aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_bs.erl
blob: 15d8d687fcbca0295c1cf4080725903746da944d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose: Peephole optimization of binary syntax instructions.

-module(beam_bs).

-export([module/2]).
-import(lists, [reverse/1]).

-spec module(beam_utils:module_code(), [compile:option()]) ->
                    {'ok',beam_utils:module_code()}.

module({Mod,Exp,Attr,Fs0,Lc}, _Opt) ->
    Fs = [function(F) || F <- Fs0],
    {ok,{Mod,Exp,Attr,Fs,Lc}}.

function({function,Name,Arity,CLabel,Is0}) ->
    try
	Is = bs_opt(Is0),
	{function,Name,Arity,CLabel,Is}
    catch
        Class:Error:Stack ->
	    io:fwrite("Function: ~w/~w\n", [Name,Arity]),
	    erlang:raise(Class, Error, Stack)
    end.

%%%
%%% Evaluate construction of constant bit fields.
%%% Combine bs_skip_bits2 and bs_test_tail2 instructions.
%%%

bs_opt([{bs_put,_,_,_}=I|Is0]) ->
    {BsPuts0,Is} = collect_bs_puts(Is0, [I]),
    BsPuts = opt_bs_puts(BsPuts0),
    BsPuts ++ bs_opt(Is);
bs_opt([{test,bs_skip_bits2,F,[Ctx,{integer,I},Unit,_Flags]},
            {test,bs_test_tail2,F,[Ctx,Bits]}|Is]) ->
    [{test,bs_test_tail2,F,[Ctx,Bits+I*Unit]}|bs_opt(Is)];
bs_opt([{test,bs_skip_bits2,F,[Ctx,{integer,I1},Unit1,Flags]},
            {test,bs_skip_bits2,F,[Ctx,{integer,I2},Unit2,_]}|Is]) ->
    I = {test,bs_skip_bits2,F,
         [Ctx,{integer,I1*Unit1+I2*Unit2},1,Flags]},
    bs_opt([I|Is]);
bs_opt([I|Is]) ->
    [I|bs_opt(Is)];
bs_opt([]) -> [].

collect_bs_puts([{bs_put,_,_,_}=I|Is], Acc) ->
    collect_bs_puts(Is, [I|Acc]);
collect_bs_puts([_|_]=Is, Acc) ->
    {reverse(Acc),Is}.

opt_bs_puts(Is) ->
    opt_bs_1(Is, []).

opt_bs_1([{bs_put,Fail,
	   {bs_put_float,1,Flags0},[{integer,Sz},Src]}=I0|Is], Acc) ->
    try eval_put_float(Src, Sz, Flags0) of
	<<Int:Sz>> ->
	    Flags = force_big(Flags0),
	    I = {bs_put,Fail,{bs_put_integer,1,Flags},
		 [{integer,Sz},{integer,Int}]},
	    opt_bs_1([I|Is], Acc)
    catch
	error:_ ->
	    opt_bs_1(Is, [I0|Acc])
    end;
opt_bs_1([{bs_put,_,{bs_put_integer,1,_},[{integer,8},{integer,_}]}|_]=IsAll,
	 Acc0) ->
    {Is,Acc} = bs_collect_string(IsAll, Acc0),
    opt_bs_1(Is, Acc);
opt_bs_1([{bs_put,Fail,{bs_put_integer,1,F},[{integer,Sz},{integer,N}]}=I|Is0],
	 Acc) when Sz > 8 ->
    case field_endian(F) of
	big ->
	    %% We can do this optimization for any field size without
	    %% risk for code explosion.
	    case bs_split_int(N, Sz, Fail, Is0) of
		no_split -> opt_bs_1(Is0, [I|Acc]);
		Is -> opt_bs_1(Is, Acc)
	    end;
	little when Sz < 128 ->
	    %% We only try to optimize relatively small fields, to
	    %% avoid an explosion in code size.
	    <<Int:Sz>> = <<N:Sz/little>>,
	    Flags = force_big(F),
	    Is = [{bs_put,Fail,{bs_put_integer,1,Flags},
		   [{integer,Sz},{integer,Int}]}|Is0],
	    opt_bs_1(Is, Acc);
	_ ->			      %native or too wide little field
	    opt_bs_1(Is0, [I|Acc])
    end;
opt_bs_1([{bs_put,Fail,{Op,U,F},[{integer,Sz},Src]}|Is], Acc) when U > 1 ->
    opt_bs_1([{bs_put,Fail,{Op,1,F},[{integer,U*Sz},Src]}|Is], Acc);
opt_bs_1([I|Is], Acc) ->
    opt_bs_1(Is, [I|Acc]);
opt_bs_1([], Acc) -> reverse(Acc).

eval_put_float(Src, Sz, Flags) when Sz =< 256 ->
    %%Only evaluate if Sz is reasonable.
    Val = value(Src),
    case field_endian(Flags) of
	little -> <<Val:Sz/little-float-unit:1>>;
	big -> <<Val:Sz/big-float-unit:1>>
        %% native intentionally not handled here - we can't optimize
        %% it.
    end.

value({integer,I}) -> I;
value({float,F}) -> F.

bs_collect_string(Is, [{bs_put,_,{bs_put_string,Len,{string,Str}},[]}|Acc]) ->
    bs_coll_str_1(Is, Len, reverse(Str), Acc);
bs_collect_string(Is, Acc) ->
    bs_coll_str_1(Is, 0, [], Acc).

bs_coll_str_1([{bs_put,_,{bs_put_integer,U,_},[{integer,Sz},{integer,V}]}|Is],
	      Len, StrAcc, IsAcc) when U*Sz =:= 8 ->
    Byte = V band 16#FF,
    bs_coll_str_1(Is, Len+1, [Byte|StrAcc], IsAcc);
bs_coll_str_1(Is, Len, StrAcc, IsAcc) ->
    {Is,[{bs_put,{f,0},{bs_put_string,Len,{string,reverse(StrAcc)}},[]}|IsAcc]}.

field_endian({field_flags,F}) -> field_endian_1(F).

field_endian_1([big=E|_]) -> E;
field_endian_1([little=E|_]) -> E;
field_endian_1([native=E|_]) -> E;
field_endian_1([_|Fs]) -> field_endian_1(Fs).

force_big({field_flags,F}) ->
    {field_flags,force_big_1(F)}.

force_big_1([big|_]=Fs) -> Fs;
force_big_1([little|Fs]) -> [big|Fs];
force_big_1([F|Fs]) -> [F|force_big_1(Fs)].

bs_split_int(0, Sz, _, _) when Sz > 64 ->
    %% We don't want to split in this case because the
    %% string will consist of only zeroes.
    no_split;
bs_split_int(-1, Sz, _, _) when Sz > 64 ->
    %% We don't want to split in this case because the
    %% string will consist of only 255 bytes.
    no_split;
bs_split_int(N, Sz, Fail, Acc) ->
    FirstByteSz = case Sz rem 8 of
		      0 -> 8;
		      Rem -> Rem
		  end,
    bs_split_int_1(N, FirstByteSz, Sz, Fail, Acc).

bs_split_int_1(-1, _, Sz, Fail, Acc) when Sz > 64 ->
    I = {bs_put,Fail,{bs_put_integer,1,{field_flags,[big]}},
	 [{integer,Sz},{integer,-1}]},
    [I|Acc];
bs_split_int_1(0, _, Sz, Fail, Acc) when Sz > 64 ->
    I = {bs_put,Fail,{bs_put_integer,1,{field_flags,[big]}},
	 [{integer,Sz},{integer,0}]},
    [I|Acc];
bs_split_int_1(N, ByteSz, Sz, Fail, Acc) when Sz > 0 ->
    Mask = (1 bsl ByteSz) - 1,
    I = {bs_put,Fail,{bs_put_integer,1,{field_flags,[big]}},
	 [{integer,ByteSz},{integer,N band Mask}]},
    bs_split_int_1(N bsr ByteSz, 8, Sz-ByteSz, Fail, [I|Acc]);
bs_split_int_1(_, _, _, _, Acc) -> Acc.