</p>
      <p>The maximum number of allowed characters in an atom is 255. In the
        UTF-8 case, each character can need 4 bytes to be encoded.</p>
    </note>
  </section>

  <section>
    <marker id="distribution_header"/>
    <title>Distribution Header</title>
    <p>
      The distribution header is sent by the erlang distribution to
      carry metadata about the coming
      <seealso marker="erl_dist_protocol#control_message">control message</seealso>
      and potential payload. It is primarily used to handle the atom cache
      in the Erlang distribution. Since OTP-22 it is also used to fragment
      large distribution messages into multiple smaller fragments.
      For more information about how the distribution uses the distribution header,
      see the documentation of the
      <seealso marker="erl_dist_protocol#connected_nodes">protocol between
      connected nodes</seealso> in the
      <seealso marker="erl_dist_protocol">distribution protocol</seealso>
      documentation.
    </p>
    <p>
      Any <seealso marker="#ATOM_CACHE_REF">ATOM_CACHE_REF</seealso>
      entries with corresponding <c>AtomCacheReferenceIndex</c> in terms
      encoded on the external format following a distribution header refer
      to the atom cache references made in the distribution header. The range
      is 0 &lt;= <c>AtomCacheReferenceIndex</c> &lt; 255, that is, at most 255
      different atom cache references from the following terms can be made.
    </p>
    <section>
      <title>Normal Distribution Header</title>
      <p>
        The non-fragmented distribution header format is as follows:
      </p>
      <table align="left">
        <row>
          <cell align="center">1</cell>
          <cell align="center">1</cell>
          <cell align="center">1</cell>
          <cell align="center">NumberOfAtomCacheRefs/2+1 | 0</cell>
          <cell align="center">N | 0</cell>
        </row>
        <row>
          <cell align="center"><c>131</c></cell>
          <cell align="center"><c>68</c></cell>
          <cell align="center"><c>NumberOfAtomCacheRefs</c></cell>
          <cell align="center"><c>Flags</c></cell>
          <cell align="center"><c>AtomCacheRefs</c></cell>
        </row>
      <tcaption>Normal Distribution Header Format</tcaption></table>
      <p>
        <c>Flags</c> consist of <c>NumberOfAtomCacheRefs/2+1</c> bytes,
        unless <c>NumberOfAtomCacheRefs</c> is <c>0</c>. If
        <c>NumberOfAtomCacheRefs</c> is <c>0</c>, <c>Flags</c> and
        <c>AtomCacheRefs</c> are omitted. Each atom cache reference has
        a half byte flag field. Flags corresponding to a specific
        <c>AtomCacheReferenceIndex</c> are located in flag byte number
        <c>AtomCacheReferenceIndex/2</c>. Flag byte 0 is the first byte
        after the <c>NumberOfAtomCacheRefs</c> byte. Flags for an even
        <c>AtomCacheReferenceIndex</c> are located in the least significant
        half byte and flags for an odd <c>AtomCacheReferenceIndex</c> are
        located in the most significant half byte.
      </p>
      <p>
        The flag field of an atom cache reference has the following
        format:
      </p>
      <table align="left">
        <row>
          <cell align="center">1 bit</cell>
          <cell align="center">3 bits</cell>
        </row>
        <row>
          <cell align="center"><c>NewCacheEntryFlag</c></cell>
          <cell align="center"><c>SegmentIndex</c></cell>
        </row>
      <tcaption></tcaption></table>
      <p>
        The most significant bit is the <c>NewCacheEntryFlag</c>. If set,
        the corresponding cache reference is new. The three least
        significant bits are the <c>SegmentIndex</c> of the corresponding
        atom cache entry. An atom cache consists of 8 segments, each of size
        256, that is, an atom cache can contain 2048 entries.
      </p>
      <p>
        After flag fields for atom cache references, another half byte flag
        field is located with the following format:
      </p>
      <table align="left">
        <row>
          <cell align="center">3 bits</cell>
          <cell align="center">1 bit</cell>
        </row>
        <row>
          <cell align="center"><c>CurrentlyUnused</c></cell>
          <cell align="center"><c>LongAtoms</c></cell>
        </row>
      <tcaption></tcaption></table>
      <p>
        The least significant bit in that half byte is flag <c>LongAtoms</c>.
        If it is set, 2 bytes are used for atom lengths instead of
        1 byte in the distribution header.
      </p>
      <p>
        After the <c>Flags</c> field follow the <c>AtomCacheRefs</c>. The
        first <c>AtomCacheRef</c> is the one corresponding to
        <c>AtomCacheReferenceIndex</c> 0. Higher indices follow
        in sequence up to index <c>NumberOfAtomCacheRefs - 1</c>.
      </p>
      <p>
        If the <c>NewCacheEntryFlag</c> for the next <c>AtomCacheRef</c> has
        been set, a <c>NewAtomCacheRef</c> on the following format follows:
      </p>
      <table align="left">
        <row>
          <cell align="center">1</cell>
          <cell align="center">1 | 2</cell>
          <cell align="center">Length</cell>
        </row>
        <row>
          <cell align="center"><c>InternalSegmentIndex</c></cell>
          <cell align="center"><c>Length</c></cell>
          <cell align="center"><c>AtomText</c></cell>
        </row>
      <tcaption></tcaption></table>
      <p>
        <c>InternalSegmentIndex</c> together with the <c>SegmentIndex</c>
        completely identify the location of an atom cache entry in the
        atom cache. <c>Length</c> is the number of bytes that <c>AtomText</c>
        consists of. Length is a 2 byte big-endian integer
        if flag <c>LongAtoms</c> has been set, otherwise a 1 byte
        integer. When distribution flag
        <seealso marker="erl_dist_protocol#dflags">
        <c>DFLAG_UTF8_ATOMS</c></seealso>
        has been exchanged between both nodes in the
        <seealso marker="erl_dist_protocol#distribution_handshake">
          distribution handshake</seealso>,
          characters in <c>AtomText</c> are encoded in UTF-8, otherwise
          in Latin-1. The following <c>CachedAtomRef</c>s with the same
          <c>SegmentIndex</c> and <c>InternalSegmentIndex</c> as this
          <c>NewAtomCacheRef</c> refer to this atom until a new
          <c>NewAtomCacheRef</c> with the same <c>SegmentIndex</c>
          and <c>InternalSegmentIndex</c> appear.
      </p>
      <p>
        For more information on encoding of atoms, see the
        <seealso marker="#utf8_atoms">note on UTF-8 encoded atoms</seealso>
        in the beginning of this section.
      </p>
      <p>
        If the <c>NewCacheEntryFlag</c> for the next <c>AtomCacheRef</c>
        has not been set, a <c>CachedAtomRef</c> on the following format
        follows:
      </p>
      <table align="left">
        <row>
          <cell align="center">1</cell>
        </row>
        <row>
          <cell align="center"><c>InternalSegmentIndex</c></cell>
        </row>
      <tcaption></tcaption></table>
      <p>
        <c>InternalSegmentIndex</c> together with the <c>SegmentIndex</c>
        identify the location of the atom cache entry in the atom cache.
        The atom corresponding to this <c>CachedAtomRef</c> is the
        latest <c>NewAtomCacheRef</c> preceding this <c>CachedAtomRef</c>
        in another previously passed distribution header.
      </p>
    </section>
    <section>
      <marker id="fragments"/>
      <title>Distribution Header for fragmented messages</title>
      <p>Messages sent between Erlang nodes can sometimes be
      quite large. Since OTP-22 it is possible to split large messages
      into smaller fragments in order to allow smaller messages to be interleaved
      between larges messages. It is only the <c>message</c> part of each
      <seealso marker="erl_dist_protocol#connected_nodes">distributed message</seealso>
      that may be split using fragmentation. Therefore it is recommended to use the
      <seealso marker="erl_dist_protocol#new-ctrlmessages-for-erlang-otp-22">
        PAYLOAD control messages</seealso> introduced in OTP-22.
      </p>
      <p>Fragmented distribution messages are only used if the receiving node
      signals that it supports them via the
      <seealso marker="erl_dist_protocol#dflags">DFLAG_FRAGMENTS</seealso> distribution
      flag.</p>
      <p>A process must complete the sending of a fragmented message before it
      can start sending any other message on the same distribution channel.</p>

      <p>The start of a sequence of fragmented messages looks like this:</p>
      <table align="left">
        <row>
          <cell align="center">1</cell>
          <cell align="center">1</cell>
          <cell align="center">8</cell>
          <cell align="center">8</cell>
          <cell align="center">1</cell>
          <cell align="center">NumberOfAtomCacheRefs/2+1 | 0</cell>
          <cell align="center">N | 0</cell>
        </row>
        <row>
          <cell align="center"><c>131</c></cell>
          <cell align="center"><c>69</c></cell>
          <cell align="center"><c>SequenceId</c></cell>
          <cell align="center"><c>FragmentId</c></cell>
          <cell align="center"><c>NumberOfAtomCacheRefs</c></cell>
          <cell align="center"><c>Flags</c></cell>
          <cell align="center"><c>AtomCacheRefs</c></cell>
        </row>
        <tcaption>Starting Fragmented Distribution Header Format</tcaption>
      </table>

      <p>The continuation of a sequence of fragmented messages looks like this:</p>
      <table align="left">
        <row>
          <cell align="center">1</cell>
          <cell align="center">1</cell>
          <cell align="center">8</cell>
          <cell align="center">8</cell>
        </row>
        <row>
          <cell align="center"><c>131</c></cell>
          <cell align="center"><c>70</c></cell>
          <cell align="center"><c>SequenceId</c></cell>
          <cell align="center"><c>FragmentId</c></cell>
        </row>
        <tcaption>Continuing Fragmented Distribution Header Format</tcaption>
      </table>

      <p>
        The starting distribution header is very similar to a non-fragmented distribution
        header. The atom cache works the same as for normal distribution header and
        is the same for the entire sequence. The additional fields added are the
        sequence id and fragment id.
      </p>

      <taglist>
        <tag>Sequence ID</tag>
        <item>
          <p>
            The sequence id is used to uniquely identify a fragmented message sent
            from one process to another on the same distributed connection. This is used
            to identify which sequence a fragment is a part of as the same process can
            be in the process of receiving multiple sequences at the same time.
          </p>
          <p>
            As one process can only be sending one fragmented message at once,
            it can be convenient to use the local PID as the sequence id.
          </p>
        </item>
        <tag>Fragments ID</tag>
        <item>
          <p>
            The Fragment ID is used to number the fragments in a sequence.
            The id starts at the total number of fragments and then decrements to 1
            (which is the final fragment). So if a sequence consists of 3 fragments
            the fragment id in the starting header will be 3, and then fragments 2 and 1
            are sent.
          </p>
          <p>
            The fragments must be delivered in the correct order, so if an unordered
            distribution carrier is used, they must be ordered before delivered to the
            Erlang run-time.
          </p>
        </item>
      </taglist>

      <section>
        <title>Example:</title>
        <p>
          As an example, let say that we want to send
          <c>{call, &lt;0.245.2>, {set_get_state, &lt;&lt;0:1024>>}}</c> to
          registered process <c>reg</c> using a fragment size of 128. To send
          this message we need a distribution header, atom cache updates,
          the control message (which would be <c>{6, &lt;0.245.2>, [], reg}</c> in this case)
          and finally the actual message. This would all be encoded into:
        </p>

        <code>
131,69,0,0,2,168,0,0,5,83,0,0,0,0,0,0,0,2,               %% Header with seq and frag id
5,4,137,9,10,5,236,3,114,101,103,9,4,99,97,108,108,      %% Atom cache updates
238,13,115,101,116,95,103,101,116,95,115,116,97,116,101,
104,4,97,6,103,82,0,0,0,0,85,0,0,0,0,2,82,1,82,2,        %% Control message
104,3,82,3,103,82,0,0,0,0,245,0,0,0,2,2,                 %% Actual message using cached atoms
104,2,82,4,109,0,0,0,128,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

131,70,0,0,2,168,0,0,5,83,0,0,0,0,0,0,0,1,               %% Cont Header with seq and frag id
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,               %% Rest of payload
0,0,0,0</code>

       <p>
         Let us break that apart into its components. First we have the
         distribution header tags together with the sequence id and
         a fragment id of 2.
       </p>
       <code>
131,69,                   %% Start fragment header
0,0,2,168,0,0,5,83,       %% The sequence ID
0,0,0,0,0,0,0,2,           %% The fragment ID
</code>
       <p>Then we have the updates to the atom cache:</p>
       <code>
5,4,137,9,  %% 5 atoms and their flags
10,5,       %% The already cached atom ids
236,3,114,101,103,  %% The atom 'reg'
9,4,99,97,108,108,  %% The atom 'call'
238,13,115,101,116,95,103,101,116,95,115,116,97,116,101, %% The atom 'set_get_state'
       </code>
       <p>
         The first byte says that we have 5 atoms that are part
         of the cache. Then follows three bytes that are the
         atom cache ref flags. Each of the flags uses 4 bits so
         they are a bit hard to read in decimal byte form. In
         binary half-byte form they look like this:
       </p>
       <code>0000, 0100, 1000, 1001, 1001</code>
       <p>
         As the high bit of the first two atoms in the
         cache are not set we know that they are already in the cache,
         so they do not have to be sent again (this is the node name of the
         receiving and sending node). Then follows the atoms that have to be sent,
         together with their segment ids.
       </p>
       <p>
         Then the listing of the atoms comes, starting with 10 and 5
         which are the atom refs of the already cached atoms. Then the
         new atoms are sent.
       </p>
       <p>
         When the atom cache is setup correctly the control message is sent.
       </p>
       <code>104,4,97,6,103,82,0,0,0,0,85,0,0,0,0,2,82,1,82,2,</code>
       <p>
         Note that up until here it is not allowed to fragments the message.
         The entire atom cache and control message has to be part of the
         starting fragment. After the control message the payload of the message
         is sent using 128 bytes:
       </p>
       <code>
104,3,82,3,103,82,0,0,0,0,245,0,0,0,2,2,
104,2,82,4,109,0,0,0,128,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
       </code>
       <p>
         Since the payload is larger than 128-bytes it is split into two
         fragments. The second fragment does not have any atom cache update
         instructions so it is a lot simpler:
       </p>
       <code>
131,70,0,0,2,168,0,0,5,83,0,0,0,0,0,0,0,1, %% Continuation dist header 70 with seq and frag id
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %% remaining payload
0,0,0,0
       </code>
       <note>
         <p>
           The fragment size of 128 is only used as an example.
           Any fragments size may be used when sending fragmented messages.
         </p>
       </note>
      </section>
    </section>
  </section>

  <section>
    <marker id="ATOM_CACHE_REF"/>
    <title>ATOM_CACHE_REF</title>
    <table align="left">
      <row>
        <cell align="center">1</cell>
        <cell align="center">1</cell>
      </row>
      <row>
        <cell align="center"><c>82</c></cell>
        <cell align="center"><c>AtomCacheReferenceIndex</c></cell>
      </row>
      <tcaption>ATOM_CACHE_REF</tcaption></table>
      <p>
        Refers to the atom with <c>AtomCacheReferenceIndex</c> in the
        <seealso marker="#distribution_header">distribution header</seealso>.
     </p>
  </section>

  <section>
    <marker id="SMALL_INTEGER_EXT"/>
    <title>SMALL_INTEGER_EXT</title>
    <table align="left">
      <row>
        <cell align="center">1</cell>
        <cell align="center">1</cell>
      </row>
      <row>
        <cell align="center"><c>97</c></cell>
        <cell align="center"><c>Int</c></cell>
      </row>
    <tcaption>SMALL_INTEGER_EXT</tcaption></table>
    <p>
      Unsigned 8-bit integer.
    </p>
  </section>

  <section>
    <marker id="INTEGER_EXT"/>
    <title>INTEGER_EXT</title>
    <table align="left">
      <row>
        <cell align="center">1</cell>
        <cell align="center">4</cell>
      </row>
      <row>
        <cell align="center"><c>98</c></cell>
        <cell align="center"><c>Int</c></cell>
      </row>
    <tcaption>INTEGER_EXT</tcaption></table>
    <p>
      Signed 32-bit integer in big-endian format.
    </p>
  </section>

  <section>
    <marker id="FLOAT_EXT"/>
    <title>FLOAT_EXT</title>
    <table align="left">
      <row>
        <cell align="center">1</cell>
        <cell align="center">31</cell>
      </row>
      <row>
        <cell align="center"><c>99</c></cell>
        <cell align="center"><c>Float string</c></cell>
      </row>
    <tcaption>FLOAT_EXT</tcaption></table>
    <p>
      A finite float (i.e. not inf, -inf or NaN) is stored in
      string format. The format used in sprintf to format the
      float is "%.20e"
      (there are more bytes allocated than necessary).
      To unpack the float, use sscanf with format "%lf".
    </p>
    <p>
      This term is used in minor version 0 of the external format;
      it has been superseded by
      <seealso marker="#NEW_FLOAT_EXT"><c>NEW_FLOAT_EXT</c></seealso>.
    </p>
  </section>

    <section>
      <marker id="PORT_EXT"/>
      <title>PORT_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">N</cell>
	    <cell align="center">4</cell>
	    <cell align="center">1</cell>
	  </row>
	  <row>
	    <cell align="center"><c>102</c></cell>
	    <cell align="center"><c>Node</c></cell>
	    <cell align="center"><c>ID</c></cell>
	    <cell align="center"><c>Creation</c></cell>
	  </row>
	<tcaption>PORT_EXT</tcaption></table>
	<p>
	  Same as <seealso marker="#NEW_PORT_EXT"><c>NEW_PORT_EXT</c></seealso>
	  except the <c>Creation</c> field is only one byte and only two
	  bits are significant, the rest are to be 0.
	</p>
    </section>

    <section>
      <marker id="NEW_PORT_EXT"/>
      <title>NEW_PORT_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">N</cell>
	    <cell align="center">4</cell>
	    <cell align="center">4</cell>
	  </row>
	  <row>
	    <cell align="center"><c>89</c></cell>
	    <cell align="center"><c>Node</c></cell>
	    <cell align="center"><c>ID</c></cell>
	    <cell align="center"><c>Creation</c></cell>
	  </row>
	<tcaption>NEW_PORT_EXT</tcaption></table>
	<p>
	  Encodes a port identifier (obtained from
          <seealso marker="erlang#open_port/2"><c>erlang:open_port/2</c></seealso>).
	  <c>Node</c> is an encoded atom, that is,
	  <seealso marker="#ATOM_UTF8_EXT"><c>ATOM_UTF8_EXT</c></seealso>,
	  <seealso marker="#SMALL_ATOM_UTF8_EXT"><c>SMALL_ATOM_UTF8_EXT</c></seealso>
	  or <seealso marker="#ATOM_CACHE_REF"><c>ATOM_CACHE_REF</c></seealso>.
	  <c>ID</c> is a 32-bit big endian unsigned integer. Only 28 bits are
	  significant; the rest are to be 0. The <c>Creation</c> works just like in
	  <seealso marker="#NEW_PID_EXT"><c>NEW_PID_EXT</c></seealso>.
	  Port operations are not allowed across node boundaries.
	</p>
	<p>Introduced in OTP 19, but only to be decoded and echoed back. Not
	  encoded for local ports. Planned to supersede <seealso marker="#PORT_EXT">
	  <c>PORT_EXT</c></seealso> in OTP 23 when
	  <seealso marker="erl_dist_protocol#dflags"><c>DFLAG_BIG_CREATON</c></seealso>
	  becomes mandatory.
	</p>
    </section>

    <section>
      <marker id="PID_EXT"/>
      <title>PID_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">N</cell>
	    <cell align="center">4</cell>
	    <cell align="center">4</cell>
	    <cell align="center">1</cell>
	  </row>
	  <row>
	    <cell align="center"><c>103</c></cell>
	    <cell align="center"><c>Node</c></cell>
	    <cell align="center"><c>ID</c></cell>
	    <cell align="center"><c>Serial</c></cell>
	    <cell align="center"><c>Creation</c></cell>
	  </row>
	<tcaption>PID_EXT</tcaption></table>
	<p>
	  Same as <seealso marker="#NEW_PID_EXT"><c>NEW_PID_EXT</c></seealso>
	  except the <c>Creation</c> field is only one byte and only two
	  bits are significant, the rest are to be 0.
	</p>
    </section>

    <section>
      <marker id="NEW_PID_EXT"/>
      <title>NEW_PID_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">N</cell>
	    <cell align="center">4</cell>
	    <cell align="center">4</cell>
	    <cell align="center">4</cell>
	  </row>
	  <row>
	    <cell align="center"><c>88</c></cell>
	    <cell align="center"><c>Node</c></cell>
	    <cell align="center"><c>ID</c></cell>
	    <cell align="center"><c>Serial</c></cell>
	    <cell align="center"><c>Creation</c></cell>
	  </row>
	<tcaption>NEW_PID_EXT</tcaption></table>
	<p>
	  Encodes an Erlang process identifier object.
	</p>
	<taglist>
	  <tag><c>Node</c></tag>
	  <item><p>The name of the originating node, encoded using
	    <seealso marker="#ATOM_UTF8_EXT"><c>ATOM_UTF8_EXT</c></seealso>,
	    <seealso marker="#SMALL_ATOM_UTF8_EXT"><c>SMALL_ATOM_UTF8_EXT</c></seealso>
	    or <seealso
	    marker="#ATOM_CACHE_REF"><c>ATOM_CACHE_REF</c></seealso>.</p>
	  </item>
	  <tag><c>ID</c></tag>
	  <item><p>A 32-bit big endian unsigned integer. Only 15 bits are
	    significant; the rest are to be 0.</p>
	  </item>
	  <tag><c>Serial</c></tag>
	  <item><p>A 32-bit big endian unsigned integer. Only 13 bits are
	    significant; the rest are to be 0.</p>
	  </item>
	  <tag><c>Creation</c></tag>
	  <item><p>A 32-bit big endian unsigned integer. All identifiers
	    originating from the same node incarnation must have identical <c>Creation</c>
	    values. This makes it possible to separate identifiers from old
	    (crashed) nodes from a new one. The value zero should be avoided for
	    normal operations as it is used as a wild card for debug purpose
	    (like a pid returned by <seealso marker="erts:erlang#list_to_pid/1">
	    erlang:list_to_pid/1</seealso>).</p>
	  </item>
	</taglist>
	<p>Introduced in OTP 19, but only to be decoded and echoed back. Not
	  encoded for local processes. Planned to supersede <seealso marker="#PID_EXT">
	  <c>PID_EXT</c></seealso> in OTP 23 when
	  <seealso marker="erl_dist_protocol#dflags"><c>DFLAG_BIG_CREATON</c></seealso>
	  becomes mandatory.
	</p>
    </section>

    <section>
      <marker id="SMALL_TUPLE_EXT"/>
      <title>SMALL_TUPLE_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">1</cell>
	    <cell align="center">N</cell>
	  </row>
	  <row>
	    <cell align="center"><c>104</c></cell>
	    <cell align="center"><c>Arity</c></cell>
	    <cell align="center"><c>Elements</c></cell>
	  </row>
	<tcaption>SMALL_TUPLE_EXT</tcaption></table>
	<p>
	  Encodes a tuple. The <c>Arity</c>
	  field is an unsigned byte that determines how many elements
	  that follows in section <c>Elements</c>.
	</p>
    </section>

    <section>
      <marker id="LARGE_TUPLE_EXT"/>
      <title>LARGE_TUPLE_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">4</cell>
	    <cell align="center">N</cell>
	  </row>
	  <row>
	    <cell align="center"><c>105</c></cell>
	    <cell align="center"><c>Arity</c></cell>
	    <cell align="center"><c>Elements</c></cell>
	  </row>
	<tcaption>LARGE_TUPLE_EXT</tcaption></table>
	<p>
	  Same as
	  <seealso marker="#SMALL_TUPLE_EXT"><c>SMALL_TUPLE_EXT</c></seealso>
	  except that <c>Arity</c> is an
          unsigned 4 byte integer in big-endian format.
	</p>
    </section>

    <section>
      <marker id="MAP_EXT"/>
      <title>MAP_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">4</cell>
	    <cell align="center">N</cell>
	  </row>
	  <row>
	    <cell align="center"><c>116</c></cell>
	    <cell align="center"><c>Arity</c></cell>
	    <cell align="center"><c>Pairs</c></cell>
	  </row>
	<tcaption>MAP_EXT</tcaption></table>
	<p>
	  Encodes a map. The <c>Arity</c> field is an unsigned
	  4 byte integer in big-endian format that determines the number of
	  key-value pairs in the map. Key and value pairs (<c>Ki => Vi</c>)
	  are encoded in section <c>Pairs</c> in the following order:
	  <c>K1, V1, K2, V2,..., Kn, Vn</c>.
	  Duplicate keys are <em>not allowed</em> within the same map.
	</p>
	<p><em>As from </em>Erlang/OTP 17.0</p>
    </section>

    <section>
      <marker id="NIL_EXT"/>
      <title>NIL_EXT</title>
      <table align="left">
	<row>
	  <cell align="center">1</cell>
	</row>
	<row>
	  <cell align="center"><c>106</c></cell>
	</row>
      <tcaption>NIL_EXT</tcaption></table>
      <p>
	The representation for an empty list, that is, the Erlang syntax
        <c>[]</c>.
      </p>
    </section>

    <section>
      <marker id="STRING_EXT"/>
      <title>STRING_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">2</cell>
	    <cell align="center">Len</cell>
	  </row>
	  <row>
	    <cell align="center"><c>107</c></cell>
	    <cell align="center"><c>Length</c></cell>
	    <cell align="center"><c>Characters</c></cell>
	  </row>
	<tcaption>STRING_EXT</tcaption></table>
	<p>
	  String does <em>not</em> have a corresponding Erlang representation,
	  but is an optimization for sending lists of bytes (integer in
	  the range 0-255) more efficiently over the distribution.
	  As field <c>Length</c> is an unsigned 2 byte integer
	  (big-endian), implementations must ensure that lists longer than
	  65535 elements are encoded as
	  <seealso marker="#LIST_EXT"><c>LIST_EXT</c></seealso>.
	</p>
    </section>

    <section>
      <marker id="LIST_EXT"/>
      <title>LIST_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">4</cell>
	    <cell align="center">&nbsp;</cell>
	    <cell align="center">&nbsp;</cell>
	  </row>
	  <row>
	    <cell align="center"><c>108</c></cell>
	    <cell align="center"><c>Length</c></cell>
	    <cell align="center"><c>Elements</c></cell>
	    <cell align="center"><c>Tail</c></cell>
	  </row>
	<tcaption>LIST_EXT</tcaption></table>
	<p>
	  <c>Length</c> is the number of elements that follows in section
	  <c>Elements</c>. <c>Tail</c> is the final tail of the list; it is
	  <seealso marker="#NIL_EXT"><c>NIL_EXT</c></seealso>
	  for a proper list, but can be any type if the list is
	  improper (for example, <c>[a|b]</c>).
	</p>
    </section>

    <section>
      <marker id="BINARY_EXT"/>
      <title>BINARY_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">4</cell>
	    <cell align="center">Len</cell>
	  </row>
	  <row>
	    <cell align="center"><c>109</c></cell>
	    <cell align="center"><c>Len</c></cell>
	    <cell align="center"><c>Data</c></cell>
	  </row>
	<tcaption>BINARY_EXT</tcaption></table>
	<p>
	  Binaries are generated with bit syntax expression or with
	  <seealso marker="erts:erlang#list_to_binary/1">
	  <c>erlang:list_to_binary/1</c></seealso>,
	  <seealso marker="erts:erlang#term_to_binary/1">
	  <c>erlang:term_to_binary/1</c></seealso>,
	  or as input from binary ports.
	  The <c>Len</c> length field is an unsigned 4 byte integer
	  (big-endian).
	</p>
    </section>

    <section>
      <marker id="SMALL_BIG_EXT"/>
      <title>SMALL_BIG_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">1</cell>
	    <cell align="center">1</cell>
	    <cell align="center">n</cell>
	  </row>
	  <row>
	    <cell align="center"><c>110</c></cell>
	    <cell align="center"><c>n</c></cell>
	    <cell align="center"><c>Sign</c></cell>
	    <cell align="center"><c>d(0)</c> ... <c>d(n-1)</c></cell>
	  </row>
	<tcaption>SMALL_BIG_EXT</tcaption></table>
	<p>
	  Bignums are stored in unary form with a <c>Sign</c> byte,
	  that is, 0 if the binum is positive and 1 if it is negative. The
	  digits are stored with the least significant byte stored first. To
	  calculate the integer, the following formula can be used:
	</p>
	<p><c>B</c> = 256<br/>
	  <c>(d0*B^0 + d1*B^1 + d2*B^2 + ... d(N-1)*B^(n-1))</c>
	</p>
    </section>

    <section>
      <marker id="LARGE_BIG_EXT"/>
      <title>LARGE_BIG_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">4</cell>
	    <cell align="center">1</cell>
	    <cell align="center">n</cell>
	  </row>
	  <row>
	    <cell align="center"><c>111</c></cell>
	    <cell align="center"><c>n</c></cell>
	    <cell align="center"><c>Sign</c></cell>
	    <cell align="center"><c>d(0)</c> ... <c>d(n-1)</c></cell>
	  </row>
	<tcaption>LARGE_BIG_EXT</tcaption></table>
	<p>
	  Same as <seealso marker="#SMALL_BIG_EXT">
	  <c>SMALL_BIG_EXT</c></seealso> 
	  except that the length field is an unsigned 4 byte integer.
	</p>
    </section>

    <section>
      <marker id="REFERENCE_EXT"/>
      <title>REFERENCE_EXT (deprecated)</title>
      <table align="left">
        <row>
          <cell align="center">1</cell>
          <cell align="center">N</cell>
          <cell align="center">4</cell>
          <cell align="center">1</cell>
        </row>
        <row>
          <cell align="center"><c>101</c></cell>
          <cell align="center"><c>Node</c></cell>
          <cell align="center"><c>ID</c></cell>
          <cell align="center"><c>Creation</c></cell>
        </row>
      <tcaption>REFERENCE_EXT</tcaption></table>
      <p>
	The same as <seealso marker="#NEW_REFERENCE_EXT">
	<c>NEW_REFERENCE_EXT</c></seealso> except <c>ID</c> is only one word
	(<c>Len</c> = 1).
      </p>
    </section>

    <section>
      <marker id="NEW_REFERENCE_EXT"/>
      <title>NEW_REFERENCE_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">2</cell>
	    <cell align="center">N</cell>
	    <cell align="center">1</cell>
	    <cell align="center">N'</cell>
	  </row>
	  <row>
	    <cell align="center"><c>114</c></cell>
	    <cell align="center"><c>Len</c></cell>
	    <cell align="center"><c>Node</c></cell>
	    <cell align="center"><c>Creation</c></cell>
	    <cell align="center"><c>ID ...</c></cell>
	  </row>
	<tcaption>NEW_REFERENCE_EXT</tcaption></table>
	<p>
	  The same as <seealso marker="#NEWER_REFERENCE_EXT">
	  <c>NEWER_REFERENCE_EXT</c></seealso> <em>except</em>:
	</p>
	<taglist>
	  <tag><c>ID</c></tag>
	  <item><p>In the first word (4 bytes) of <c>ID</c>, only 18 bits are
	    significant, the rest must be 0.</p>
	  </item>
	  <tag><c>Creation</c></tag>
	  <item><p>Only one byte long and only two bits are significant, the rest must be 0.</p>
	  </item>
	</taglist>
    </section>

    <section>
      <marker id="NEWER_REFERENCE_EXT"/>
      <title>NEWER_REFERENCE_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">2</cell>
	    <cell align="center">N</cell>
	    <cell align="center">4</cell>
	    <cell align="center">N'</cell>
	  </row>
	  <row>
	    <cell align="center"><c>90</c></cell>
	    <cell align="center"><c>Len</c></cell>
	    <cell align="center"><c>Node</c></cell>
	    <cell align="center"><c>Creation</c></cell>
	    <cell align="center"><c>ID ...</c></cell>
	  </row>
	<tcaption>NEWER_REFERENCE_EXT</tcaption></table>
	<p>
	  Encodes a reference term generated with
	  <seealso marker="erts:erlang#make_ref/0">erlang:make_ref/0</seealso>.
	</p>
	<taglist>
	  <tag><c>Node</c></tag>
	  <item><p>The name of the originating node, encoded using
	    <seealso marker="#ATOM_UTF8_EXT"><c>ATOM_UTF8_EXT</c></seealso>,
	    <seealso marker="#SMALL_ATOM_UTF8_EXT"><c>SMALL_ATOM_UTF8_EXT</c></seealso>
	    or <seealso marker="#ATOM_CACHE_REF"><c>ATOM_CACHE_REF</c></seealso>.</p>
	  </item>
	  <tag><c>Len</c></tag>
	  <item><p>A 16-bit big endian unsigned integer not larger than 3.</p>
	  </item>
	  <tag><c>ID</c></tag>
	  <item><p>A sequence of <c>Len</c> big-endian unsigned integers
	    (4 bytes each, so <c>N'</c>&nbsp;=&nbsp;4&nbsp;*&nbsp;<c>Len</c>),
	    but is to be regarded as uninterpreted data.</p>
	  </item>
	  <tag><c>Creation</c></tag>
	  <item><p>Works just like in
	  <seealso marker="#NEW_PID_EXT"><c>NEW_PID_EXT</c></seealso>.</p>
	  </item>
	</taglist>
	<p>Introduced in OTP 19, but only to be decoded and echoed back. Not
	  encoded for local references. Planned to supersede <seealso marker="#NEW_REFERENCE_EXT">
	  <c>NEW_REFERENCE_EXT</c></seealso> in OTP 23 when
	  <seealso marker="erl_dist_protocol#dflags"><c>DFLAG_BIG_CREATON</c></seealso>
	  becomes mandatory.
	</p>
    </section>

    <section>
      <marker id="FUN_EXT"/>
      <title>FUN_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">4</cell>
	    <cell align="center">N1</cell>
	    <cell align="center">N2</cell>
	    <cell align="center">N3</cell>
	    <cell align="center">N4</cell>
	    <cell align="center">N5</cell>
	  </row>
	  <row>
	    <cell align="center"><c>117</c></cell>
	    <cell align="center"><c>NumFree</c></cell>
	    <cell align="center"><c>Pid</c></cell>
	    <cell align="center"><c>Module</c></cell>
	    <cell align="center"><c>Index</c></cell>
	    <cell align="center"><c>Uniq</c></cell>
	    <cell align="center"><c>Free vars ...</c></cell>
	  </row>
	<tcaption>FUN_EXT</tcaption></table>
	<taglist>
	  <tag><c>Pid</c></tag>
	  <item>
	    <p>A process identifier as in
	      <seealso marker="#PID_EXT"><c>PID_EXT</c></seealso>.
	      Represents the process in which the fun was created.
	    </p>
	  </item>
	<tag><c>Module</c></tag>
	<item>
	  <p>Encoded as an atom, using
	    <seealso marker="#ATOM_UTF8_EXT"><c>ATOM_UTF8_EXT</c></seealso>,
	    <seealso marker="#SMALL_ATOM_UTF8_EXT"><c>SMALL_ATOM_UTF8_EXT</c></seealso>,
	    or <seealso marker="#ATOM_CACHE_REF">
	    <c>ATOM_CACHE_REF</c></seealso>.
	    This is the module that the fun is implemented in.
	  </p>
	</item>
	<tag><c>Index</c></tag>
	<item>
	  <p>An integer encoded using
	    <seealso marker="#SMALL_INTEGER_EXT">
	    <c>SMALL_INTEGER_EXT</c></seealso> 
	    or <seealso marker="#INTEGER_EXT"><c>INTEGER_EXT</c></seealso>.
	    It is typically a small index into the module's fun table.
	  </p>
	</item>
	<tag><c>Uniq</c></tag>
	<item>
	  <p>An integer encoded using
	    <seealso marker="#SMALL_INTEGER_EXT">
	    <c>SMALL_INTEGER_EXT</c></seealso> or 
	    <seealso marker="#INTEGER_EXT"><c>INTEGER_EXT</c></seealso>.
	    <c>Uniq</c> is the hash value of the parse for the fun.
	  </p>
	</item>
	<tag><c>Free vars</c></tag>
	<item>
	  <p><c>NumFree</c> number of terms, each one encoded according
	    to its type.
	  </p>
	</item>
	</taglist>
    </section>

    <section>
      <marker id="NEW_FUN_EXT"/>
      <title>NEW_FUN_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">4</cell>
	    <cell align="center">1</cell>
	    <cell align="center">16</cell>
	    <cell align="center">4</cell>
	    <cell align="center">4</cell>
	    <cell align="center">N1</cell>
	    <cell align="center">N2</cell>
	    <cell align="center">N3</cell>
	    <cell align="center">N4</cell>
	    <cell align="center">N5</cell>
	  </row>
	  <row>
	    <cell align="center"><c>112</c></cell>
	    <cell align="center"><c>Size</c></cell>
	    <cell align="center"><c>Arity</c></cell>
	    <cell align="center"><c>Uniq</c></cell>
	    <cell align="center"><c>Index</c></cell>
	    <cell align="center"><c>NumFree</c></cell>
	    <cell align="center"><c>Module</c></cell>
	    <cell align="center"><c>OldIndex</c></cell>
	    <cell align="center"><c>OldUniq</c></cell>
	    <cell align="center"><c>Pid</c></cell>
	    <cell align="center"><c>Free Vars</c></cell>
	  </row>
	<tcaption>NEW_FUN_EXT</tcaption></table>
	<p>
	  This is the new encoding of internal funs: <c>fun F/A</c> and
	  <c>fun(Arg1,..) -> ... end</c>.
	</p>
	<taglist>
	  <tag><c>Size</c></tag> 
	  <item>
	    <p>The total number of bytes, including field <c>Size</c>.</p>
	  </item>
	  <tag><c>Arity</c></tag> 
	  <item>
	    <p>The arity of the function implementing the fun.</p>
	  </item>
	  <tag><c>Uniq</c></tag>
	  <item>
	    <p>The 16 bytes MD5 of the significant parts of the Beam file.</p>
	  </item>
	  <tag><c>Index</c></tag> 
	  <item>
	    <p>An index number. Each fun within a module has an unique
	      index. <c>Index</c> is stored in big-endian byte order.
	    </p>
	  </item>
	  <tag><c>NumFree</c></tag> 
	  <item>
	    <p>The number of free variables.</p>
	  </item>
	  <tag><c>Module</c></tag>
	  <item>
	    <p>Encoded as an atom, using
	      <seealso marker="#ATOM_EXT"><c>ATOM_UTF8_EXT</c></seealso>, 
	      <seealso marker="#SMALL_ATOM_EXT"><c>SMALL_ATOM_UTF8_EXT</c></seealso>,
	      or <seealso marker="#ATOM_CACHE_REF">
	      <c>ATOM_CACHE_REF</c></seealso>. 
	      Is the module that the fun is implemented in.
	    </p>
	  </item>
	  <tag><c>OldIndex</c></tag>
	  <item>
	    <p>An integer encoded using
	      <seealso marker="#SMALL_INTEGER_EXT">
	      <c>SMALL_INTEGER_EXT</c></seealso> or
	      <seealso marker="#INTEGER_EXT"><c>INTEGER_EXT</c></seealso>.
	      Is typically a small index into the module's fun table.
	    </p>
	  </item>
	  <tag><c>OldUniq</c></tag>
	  <item>
	    <p>An integer encoded using
	      <seealso marker="#SMALL_INTEGER_EXT">
	      <c>SMALL_INTEGER_EXT</c></seealso> or 
	      <seealso marker="#INTEGER_EXT"><c>INTEGER_EXT</c></seealso>.
	      <c>Uniq</c> is the hash value of the parse tree for the fun.
	    </p>
	  </item>
	  <tag><c>Pid</c></tag>
	  <item>
	    <p>A process identifier as in
	      <seealso marker="#PID_EXT"><c>PID_EXT</c></seealso>.
	      Represents the process in which the fun was created.
	    </p>
	  </item>
	  <tag><c>Free vars</c></tag>
	  <item>
	    <p><c>NumFree</c> number of terms, each one encoded according
	      to its type.
	    </p>
	  </item>
	</taglist>
    </section>

    <section>
      <marker id="EXPORT_EXT"/>
      <title>EXPORT_EXT</title>	
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">N1</cell>
	    <cell align="center">N2</cell>
	    <cell align="center">N3</cell>
	  </row>
	  <row>
	    <cell align="center"><c>113</c></cell>
	    <cell align="center"><c>Module</c></cell>
	    <cell align="center"><c>Function</c></cell>
	    <cell align="center"><c>Arity</c></cell>
	  </row>
	<tcaption>EXPORT_EXT</tcaption></table>
	<p>
	  This term is the encoding for external funs: <c>fun M:F/A</c>.
	</p>
	<p>
	  <c>Module</c> and <c>Function</c> are atoms
	  (encoded using <seealso marker="#ATOM_EXT"><c>ATOM_UTF8_EXT</c></seealso>, 
	  <seealso marker="#SMALL_ATOM_EXT"><c>SMALL_ATOM_UTF8_EXT</c></seealso>, or
	  <seealso marker="#ATOM_CACHE_REF"><c>ATOM_CACHE_REF</c></seealso>).
	</p>
	<p>
	  <c>Arity</c> is an integer encoded using
	  <seealso marker="#SMALL_INTEGER_EXT">
	  <c>SMALL_INTEGER_EXT</c></seealso>.
	</p>
    </section>

    <section>
      <marker id="BIT_BINARY_EXT"/>
      <title>BIT_BINARY_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">4</cell>
	    <cell align="center">1</cell>
	    <cell align="center">Len</cell>
	  </row>
	  <row>
	    <cell align="center"><c>77</c></cell>
	    <cell align="center"><c>Len</c></cell>
	    <cell align="center"><c>Bits</c></cell>
	    <cell align="center"><c>Data</c></cell>
	  </row>
	<tcaption>BIT_BINARY_EXT</tcaption></table>
	<p>
	  This term represents a bitstring whose length in bits does
	  not have to be a multiple of 8.
	  The <c>Len</c> field is an unsigned 4 byte integer (big-endian).
	  The <c>Bits</c> field is the number of bits (1-8) that are used
	  in the last byte in the data field,
	  counting from the most significant bit to the least significant.
	</p>
    </section>

    <section>
      <marker id="NEW_FLOAT_EXT"/>
      <title>NEW_FLOAT_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">8</cell>
	  </row>
	  <row>
	    <cell align="center"><c>70</c></cell>
	    <cell align="center"><c>IEEE float</c></cell>
	  </row>
	<tcaption>NEW_FLOAT_EXT</tcaption></table>
	<p>
	  A finite float (i.e. not inf, -inf or NaN) is stored as 8 bytes
	  in big-endian IEEE format.
	</p>
	<p>
	  This term is used in minor version 1 of the external format.
	</p>
    </section>

    <section>
      <marker id="ATOM_UTF8_EXT"/>
      <title>ATOM_UTF8_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">2</cell>
	    <cell align="center">Len</cell>
	  </row>
	  <row>
	    <cell align="center"><c>118</c></cell>
	    <cell align="center"><c>Len</c></cell>
	    <cell align="center"><c>AtomName</c></cell>
	  </row>
	<tcaption>ATOM_UTF8_EXT</tcaption></table>
      <p>
	An atom is stored with a 2 byte unsigned length in big-endian order,
	followed by <c>Len</c> bytes containing the <c>AtomName</c> encoded
	in UTF-8.
      </p>
      <p>
	For more information on encoding of atoms, see the
	<seealso marker="#utf8_atoms">note on UTF-8 encoded atoms</seealso>
	in the beginning of this section.
      </p>
    </section>

    <section>
      <marker id="SMALL_ATOM_UTF8_EXT"/>
      <title>SMALL_ATOM_UTF8_EXT</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">1</cell>
	    <cell align="center">Len</cell>
	  </row>
	  <row>
	    <cell align="center"><c>119</c></cell>
	    <cell align="center"><c>Len</c></cell>
	    <cell align="center"><c>AtomName</c></cell>
	  </row>
	<tcaption>SMALL_ATOM_UTF8_EXT</tcaption></table>
      <p>
	An atom is stored with a 1 byte unsigned length,
	followed by <c>Len</c> bytes containing the <c>AtomName</c> encoded
	in UTF-8. Longer atoms encoded in UTF-8 can be represented using
	<seealso marker="#ATOM_UTF8_EXT"><c>ATOM_UTF8_EXT</c></seealso>.
      </p>
      <p>
	For more information on encoding of atoms, see the
	<seealso marker="#utf8_atoms">note on UTF-8 encoded atoms</seealso>
	in the beginning of this section.
      </p>
    </section>

    <section>
      <marker id="ATOM_EXT"/>
      <title>ATOM_EXT (deprecated)</title>
	<table align="left">
	  <row>
            <cell align="center">1</cell>
            <cell align="center">2</cell>
            <cell align="center">Len</cell>
	  </row>
	  <row>
            <cell align="center"><c>100</c></cell>
            <cell align="center"><c>Len</c></cell>
            <cell align="center"><c>AtomName</c></cell>
	  </row>
	<tcaption>ATOM_EXT</tcaption></table>
      <p>
        An atom is stored with a 2 byte unsigned length in big-endian order,
        followed by <c>Len</c> numbers of 8-bit Latin-1 characters that forms
        the <c>AtomName</c>. The maximum allowed value for <c>Len</c> is 255.
      </p>
    </section>

    <section>
      <marker id="SMALL_ATOM_EXT"/>
      <title>SMALL_ATOM_EXT (deprecated)</title>
	<table align="left">
	  <row>
	    <cell align="center">1</cell>
	    <cell align="center">1</cell>
	    <cell align="center">Len</cell>
	  </row>
	  <row>
	    <cell align="center"><c>115</c></cell>
	    <cell align="center"><c>Len</c></cell>
	    <cell align="center"><c>AtomName</c></cell>
	  </row>
	<tcaption>SMALL_ATOM_EXT</tcaption></table>
      <p>
	An atom is stored with a 1 byte unsigned length,
	followed by <c>Len</c> numbers of 8-bit Latin-1 characters that
	forms the <c>AtomName</c>.
      </p>
      <note>
	<p>
	  <c>SMALL_ATOM_EXT</c> was introduced in ERTS 5.7.2 and
	  require an exchange of distribution flag
	  <seealso marker="erl_dist_protocol#dflags">
	  <c>DFLAG_SMALL_ATOM_TAGS</c></seealso> in the
	  <seealso marker="erl_dist_protocol#distribution_handshake">
	  distribution handshake</seealso>.
	</p>
      </note>
    </section>

  </chapter>