aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_ssa_opt.erl
blob: aa94d8d67181684ddcebabc38e5a52524aa1790e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%

%%%
%%% This is a collection of various optimizations that don't need a separate
%%% pass by themselves and/or are mutually beneficial to other passes.
%%%
%%% The optimizations are applied in "phases," each with a list of sub-passes
%%% to run. These sub-passes are applied on all functions in a module before
%%% moving on to the next phase, which lets us gather module-level information
%%% in one phase and then apply it in the next without having to risk working
%%% with incomplete information.
%%%
%%% Each sub-pass operates on a #st{} record and a func_info_db(), where the
%%% former is just a #b_function{} whose blocks can be represented either in
%%% linear or map form, and the latter is a map with information about all
%%% functions in the module (see beam_ssa_opt.hrl for more details).
%%%

-module(beam_ssa_opt).
-export([module/2]).

-include("beam_ssa_opt.hrl").

-import(lists, [all/2,append/1,duplicate/2,foldl/3,keyfind/3,member/2,
                reverse/1,reverse/2,
                splitwith/2,sort/1,takewhile/2,unzip/1]).

-define(DEFAULT_REPETITIONS, 2).

-spec module(beam_ssa:b_module(), [compile:option()]) ->
                    {'ok',beam_ssa:b_module()}.

-record(st, {ssa :: [{beam_ssa:label(),beam_ssa:b_blk()}] |
                    beam_ssa:block_map(),
             args :: [beam_ssa:b_var()],
             cnt :: beam_ssa:label(),
             anno :: beam_ssa:anno()}).
-type st_map() :: #{ func_id() => #st{} }.

module(Module, Opts) ->
    FuncDb0 = case proplists:get_value(no_module_opt, Opts, false) of
                  false -> build_func_db(Module);
                  true -> #{}
              end,

    %% Passes that perform module-level optimizations are often aided by
    %% optimizing callers before callees and vice versa, so we optimize all
    %% functions in call order, flipping it as required.
    StMap0 = build_st_map(Module),
    Order = get_call_order_po(StMap0, FuncDb0),

    Phases =
        [{Order, prologue_passes(Opts)}] ++
        repeat(Opts, repeated_passes(Opts), Order) ++
        [{Order, epilogue_passes(Opts)}],

    {StMap, _FuncDb} = foldl(fun({FuncIds, Ps}, {StMap, FuncDb}) ->
                                     phase(FuncIds, Ps, StMap, FuncDb)
                             end, {StMap0, FuncDb0}, Phases),

    {ok, finish(Module, StMap)}.

phase([FuncId | Ids], Ps, StMap, FuncDb0) ->
    try
        {St, FuncDb} =
            compile:run_sub_passes(Ps, {map_get(FuncId, StMap), FuncDb0}),

        phase(Ids, Ps, StMap#{ FuncId => St }, FuncDb)
    catch
        Class:Error:Stack ->
            #b_local{name=Name,arity=Arity} = FuncId,
            io:fwrite("Function: ~w/~w\n", [Name,Arity]),
            erlang:raise(Class, Error, Stack)
    end;
phase([], _Ps, StMap, FuncDb) ->
    {StMap, FuncDb}.

%% Repeats the given passes, alternating the order between runs to make the
%% type pass more efficient.
repeat(Opts, Ps, OrderA) ->
    Repeat = proplists:get_value(ssa_opt_repeat, Opts, ?DEFAULT_REPETITIONS),
    OrderB = reverse(OrderA),
    repeat_1(Repeat, Ps, OrderA, OrderB).

repeat_1(0, _Opts, _OrderA, _OrderB) ->
    [];
repeat_1(N, Ps, OrderA, OrderB) when N > 0, N rem 2 =:= 0 ->
    [{OrderA, Ps} | repeat_1(N - 1, Ps, OrderA, OrderB)];
repeat_1(N, Ps, OrderA, OrderB) when N > 0, N rem 2 =:= 1 ->
    [{OrderB, Ps} | repeat_1(N - 1, Ps, OrderA, OrderB)].

%%

get_func_id(F) ->
    {_Mod, Name, Arity} = beam_ssa:get_anno(func_info, F),
    #b_local{name=#b_literal{val=Name}, arity=Arity}.

-spec build_st_map(#b_module{}) -> st_map().
build_st_map(#b_module{body=Fs}) ->
    build_st_map_1(Fs, #{}).

build_st_map_1([F | Fs], Map) ->
    #b_function{anno=Anno,args=Args,cnt=Counter,bs=Bs} = F,
    St = #st{anno=Anno,args=Args,cnt=Counter,ssa=Bs},
    build_st_map_1(Fs, Map#{ get_func_id(F) => St });
build_st_map_1([], Map) ->
    Map.

-spec finish(#b_module{}, st_map()) -> #b_module{}.
finish(#b_module{body=Fs0}=Module, StMap) ->
    Module#b_module{body=finish_1(Fs0, StMap)}.

finish_1([F0 | Fs], StMap) ->
    #st{anno=Anno,cnt=Counter,ssa=Blocks} = map_get(get_func_id(F0), StMap),
    F = F0#b_function{anno=Anno,bs=Blocks,cnt=Counter},
    [F | finish_1(Fs, StMap)];
finish_1([], _StMap) ->
    [].

%%

-define(PASS(N), {N,fun N/1}).

prologue_passes(Opts) ->
    Ps = [?PASS(ssa_opt_split_blocks),
          ?PASS(ssa_opt_coalesce_phis),
          ?PASS(ssa_opt_tail_phis),
          ?PASS(ssa_opt_element),
          ?PASS(ssa_opt_linearize),
          ?PASS(ssa_opt_tuple_size),
          ?PASS(ssa_opt_record),
          ?PASS(ssa_opt_cse),                   %Helps the first type pass.
          ?PASS(ssa_opt_type_start)],
    passes_1(Ps, Opts).

%% These passes all benefit from each other (in roughly this order), so they
%% are repeated as required.
repeated_passes(Opts) ->
    Ps = [?PASS(ssa_opt_live),
          ?PASS(ssa_opt_bs_puts),
          ?PASS(ssa_opt_dead),
          ?PASS(ssa_opt_cse),
          ?PASS(ssa_opt_tail_phis),
          ?PASS(ssa_opt_type_continue)],        %Must run after ssa_opt_dead to
                                                %clean up phi nodes.
    passes_1(Ps, Opts).

epilogue_passes(Opts) ->
    Ps = [?PASS(ssa_opt_type_finish),
          ?PASS(ssa_opt_float),
          ?PASS(ssa_opt_live),                  %One last time to clean up the
                                                %mess left by the float pass.
          ?PASS(ssa_opt_bsm),
          ?PASS(ssa_opt_bsm_units),
          ?PASS(ssa_opt_bsm_shortcut),
          ?PASS(ssa_opt_sw),
          ?PASS(ssa_opt_blockify),
          ?PASS(ssa_opt_sink),
          ?PASS(ssa_opt_merge_blocks),
          ?PASS(ssa_opt_trim_unreachable)],
    passes_1(Ps, Opts).

passes_1(Ps, Opts0) ->
    Negations = [{list_to_atom("no_"++atom_to_list(N)),N} ||
                    {N,_} <- Ps],
    Opts = proplists:substitute_negations(Negations, Opts0),
    [case proplists:get_value(Name, Opts, true) of
         true ->
             P;
         false ->
             {NoName,Name} = keyfind(Name, 2, Negations),
             {NoName,fun(S) -> S end}
     end || {Name,_}=P <- Ps].

%% Builds a function information map with basic information about incoming and
%% outgoing local calls, as well as whether the function is exported.
-spec build_func_db(#b_module{}) -> func_info_db().
build_func_db(#b_module{body=Fs,exports=Exports}) ->
    try
        fdb_1(Fs, gb_sets:from_list(Exports), #{})
    catch
        %% All module-level optimizations are invalid when a NIF can override a
        %% function, so we have to bail out.
        throw:load_nif -> #{}
    end.

fdb_1([#b_function{ args=Args,bs=Bs }=F | Fs], Exports, FuncDb0) ->
    Id = get_func_id(F),

    #b_local{name=#b_literal{val=Name}, arity=Arity} = Id,
    Exported = gb_sets:is_element({Name, Arity}, Exports),
    ArgTypes = duplicate(length(Args), #{}),

    FuncDb1 = case FuncDb0 of
                  %% We may have an entry already if someone's called us.
                  #{ Id := Info } ->
                      FuncDb0#{ Id := Info#func_info{ exported=Exported,
                                                      arg_types=ArgTypes }};
                  #{} ->
                      FuncDb0#{ Id => #func_info{ exported=Exported,
                                                  arg_types=ArgTypes }}
              end,

    FuncDb = beam_ssa:fold_rpo(fun(_L, #b_blk{is=Is}, FuncDb) ->
                                       fdb_is(Is, Id, FuncDb)
                               end, FuncDb1, Bs),

    fdb_1(Fs, Exports, FuncDb);
fdb_1([], _Exports, FuncDb) ->
    FuncDb.

fdb_is([#b_set{op=call,
               args=[#b_local{}=Callee | _]} | Is],
       Caller, FuncDb) ->
    fdb_is(Is, Caller, fdb_update(Caller, Callee, FuncDb));
fdb_is([#b_set{op=call,
               args=[#b_remote{mod=#b_literal{val=erlang},
                               name=#b_literal{val=load_nif}},
                     _Path, _LoadInfo]} | _Is], _Caller, _FuncDb) ->
    throw(load_nif);
fdb_is([_ | Is], Caller, FuncDb) ->
    fdb_is(Is, Caller, FuncDb);
fdb_is([], _Caller, FuncDb) ->
    FuncDb.

fdb_update(Caller, Callee, FuncDb) ->
    CallerVertex = maps:get(Caller, FuncDb, #func_info{}),
    CalleeVertex = maps:get(Callee, FuncDb, #func_info{}),

    Calls = ordsets:add_element(Callee, CallerVertex#func_info.out),
    CalledBy = ordsets:add_element(Caller, CalleeVertex#func_info.in),

    FuncDb#{ Caller => CallerVertex#func_info{out=Calls},
             Callee => CalleeVertex#func_info{in=CalledBy} }.

%% Returns the post-order of all local calls in this module. That is, it starts
%% with the functions that don't call any others and then walks up the call
%% chain.
%%
%% Functions where module-level optimization is disabled are added last in
%% arbitrary order.

get_call_order_po(StMap, FuncDb) ->
    Leaves = maps:fold(fun(Id, #func_info{out=[]}, Acc) ->
                               [Id | Acc];
                          (_, _, Acc) ->
                               Acc
                       end, [], FuncDb),

    Order = gco_po_1(sort(Leaves), FuncDb, [], #{}),

    Order ++ maps:fold(fun(K, _V, Acc) ->
                               case is_map_key(K, FuncDb) of
                                   false -> [K | Acc];
                                   true -> Acc
                               end
                       end, [], StMap).

gco_po_1([Id | Ids], FuncDb, Children, Seen) when not is_map_key(Id, Seen) ->
    [Id | gco_po_1(Ids, FuncDb, [Id | Children], Seen#{ Id => true })];
gco_po_1([_Id | Ids], FuncDb, Children, Seen) ->
    gco_po_1(Ids, FuncDb, Children, Seen);
gco_po_1([], FuncDb, [_|_]=Children, Seen) ->
    gco_po_1(gco_po_parents(Children, FuncDb), FuncDb, [], Seen);
gco_po_1([], _FuncDb, [], _Seen) ->
    [].

gco_po_parents([Child | Children], FuncDb) ->
    #{ Child := #func_info{in=Parents}} = FuncDb,
    Parents ++ gco_po_parents(Children, FuncDb);
gco_po_parents([], _FuncDb) ->
    [].

%%%
%%% Trivial sub passes.
%%%

ssa_opt_dead({#st{ssa=Linear}=St, FuncDb}) ->
    {St#st{ssa=beam_ssa_dead:opt(Linear)}, FuncDb}.

ssa_opt_linearize({#st{ssa=Blocks}=St, FuncDb}) ->
    {St#st{ssa=beam_ssa:linearize(Blocks)}, FuncDb}.

ssa_opt_type_start({#st{ssa=Linear0,args=Args,anno=Anno}=St0, FuncDb0}) ->
    {Linear, FuncDb} = beam_ssa_type:opt_start(Linear0, Args, Anno, FuncDb0),
    {St0#st{ssa=Linear}, FuncDb}.

ssa_opt_type_continue({#st{ssa=Linear0,args=Args,anno=Anno}=St0, FuncDb0}) ->
    {Linear, FuncDb} = beam_ssa_type:opt_continue(Linear0, Args, Anno, FuncDb0),
    {St0#st{ssa=Linear}, FuncDb}.

ssa_opt_type_finish({#st{args=Args,anno=Anno0}=St0, FuncDb0}) ->
    {Anno, FuncDb} = beam_ssa_type:opt_finish(Args, Anno0, FuncDb0),
    {St0#st{anno=Anno}, FuncDb}.

ssa_opt_blockify({#st{ssa=Linear}=St, FuncDb}) ->
    {St#st{ssa=maps:from_list(Linear)}, FuncDb}.

ssa_opt_trim_unreachable({#st{ssa=Blocks}=St, FuncDb}) ->
    {St#st{ssa=beam_ssa:trim_unreachable(Blocks)}, FuncDb}.

%%%
%%% Split blocks before certain instructions to enable more optimizations.
%%%
%%% Splitting before element/2 enables the optimization that swaps
%%% element/2 instructions.
%%%
%%% Splitting before call and make_fun instructions gives more opportunities
%%% for sinking get_tuple_element instructions.
%%%

ssa_opt_split_blocks({#st{ssa=Blocks0,cnt=Count0}=St, FuncDb}) ->
    P = fun(#b_set{op={bif,element}}) -> true;
           (#b_set{op=call}) -> true;
           (#b_set{op=make_fun}) -> true;
           (_) -> false
        end,
    {Blocks,Count} = beam_ssa:split_blocks(P, Blocks0, Count0),
    {St#st{ssa=Blocks,cnt=Count}, FuncDb}.

%%%
%%% Coalesce phi nodes.
%%%
%%% Nested cases can led to code such as this:
%%%
%%%     10:
%%%       _1 = phi {literal value1, label 8}, {Var, label 9}
%%%       br 11
%%%
%%%     11:
%%%       _2 = phi {_1, label 10}, {literal false, label 3}
%%%
%%% The phi nodes can be coalesced like this:
%%%
%%%     11:
%%%       _2 = phi {literal value1, label 8}, {Var, label 9}, {literal false, label 3}
%%%
%%% Coalescing can help other optimizations, and can in some cases reduce register
%%% shuffling (if the phi variables for two phi nodes happens to be allocated to
%%% different registers).
%%%

ssa_opt_coalesce_phis({#st{ssa=Blocks0}=St, FuncDb}) ->
    Ls = beam_ssa:rpo(Blocks0),
    Blocks = c_phis_1(Ls, Blocks0),
    {St#st{ssa=Blocks}, FuncDb}.

c_phis_1([L|Ls], Blocks0) ->
    case maps:get(L, Blocks0) of
        #b_blk{is=[#b_set{op=phi}|_]}=Blk ->
            Blocks = c_phis_2(L, Blk, Blocks0),
            c_phis_1(Ls, Blocks);
        #b_blk{} ->
            c_phis_1(Ls, Blocks0)
    end;
c_phis_1([], Blocks) -> Blocks.

c_phis_2(L, #b_blk{is=Is0}=Blk0, Blocks0) ->
    case c_phis_args(Is0, Blocks0) of
        none ->
            Blocks0;
        {_,_,Preds}=Info ->
            Is = c_rewrite_phis(Is0, Info),
            Blk = Blk0#b_blk{is=Is},
            Blocks = Blocks0#{L:=Blk},
            c_fix_branches(Preds, L, Blocks)
    end.

c_phis_args([#b_set{op=phi,args=Args0}|Is], Blocks) ->
    case c_phis_args_1(Args0, Blocks) of
        none ->
            c_phis_args(Is, Blocks);
        Res ->
            Res
    end;
c_phis_args(_, _Blocks) -> none.

c_phis_args_1([{Var,Pred}|As], Blocks) ->
    case c_get_pred_vars(Var, Pred, Blocks) of
        none ->
            c_phis_args_1(As, Blocks);
        Result ->
            Result
    end;
c_phis_args_1([], _Blocks) -> none.

c_get_pred_vars(Var, Pred, Blocks) ->
    case maps:get(Pred, Blocks) of
        #b_blk{is=[#b_set{op=phi,dst=Var,args=Args}]} ->
            {Var,Pred,Args};
        #b_blk{} ->
            none
    end.

c_rewrite_phis([#b_set{op=phi,args=Args0}=I|Is], Info) ->
    Args = c_rewrite_phi(Args0, Info),
    [I#b_set{args=Args}|c_rewrite_phis(Is, Info)];
c_rewrite_phis(Is, _Info) -> Is.

c_rewrite_phi([{Var,Pred}|As], {Var,Pred,Values}) ->
    Values ++ As;
c_rewrite_phi([{Value,Pred}|As], {_,Pred,Values}) ->
    [{Value,P} || {_,P} <- Values] ++ As;
c_rewrite_phi([A|As], Info) ->
    [A|c_rewrite_phi(As, Info)];
c_rewrite_phi([], _Info) -> [].

c_fix_branches([{_,Pred}|As], L, Blocks0) ->
    #b_blk{last=Last0} = Blk0 = maps:get(Pred, Blocks0),
    #b_br{bool=#b_literal{val=true}} = Last0,   %Assertion.
    Last = Last0#b_br{bool=#b_literal{val=true},succ=L,fail=L},
    Blk = Blk0#b_blk{last=Last},
    Blocks = Blocks0#{Pred:=Blk},
    c_fix_branches(As, L, Blocks);
c_fix_branches([], _, Blocks) -> Blocks.

%%%
%%% Eliminate phi nodes in the tail of a function.
%%%
%%% Try to eliminate short blocks that starts with a phi node
%%% and end in a return. For example:
%%%
%%%    Result = phi { Res1, 4 }, { literal true, 5 }
%%%    Ret = put_tuple literal ok, Result
%%%    ret Ret
%%%
%%% The code in this block can be inserted at the end blocks 4 and
%%% 5. Thus, the following code can be inserted into block 4:
%%%
%%%    Ret:1 = put_tuple literal ok, Res1
%%%    ret Ret:1
%%%
%%% And the following code into block 5:
%%%
%%%    Ret:2 = put_tuple literal ok, literal true
%%%    ret Ret:2
%%%
%%% Which can be further simplified to:
%%%
%%%    ret literal {ok, true}
%%%
%%% This transformation may lead to more code improvements:
%%%
%%%   - Stack trimming
%%%   - Fewer test_heap instructions
%%%   - Smaller stack frames
%%%

ssa_opt_tail_phis({#st{ssa=SSA0,cnt=Count0}=St, FuncDb}) ->
    {SSA,Count} = opt_tail_phis(SSA0, Count0),
    {St#st{ssa=SSA,cnt=Count}, FuncDb}.

opt_tail_phis(Blocks, Count) when is_map(Blocks) ->
    opt_tail_phis(maps:values(Blocks), Blocks, Count);
opt_tail_phis(Linear0, Count0) when is_list(Linear0) ->
    Blocks0 = maps:from_list(Linear0),
    {Blocks,Count} = opt_tail_phis(Blocks0, Count0),
    {beam_ssa:linearize(Blocks),Count}.

opt_tail_phis([#b_blk{is=Is0,last=Last}|Bs], Blocks0, Count0) ->
    case {Is0,Last} of
        {[#b_set{op=phi,args=[_,_|_]}|_],#b_ret{arg=#b_var{}}=Ret} ->
            {Phis,Is} = splitwith(fun(#b_set{op=Op}) -> Op =:= phi end, Is0),
            case suitable_tail_ops(Is) of
                true ->
                    {Blocks,Count} = opt_tail_phi(Phis, Is, Ret,
                                                  Blocks0, Count0),
                    opt_tail_phis(Bs, Blocks, Count);
                false ->
                    opt_tail_phis(Bs, Blocks0, Count0)
            end;
        {_,_} ->
            opt_tail_phis(Bs, Blocks0, Count0)
    end;
opt_tail_phis([], Blocks, Count) ->
    {Blocks,Count}.

opt_tail_phi(Phis0, Is, Ret, Blocks0, Count0) ->
    Phis = rel2fam(reduce_phis(Phis0)),
    {Blocks,Count,Cost} =
        foldl(fun(PhiArg, Acc) ->
                      opt_tail_phi_arg(PhiArg, Is, Ret, Acc)
              end, {Blocks0,Count0,0}, Phis),
    MaxCost = length(Phis) * 3 + 2,
    if
        Cost =< MaxCost ->
            %% The transformation would cause at most a slight
            %% increase in code size if no more optimizations
            %% can be applied.
            {Blocks,Count};
        true ->
            %% The code size would be increased too much.
            {Blocks0,Count0}
    end.

reduce_phis([#b_set{dst=PhiDst,args=PhiArgs}|Is]) ->
    [{L,{PhiDst,Val}} || {Val,L} <- PhiArgs] ++ reduce_phis(Is);
reduce_phis([]) -> [].

opt_tail_phi_arg({PredL,Sub0}, Is0, Ret0, {Blocks0,Count0,Cost0}) ->
    Blk0 = map_get(PredL, Blocks0),
    #b_blk{is=IsPrefix,last=#b_br{succ=Next,fail=Next}} = Blk0,
    case is_exit_bif(IsPrefix) of
        false ->
            Sub1 = maps:from_list(Sub0),
            {Is1,Count,Sub} = new_names(Is0, Sub1, Count0, []),
            Is2 = [sub(I, Sub) || I <- Is1],
            Cost = build_cost(Is2, Cost0),
            Is = IsPrefix ++ Is2,
            Ret = sub(Ret0, Sub),
            Blk = Blk0#b_blk{is=Is,last=Ret},
            Blocks = Blocks0#{PredL:=Blk},
            {Blocks,Count,Cost};
        true ->
            %% The block ends in a call to a function that
            %% will cause an exception.
            {Blocks0,Count0,Cost0+3}
    end.

is_exit_bif([#b_set{op=call,
                    args=[#b_remote{mod=#b_literal{val=Mod},
                                    name=#b_literal{val=Name}}|Args]}]) ->
    erl_bifs:is_exit_bif(Mod, Name, length(Args));
is_exit_bif(_) -> false.

new_names([#b_set{dst=Dst}=I|Is], Sub0, Count0, Acc) ->
    {NewDst,Count} = new_var(Dst, Count0),
    Sub = Sub0#{Dst=>NewDst},
    new_names(Is, Sub, Count, [I#b_set{dst=NewDst}|Acc]);
new_names([], Sub, Count, Acc) ->
    {reverse(Acc),Count,Sub}.

suitable_tail_ops(Is) ->
    all(fun(#b_set{op=Op}) ->
                is_suitable_tail_op(Op)
        end, Is).

is_suitable_tail_op({bif,_}) -> true;
is_suitable_tail_op(put_list) -> true;
is_suitable_tail_op(put_tuple) -> true;
is_suitable_tail_op(_) -> false.

build_cost([#b_set{op=put_list,args=Args}|Is], Cost) ->
    case are_all_literals(Args) of
        true ->
            build_cost(Is, Cost);
        false ->
            build_cost(Is, Cost + 1)
    end;
build_cost([#b_set{op=put_tuple,args=Args}|Is], Cost) ->
    case are_all_literals(Args) of
        true ->
            build_cost(Is, Cost);
        false ->
            build_cost(Is, Cost + length(Args) + 1)
    end;
build_cost([#b_set{op={bif,_},args=Args}|Is], Cost) ->
    case are_all_literals(Args) of
        true ->
            build_cost(Is, Cost);
        false ->
            build_cost(Is, Cost + 1)
    end;
build_cost([], Cost) -> Cost.

are_all_literals(Args) ->
    all(fun(#b_literal{}) -> true;
                (_) -> false
             end, Args).

%%%
%%% Order element/2 calls.
%%%
%%% Order an unbroken chain of element/2 calls for the same tuple
%%% with the same failure label so that the highest element is
%%% retrieved first. That will allow the other element/2 calls to
%%% be replaced with get_tuple_element/3 instructions.
%%%

ssa_opt_element({#st{ssa=Blocks}=St, FuncDb}) ->
    %% Collect the information about element instructions in this
    %% function.
    GetEls = collect_element_calls(beam_ssa:linearize(Blocks)),

    %% Collect the element instructions into chains. The
    %% element calls in each chain are ordered in reverse
    %% execution order.
    Chains = collect_chains(GetEls, []),

    %% For each chain, swap the first element call with the
    %% element call with the highest index.
    {St#st{ssa=swap_element_calls(Chains, Blocks)}, FuncDb}.

collect_element_calls([{L,#b_blk{is=Is0,last=Last}}|Bs]) ->
    case {Is0,Last} of
        {[#b_set{op={bif,element},dst=Element,
                 args=[#b_literal{val=N},#b_var{}=Tuple]},
          #b_set{op=succeeded,dst=Bool,args=[Element]}],
         #b_br{bool=Bool,succ=Succ,fail=Fail}} ->
            Info = {L,Succ,{Tuple,Fail},N},
            [Info|collect_element_calls(Bs)];
        {_,_} ->
            collect_element_calls(Bs)
    end;
collect_element_calls([]) -> [].

collect_chains([{This,_,V,_}=El|Els], [{_,This,V,_}|_]=Chain) ->
    %% Add to the previous chain.
    collect_chains(Els, [El|Chain]);
collect_chains([El|Els], [_,_|_]=Chain) ->
    %% Save the previous chain and start a new chain.
    [Chain|collect_chains(Els, [El])];
collect_chains([El|Els], _Chain) ->
    %% The previous chain is too short; discard it and start a new.
    collect_chains(Els, [El]);
collect_chains([], [_,_|_]=Chain) ->
    %% Save the last chain.
    [Chain];
collect_chains([], _) ->  [].

swap_element_calls([[{L,_,_,N}|_]=Chain|Chains], Blocks0) ->
    Blocks = swap_element_calls_1(Chain, {N,L}, Blocks0),
    swap_element_calls(Chains, Blocks);
swap_element_calls([], Blocks) -> Blocks.

swap_element_calls_1([{L1,_,_,N1}], {N2,L2}, Blocks) when N2 > N1 ->
    %% We have reached the end of the chain, and the first
    %% element instrution to be executed. Its index is lower
    %% than the maximum index found while traversing the chain,
    %% so we will need to swap the instructions.
    #{L1:=Blk1,L2:=Blk2} = Blocks,
    [#b_set{dst=Dst1}=GetEl1,Succ1] = Blk1#b_blk.is,
    [#b_set{dst=Dst2}=GetEl2,Succ2] = Blk2#b_blk.is,
    Is1 = [GetEl2,Succ1#b_set{args=[Dst2]}],
    Is2 = [GetEl1,Succ2#b_set{args=[Dst1]}],
    Blocks#{L1:=Blk1#b_blk{is=Is1},L2:=Blk2#b_blk{is=Is2}};
swap_element_calls_1([{L,_,_,N1}|Els], {N2,_}, Blocks) when N1 > N2 ->
    swap_element_calls_1(Els, {N2,L}, Blocks);
swap_element_calls_1([_|Els], Highest, Blocks) ->
    swap_element_calls_1(Els, Highest, Blocks);
swap_element_calls_1([], _, Blocks) ->
    %% Nothing to do. The element call with highest index
    %% is already the first one to be executed.
    Blocks.

%%%
%%% Record optimization.
%%%
%%% Replace tuple matching with an is_tagged_tuple instruction
%%% when applicable.
%%%

ssa_opt_record({#st{ssa=Linear}=St, FuncDb}) ->
    Blocks = maps:from_list(Linear),
    {St#st{ssa=record_opt(Linear, Blocks)}, FuncDb}.

record_opt([{L,#b_blk{is=Is0,last=Last}=Blk0}|Bs], Blocks) ->
    Is = record_opt_is(Is0, Last, Blocks),
    Blk = Blk0#b_blk{is=Is},
    [{L,Blk}|record_opt(Bs, Blocks)];
record_opt([], _Blocks) -> [].

record_opt_is([#b_set{op={bif,is_tuple},dst=Bool,args=[Tuple]}=Set],
              Last, Blocks) ->
    case is_tagged_tuple(Tuple, Bool, Last, Blocks) of
        {yes,Size,Tag} ->
            Args = [Tuple,Size,Tag],
            [Set#b_set{op=is_tagged_tuple,args=Args}];
        no ->
            [Set]
    end;
record_opt_is([I|Is], Last, Blocks) ->
    [I|record_opt_is(Is, Last, Blocks)];
record_opt_is([], _Last, _Blocks) -> [].

is_tagged_tuple(#b_var{}=Tuple, Bool,
                #b_br{bool=Bool,succ=Succ,fail=Fail},
                Blocks) ->
    SuccBlk = maps:get(Succ, Blocks),
    is_tagged_tuple_1(SuccBlk, Tuple, Fail, Blocks);
is_tagged_tuple(_, _, _, _) -> no.

is_tagged_tuple_1(#b_blk{is=Is,last=Last}, Tuple, Fail, Blocks) ->
    case Is of
        [#b_set{op={bif,tuple_size},dst=ArityVar,
                args=[#b_var{}=Tuple]},
         #b_set{op={bif,'=:='},
                dst=Bool,
                args=[ArityVar, #b_literal{val=ArityVal}=Arity]}]
        when is_integer(ArityVal) ->
            case Last of
                #b_br{bool=Bool,succ=Succ,fail=Fail} ->
                    SuccBlk = maps:get(Succ, Blocks),
                    case is_tagged_tuple_2(SuccBlk, Tuple, Fail) of
                        no ->
                            no;
                        {yes,Tag} ->
                            {yes,Arity,Tag}
                    end;
                _ ->
                    no
            end;
        _ ->
            no
    end.

is_tagged_tuple_2(#b_blk{is=Is,
                         last=#b_br{bool=#b_var{}=Bool,fail=Fail}},
                  Tuple, Fail) ->
    is_tagged_tuple_3(Is, Bool, Tuple);
is_tagged_tuple_2(#b_blk{}, _, _) -> no.

is_tagged_tuple_3([#b_set{op=get_tuple_element,
                          dst=TagVar,
                          args=[#b_var{}=Tuple,#b_literal{val=0}]}|Is],
                  Bool, Tuple) ->
    is_tagged_tuple_4(Is, Bool, TagVar);
is_tagged_tuple_3([_|Is], Bool, Tuple) ->
    is_tagged_tuple_3(Is, Bool, Tuple);
is_tagged_tuple_3([], _, _) -> no.

is_tagged_tuple_4([#b_set{op={bif,'=:='},dst=Bool,
                          args=[#b_var{}=TagVar,
                                #b_literal{val=TagVal}=Tag]}],
                 Bool, TagVar) when is_atom(TagVal) ->
    {yes,Tag};
is_tagged_tuple_4([_|Is], Bool, TagVar) ->
    is_tagged_tuple_4(Is, Bool, TagVar);
is_tagged_tuple_4([], _, _) -> no.

%%%
%%% Common subexpression elimination (CSE).
%%%
%%% Eliminate repeated evaluation of identical expressions. To avoid
%%% increasing the size of the stack frame, we don't eliminate
%%% subexpressions across instructions that clobber the X registers.
%%%

ssa_opt_cse({#st{ssa=Linear}=St, FuncDb}) ->
    M = #{0=>#{}},
    {St#st{ssa=cse(Linear, #{}, M)}, FuncDb}.

cse([{L,#b_blk{is=Is0,last=Last0}=Blk}|Bs], Sub0, M0) ->
    Es0 = maps:get(L, M0),
    {Is1,Es,Sub} = cse_is(Is0, Es0, Sub0, []),
    Last = sub(Last0, Sub),
    M = cse_successors(Is1, Blk, Es, M0),
    Is = reverse(Is1),
    [{L,Blk#b_blk{is=Is,last=Last}}|cse(Bs, Sub, M)];
cse([], _, _) -> [].

cse_successors([#b_set{op=succeeded,args=[Src]},Bif|_], Blk, EsSucc, M0) ->
    case cse_suitable(Bif) of
        true ->
            %% The previous instruction only has a valid value at the success branch.
            %% We must remove the substitution for Src from the failure branch.
            #b_blk{last=#b_br{succ=Succ,fail=Fail}} = Blk,
            M = cse_successors_1([Succ], EsSucc, M0),
            EsFail = maps:filter(fun(_, Val) -> Val =/= Src end, EsSucc),
            cse_successors_1([Fail], EsFail, M);
        false ->
            %% There can't be any replacement for Src in EsSucc. No need for
            %% any special handling.
            cse_successors_1(beam_ssa:successors(Blk), EsSucc, M0)
    end;
cse_successors(_Is, Blk, Es, M) ->
    cse_successors_1(beam_ssa:successors(Blk), Es, M).

cse_successors_1([L|Ls], Es0, M) ->
    case M of
        #{L:=Es1} when map_size(Es1) =:= 0 ->
            %% The map is already empty. No need to do anything
            %% since the intersection will be empty.
            cse_successors_1(Ls, Es0, M);
        #{L:=Es1} ->
            %% Calculate the intersection of the two maps.
            %% Both keys and values must match.
            Es = maps:filter(fun(Key, Value) ->
                                     case Es1 of
                                         #{Key:=Value} -> true;
                                         #{} -> false
                                     end
                             end, Es0),
            cse_successors_1(Ls, Es0, M#{L:=Es});
        #{} ->
            cse_successors_1(Ls, Es0, M#{L=>Es0})
    end;
cse_successors_1([], _, M) -> M.

cse_is([#b_set{op=succeeded,dst=Bool,args=[Src]}=I0|Is], Es, Sub0, Acc) ->
    I = sub(I0, Sub0),
    case I of
        #b_set{args=[Src]} ->
            cse_is(Is, Es, Sub0, [I|Acc]);
        #b_set{} ->
            %% The previous instruction has been eliminated. Eliminate the
            %% 'succeeded' instruction too.
            Sub = Sub0#{Bool=>#b_literal{val=true}},
            cse_is(Is, Es, Sub, Acc)
    end;
cse_is([#b_set{dst=Dst}=I0|Is], Es0, Sub0, Acc) ->
    I = sub(I0, Sub0),
    case beam_ssa:clobbers_xregs(I) of
        true ->
            %% Retaining the expressions map across calls and other
            %% clobbering instructions would work, but it would cause
            %% the common subexpressions to be saved to Y registers,
            %% which would probably increase the size of the stack
            %% frame.
            cse_is(Is, #{}, Sub0, [I|Acc]);
        false ->
            case cse_expr(I) of
                none ->
                    %% Not suitable for CSE.
                    cse_is(Is, Es0, Sub0, [I|Acc]);
                {ok,ExprKey} ->
                    case Es0 of
                        #{ExprKey:=Src} ->
                            Sub = Sub0#{Dst=>Src},
                            cse_is(Is, Es0, Sub, Acc);
                        #{} ->
                            Es = Es0#{ExprKey=>Dst},
                            cse_is(Is, Es, Sub0, [I|Acc])
                    end
            end
    end;
cse_is([], Es, Sub, Acc) ->
    {Acc,Es,Sub}.

cse_expr(#b_set{op=Op,args=Args}=I) ->
    case cse_suitable(I) of
        true -> {ok,{Op,Args}};
        false -> none
    end.

cse_suitable(#b_set{op=get_hd}) -> true;
cse_suitable(#b_set{op=get_tl}) -> true;
cse_suitable(#b_set{op=put_list}) -> true;
cse_suitable(#b_set{op=put_tuple}) -> true;
cse_suitable(#b_set{op={bif,tuple_size}}) ->
    %% Doing CSE for tuple_size/1 can prevent the
    %% creation of test_arity and select_tuple_arity
    %% instructions. That could decrease performance
    %% and beam_validator could fail to understand
    %% that tuple operations that follow are safe.
    false;
cse_suitable(#b_set{anno=Anno,op={bif,Name},args=Args}) ->
    %% Doing CSE for floating point operators is unsafe.
    %% Doing CSE for comparison operators would prevent
    %% creation of 'test' instructions.
    Arity = length(Args),
    not (is_map_key(float_op, Anno) orelse
         erl_internal:new_type_test(Name, Arity) orelse
         erl_internal:comp_op(Name, Arity) orelse
         erl_internal:bool_op(Name, Arity));
cse_suitable(#b_set{}) -> false.

%%%
%%% Using floating point instructions.
%%%
%%% Use the special floating points version of arithmetic
%%% instructions, if the operands are known to be floats or the result
%%% of the operation will be a float.
%%%
%%% The float instructions were never used in guards before, so we
%%% will take special care to keep not using them in guards.  Using
%%% them in guards would require a new version of the 'fconv'
%%% instruction that would take a failure label.  Since it is unlikely
%%% that using float instructions in guards would be benefical, why
%%% bother implementing a new instruction?  Also, implementing float
%%% instructions in guards in HiPE could turn out to be a lot of work.
%%%

-record(fs,
        {s=undefined :: 'undefined' | 'cleared',
         regs=#{} :: #{beam_ssa:b_var():=beam_ssa:b_var()},
         fail=none :: 'none' | beam_ssa:label(),
         non_guards :: gb_sets:set(beam_ssa:label()),
         bs :: beam_ssa:block_map()
        }).

ssa_opt_float({#st{ssa=Linear0,cnt=Count0}=St, FuncDb}) ->
    NonGuards0 = float_non_guards(Linear0),
    NonGuards = gb_sets:from_list(NonGuards0),
    Blocks = maps:from_list(Linear0),
    Fs = #fs{non_guards=NonGuards,bs=Blocks},
    {Linear,Count} = float_opt(Linear0, Count0, Fs),
    {St#st{ssa=Linear,cnt=Count}, FuncDb}.

float_non_guards([{L,#b_blk{is=Is}}|Bs]) ->
    case Is of
        [#b_set{op=landingpad}|_] ->
            [L|float_non_guards(Bs)];
        _ ->
            float_non_guards(Bs)
    end;
float_non_guards([]) -> [?BADARG_BLOCK].

float_opt([{L,#b_blk{last=#b_br{fail=F}}=Blk}|Bs0],
            Count0, #fs{non_guards=NonGuards}=Fs) ->
    case gb_sets:is_member(F, NonGuards) of
        true ->
            %% This block is not inside a guard.
            %% We can do the optimization.
            float_opt_1(L, Blk, Bs0, Count0, Fs);
        false ->
            %% This block is inside a guard. Don't do
            %% any floating point optimizations.
            {Bs,Count} = float_opt(Bs0, Count0, Fs),
            {[{L,Blk}|Bs],Count}
    end;
float_opt([{L,Blk}|Bs], Count, Fs) ->
    float_opt_1(L, Blk, Bs, Count, Fs);
float_opt([], Count, _Fs) ->
    {[],Count}.

float_opt_1(L, #b_blk{is=Is0}=Blk0, Bs0, Count0, Fs0) ->
    case float_opt_is(Is0, Fs0, Count0, []) of
        {Is1,Fs1,Count1} ->
            Fs2 = float_fail_label(Blk0, Fs1),
            Fail = Fs2#fs.fail,
            {Flush,Blk,Fs,Count2} = float_maybe_flush(Blk0, Fs2, Count1),
            Split = float_split_conv(Is1, Blk),
            {Blks0,Count3} = float_number(Split, L, Count2),
            {Blks,Count4} = float_conv(Blks0, Fail, Count3),
            {Bs,Count} = float_opt(Bs0, Count4, Fs),
            {Blks++Flush++Bs,Count};
        none ->
            {Bs,Count} = float_opt(Bs0, Count0, Fs0),
            {[{L,Blk0}|Bs],Count}
    end.

%% Split {float,convert} instructions into individual blocks.
float_split_conv(Is0, Blk) ->
    Br = #b_br{bool=#b_literal{val=true},succ=0,fail=0},
    case splitwith(fun(#b_set{op=Op}) ->
                           Op =/= {float,convert}
                   end, Is0) of
        {Is,[]} ->
            [Blk#b_blk{is=Is}];
        {[_|_]=Is1,[#b_set{op={float,convert}}=Conv|Is2]} ->
            [#b_blk{is=Is1,last=Br},
             #b_blk{is=[Conv],last=Br}|float_split_conv(Is2, Blk)];
        {[],[#b_set{op={float,convert}}=Conv|Is1]} ->
            [#b_blk{is=[Conv],last=Br}|float_split_conv(Is1, Blk)]
    end.

%% Number the blocks that were split.
float_number([B|Bs0], FirstL, Count0) ->
    {Bs,Count} = float_number(Bs0, Count0),
    {[{FirstL,B}|Bs],Count}.

float_number([B|Bs0], Count0) ->
    {Bs,Count} = float_number(Bs0, Count0+1),
    {[{Count0,B}|Bs],Count};
float_number([], Count) ->
    {[],Count}.

%% Insert 'succeeded' instructions after each {float,convert}
%% instruction.
float_conv([{L,#b_blk{is=Is0}=Blk0}|Bs0], Fail, Count0) ->
    case Is0 of
        [#b_set{op={float,convert}}=Conv] ->
            {Bool0,Count1} = new_reg('@ssa_bool', Count0),
            Bool = #b_var{name=Bool0},
            Succeeded = #b_set{op=succeeded,dst=Bool,
                               args=[Conv#b_set.dst]},
            Is = [Conv,Succeeded],
            [{NextL,_}|_] = Bs0,
            Br = #b_br{bool=Bool,succ=NextL,fail=Fail},
            Blk = Blk0#b_blk{is=Is,last=Br},
            {Bs,Count} = float_conv(Bs0, Fail, Count1),
            {[{L,Blk}|Bs],Count};
        [_|_] ->
            case Bs0 of
                [{NextL,_}|_] ->
                    Br = #b_br{bool=#b_literal{val=true},
                               succ=NextL,fail=NextL},
                    Blk = Blk0#b_blk{last=Br},
                    {Bs,Count} = float_conv(Bs0, Fail, Count0),
                    {[{L,Blk}|Bs],Count};
                [] ->
                    {[{L,Blk0}],Count0}
            end
    end.

float_maybe_flush(Blk0, #fs{s=cleared,fail=Fail,bs=Blocks}=Fs0, Count0) ->
    #b_blk{last=#b_br{bool=#b_var{},succ=Succ}=Br} = Blk0,
    #b_blk{is=Is} = maps:get(Succ, Blocks),
    case Is of
        [#b_set{anno=#{float_op:=_}}|_] ->
            %% The next operation is also a floating point operation.
            %% No flush needed.
            {[],Blk0,Fs0,Count0};
        _ ->
            %% Flush needed.
            {Bool0,Count1} = new_reg('@ssa_bool', Count0),
            Bool = #b_var{name=Bool0},

            %% Allocate block numbers.
            CheckL = Count1,              %For checkerror.
            FlushL = Count1 + 1,          %For flushing of float regs.
            Count = Count1 + 2,
            Blk = Blk0#b_blk{last=Br#b_br{succ=CheckL}},

            %% Build the block with the checkerror instruction.
            CheckIs = [#b_set{op={float,checkerror},dst=Bool}],
            CheckBr = #b_br{bool=Bool,succ=FlushL,fail=Fail},
            CheckBlk = #b_blk{is=CheckIs,last=CheckBr},

            %% Build the block that flushes all registers.
            FlushIs = float_flush_regs(Fs0),
            FlushBr = #b_br{bool=#b_literal{val=true},succ=Succ,fail=Succ},
            FlushBlk = #b_blk{is=FlushIs,last=FlushBr},

            %% Update state and blocks.
            Fs = Fs0#fs{s=undefined,regs=#{},fail=none},
            FlushBs = [{CheckL,CheckBlk},{FlushL,FlushBlk}],
            {FlushBs,Blk,Fs,Count}
    end;
float_maybe_flush(Blk, Fs, Count) ->
    {[],Blk,Fs,Count}.

float_opt_is([#b_set{op=succeeded,args=[Src]}=I0],
             #fs{regs=Rs}=Fs, Count, Acc) ->
    case Rs of
        #{Src:=Fr} ->
            I = I0#b_set{args=[Fr]},
            {reverse(Acc, [I]),Fs,Count};
        #{} ->
            {reverse(Acc, [I0]),Fs,Count}
    end;
float_opt_is([#b_set{anno=Anno0}=I0|Is0], Fs0, Count0, Acc) ->
    case Anno0 of
        #{float_op:=FTypes} ->
            Anno = maps:remove(float_op, Anno0),
            I1 = I0#b_set{anno=Anno},
            {Is,Fs,Count} = float_make_op(I1, FTypes, Fs0, Count0),
            float_opt_is(Is0, Fs, Count, reverse(Is, Acc));
        #{} ->
            float_opt_is(Is0, Fs0#fs{regs=#{}}, Count0, [I0|Acc])
    end;
float_opt_is([], Fs, _Count, _Acc) ->
    #fs{s=undefined} = Fs,                      %Assertion.
    none.

float_make_op(#b_set{op={bif,Op},dst=Dst,args=As0}=I0,
              Ts, #fs{s=S,regs=Rs0}=Fs, Count0) ->
    {As1,Rs1,Count1} = float_load(As0, Ts, Rs0, Count0, []),
    {As,Is0} = unzip(As1),
    {Fr,Count2} = new_reg('@fr', Count1),
    FrDst = #b_var{name=Fr},
    I = I0#b_set{op={float,Op},dst=FrDst,args=As},
    Rs = Rs1#{Dst=>FrDst},
    Is = append(Is0) ++ [I],
    case S of
        undefined ->
            {Ignore,Count} = new_reg('@ssa_ignore', Count2),
            C = #b_set{op={float,clearerror},dst=#b_var{name=Ignore}},
            {[C|Is],Fs#fs{s=cleared,regs=Rs},Count};
        cleared ->
            {Is,Fs#fs{regs=Rs},Count2}
    end.

float_load([A|As], [T|Ts], Rs0, Count0, Acc) ->
    {Load,Rs,Count} = float_reg_arg(A, T, Rs0, Count0),
    float_load(As, Ts, Rs, Count, [Load|Acc]);
float_load([], [], Rs, Count, Acc) ->
    {reverse(Acc),Rs,Count}.

float_reg_arg(A, T, Rs, Count0) ->
    case Rs of
        #{A:=Fr} ->
            {{Fr,[]},Rs,Count0};
        #{} ->
            {Fr,Count} = new_float_copy_reg(Count0),
            Dst = #b_var{name=Fr},
            I = float_load_reg(T, A, Dst),
            {{Dst,[I]},Rs#{A=>Dst},Count}
    end.

float_load_reg(convert, #b_var{}=Src, Dst) ->
    #b_set{op={float,convert},dst=Dst,args=[Src]};
float_load_reg(convert, #b_literal{val=Val}=Src, Dst) ->
    try float(Val) of
        F ->
            #b_set{op={float,put},dst=Dst,args=[#b_literal{val=F}]}
    catch
        error:_ ->
            %% Let the exception happen at runtime.
            #b_set{op={float,convert},dst=Dst,args=[Src]}
    end;
float_load_reg(float, Src, Dst) ->
    #b_set{op={float,put},dst=Dst,args=[Src]}.

new_float_copy_reg(Count) ->
    new_reg('@fr_copy', Count).

new_reg(Base, Count) ->
    Fr = {Base,Count},
    {Fr,Count+1}.

float_fail_label(#b_blk{last=Last}, Fs) ->
    case Last of
        #b_br{bool=#b_var{},fail=Fail} ->
            Fs#fs{fail=Fail};
        _ ->
            Fs
    end.

float_flush_regs(#fs{regs=Rs}) ->
    maps:fold(fun(_, #b_var{name={'@fr_copy',_}}, Acc) ->
                      Acc;
                 (Dst, Fr, Acc) ->
                      [#b_set{op={float,get},dst=Dst,args=[Fr]}|Acc]
              end, [], Rs).

%%%
%%% Live optimization.
%%%
%%% Optimize instructions whose values are not used. They could be
%%% removed if they have no side effects, or in a few cases replaced
%%% with a cheaper instructions
%%%

ssa_opt_live({#st{ssa=Linear0}=St, FuncDb}) ->
    RevLinear = reverse(Linear0),
    Blocks0 = maps:from_list(RevLinear),
    Blocks = live_opt(RevLinear, #{}, Blocks0),
    Linear = beam_ssa:linearize(Blocks),
    {St#st{ssa=Linear}, FuncDb}.

live_opt([{L,Blk0}|Bs], LiveMap0, Blocks) ->
    Blk1 = beam_ssa_share:block(Blk0, Blocks),
    Successors = beam_ssa:successors(Blk1),
    Live0 = live_opt_succ(Successors, L, LiveMap0),
    {Blk,Live} = live_opt_blk(Blk1, Live0),
    LiveMap = live_opt_phis(Blk#b_blk.is, L, Live, LiveMap0),
    live_opt(Bs, LiveMap, Blocks#{L:=Blk});
live_opt([], _, Acc) -> Acc.

live_opt_succ([S|Ss], L, LiveMap) ->
    Live0 = live_opt_succ(Ss, L, LiveMap),
    Key = {S,L},
    case LiveMap of
        #{Key:=Live} ->
            gb_sets:union(Live, Live0);
        #{S:=Live} ->
            gb_sets:union(Live, Live0);
        #{} ->
            Live0
    end;
live_opt_succ([], _, _) ->
    gb_sets:empty().

live_opt_phis(Is, L, Live0, LiveMap0) ->
    LiveMap = LiveMap0#{L=>Live0},
    Phis = takewhile(fun(#b_set{op=Op}) -> Op =:= phi end, Is),
    case Phis of
        [] ->
            LiveMap;
        [_|_] ->
            PhiArgs = append([Args || #b_set{args=Args} <- Phis]),
            case [{P,V} || {#b_var{}=V,P} <- PhiArgs] of
                [_|_]=PhiVars ->
                    PhiLive0 = rel2fam(PhiVars),
                    PhiLive = [{{L,P},gb_sets:union(gb_sets:from_list(Vs), Live0)} ||
                                  {P,Vs} <- PhiLive0],
                    maps:merge(LiveMap, maps:from_list(PhiLive));
                [] ->
                    %% There were only literals in the phi node(s).
                    LiveMap
            end
    end.

live_opt_blk(#b_blk{is=Is0,last=Last}=Blk, Live0) ->
    Live1 = gb_sets:union(Live0, gb_sets:from_ordset(beam_ssa:used(Last))),
    {Is,Live} = live_opt_is(reverse(Is0), Live1, []),
    {Blk#b_blk{is=Is},Live}.

live_opt_is([#b_set{op=phi,dst=Dst}=I|Is], Live, Acc) ->
    case gb_sets:is_member(Dst, Live) of
        true ->
            live_opt_is(Is, Live, [I|Acc]);
        false ->
            live_opt_is(Is, Live, Acc)
    end;
live_opt_is([#b_set{op=succeeded,dst=SuccDst=SuccDstVar,
                    args=[Dst]}=SuccI,
             #b_set{dst=Dst}=I|Is], Live0, Acc) ->
    case gb_sets:is_member(Dst, Live0) of
        true ->
            Live1 = gb_sets:add(Dst, Live0),
            Live = gb_sets:delete_any(SuccDst, Live1),
            live_opt_is([I|Is], Live, [SuccI|Acc]);
        false ->
            case live_opt_unused(I) of
                {replace,NewI0} ->
                    NewI = NewI0#b_set{dst=SuccDstVar},
                    live_opt_is([NewI|Is], Live0, Acc);
                keep ->
                    case gb_sets:is_member(SuccDst, Live0) of
                        true ->
                            Live1 = gb_sets:add(Dst, Live0),
                            Live = gb_sets:delete_any(SuccDst, Live1),
                            live_opt_is([I|Is], Live, [SuccI|Acc]);
                        false ->
                            live_opt_is([I|Is], Live0, Acc)
                    end
            end
    end;
live_opt_is([#b_set{dst=Dst}=I|Is], Live0, Acc) ->
    case gb_sets:is_member(Dst, Live0) of
        true ->
            Live1 = gb_sets:union(Live0, gb_sets:from_ordset(beam_ssa:used(I))),
            Live = gb_sets:delete_any(Dst, Live1),
            live_opt_is(Is, Live, [I|Acc]);
        false ->
            case beam_ssa:no_side_effect(I) of
                true ->
                    live_opt_is(Is, Live0, Acc);
                false ->
                    Live = gb_sets:union(Live0, gb_sets:from_ordset(beam_ssa:used(I))),
                    live_opt_is(Is, Live, [I|Acc])
            end
    end;
live_opt_is([], Live, Acc) ->
    {Acc,Live}.

live_opt_unused(#b_set{op=get_map_element}=Set) ->
    {replace,Set#b_set{op=has_map_field}};
live_opt_unused(_) -> keep.

%%%
%%% Optimize binary matching.
%%%
%%% * If the value of segment is never extracted, rewrite
%%%   to a bs_skip instruction.
%%%
%%% * Coalesce adjacent bs_skip instructions and skip instructions
%%%   with bs_test_tail.
%%%

ssa_opt_bsm({#st{ssa=Linear}=St, FuncDb}) ->
    Extracted0 = bsm_extracted(Linear),
    Extracted = cerl_sets:from_list(Extracted0),
    {St#st{ssa=bsm_skip(Linear, Extracted)}, FuncDb}.

bsm_skip([{L,#b_blk{is=Is0}=Blk}|Bs0], Extracted) ->
    Bs = bsm_skip(Bs0, Extracted),
    Is = bsm_skip_is(Is0, Extracted),
    coalesce_skips({L,Blk#b_blk{is=Is}}, Bs);
bsm_skip([], _) -> [].

bsm_skip_is([I0|Is], Extracted) ->
    case I0 of
        #b_set{op=bs_match,
               dst=Ctx,
               args=[#b_literal{val=T}=Type,PrevCtx|Args0]}
          when T =/= string, T =/= skip ->
            I = case cerl_sets:is_element(Ctx, Extracted) of
                    true ->
                        I0;
                    false ->
                        %% The value is never extracted.
                        Args = [#b_literal{val=skip},PrevCtx,Type|Args0],
                        I0#b_set{args=Args}
                end,
            [I|Is];
        #b_set{} ->
            [I0|bsm_skip_is(Is, Extracted)]
    end;
bsm_skip_is([], _) -> [].

bsm_extracted([{_,#b_blk{is=Is}}|Bs]) ->
    case Is of
        [#b_set{op=bs_extract,args=[Ctx]}|_] ->
            [Ctx|bsm_extracted(Bs)];
        _ ->
            bsm_extracted(Bs)
    end;
bsm_extracted([]) -> [].

coalesce_skips({L,#b_blk{is=[#b_set{op=bs_extract}=Extract|Is0],
                         last=Last0}=Blk0}, Bs0) ->
    case coalesce_skips_is(Is0, Last0, Bs0) of
        not_possible ->
            [{L,Blk0}|Bs0];
        {Is,Last,Bs} ->
            Blk = Blk0#b_blk{is=[Extract|Is],last=Last},
            [{L,Blk}|Bs]
    end;
coalesce_skips({L,#b_blk{is=Is0,last=Last0}=Blk0}, Bs0) ->
    case coalesce_skips_is(Is0, Last0, Bs0) of
        not_possible ->
            [{L,Blk0}|Bs0];
        {Is,Last,Bs} ->
            Blk = Blk0#b_blk{is=Is,last=Last},
            [{L,Blk}|Bs]
    end.

coalesce_skips_is([#b_set{op=bs_match,
                          args=[#b_literal{val=skip},
                                Ctx0,Type,Flags,
                                #b_literal{val=Size0},
                                #b_literal{val=Unit0}]}=Skip0,
                   #b_set{op=succeeded}],
                  #b_br{succ=L2,fail=Fail}=Br0,
                  Bs0) when is_integer(Size0) ->
    case Bs0 of
        [{L2,#b_blk{is=[#b_set{op=bs_match,
                               dst=SkipDst,
                               args=[#b_literal{val=skip},_,_,_,
                                     #b_literal{val=Size1},
                                     #b_literal{val=Unit1}]},
                        #b_set{op=succeeded}=Succeeded],
                    last=#b_br{fail=Fail}=Br}}|Bs] when is_integer(Size1) ->
            SkipBits = Size0 * Unit0 + Size1 * Unit1,
            Skip = Skip0#b_set{dst=SkipDst,
                               args=[#b_literal{val=skip},Ctx0,
                                     Type,Flags,
                                     #b_literal{val=SkipBits},
                                     #b_literal{val=1}]},
            Is = [Skip,Succeeded],
            {Is,Br,Bs};
        [{L2,#b_blk{is=[#b_set{op=bs_test_tail,
                               args=[_Ctx,#b_literal{val=TailSkip}]}],
                    last=#b_br{succ=NextSucc,fail=Fail}}}|Bs] ->
            SkipBits = Size0 * Unit0,
            TestTail = Skip0#b_set{op=bs_test_tail,
                                   args=[Ctx0,#b_literal{val=SkipBits+TailSkip}]},
            Br = Br0#b_br{bool=TestTail#b_set.dst,succ=NextSucc},
            Is = [TestTail],
            {Is,Br,Bs};
        _ ->
            not_possible
    end;
coalesce_skips_is(_, _, _) ->
    not_possible.

%%%
%%% Short-cutting binary matching instructions.
%%%

ssa_opt_bsm_shortcut({#st{ssa=Linear}=St, FuncDb}) ->
    Positions = bsm_positions(Linear, #{}),
    case map_size(Positions) of
        0 ->
            %% No binary matching instructions.
            {St, FuncDb};
        _ ->
            {St#st{ssa=bsm_shortcut(Linear, Positions)}, FuncDb}
    end.

bsm_positions([{L,#b_blk{is=Is,last=Last}}|Bs], PosMap0) ->
    PosMap = bsm_positions_is(Is, PosMap0),
    case {Is,Last} of
        {[#b_set{op=bs_test_tail,dst=Bool,args=[Ctx,#b_literal{val=Bits0}]}],
         #b_br{bool=Bool,fail=Fail}} ->
            Bits = Bits0 + maps:get(Ctx, PosMap0),
            bsm_positions(Bs, PosMap#{L=>{Bits,Fail}});
        {_,_} ->
            bsm_positions(Bs, PosMap)
    end;
bsm_positions([], PosMap) -> PosMap.

bsm_positions_is([#b_set{op=bs_start_match,dst=New}|Is], PosMap0) ->
    PosMap = PosMap0#{New=>0},
    bsm_positions_is(Is, PosMap);
bsm_positions_is([#b_set{op=bs_match,dst=New,args=Args}|Is], PosMap0) ->
    [_,Old|_] = Args,
    #{Old:=Bits0} = PosMap0,
    Bits = bsm_update_bits(Args, Bits0),
    PosMap = PosMap0#{New=>Bits},
    bsm_positions_is(Is, PosMap);
bsm_positions_is([_|Is], PosMap) ->
    bsm_positions_is(Is, PosMap);
bsm_positions_is([], PosMap) -> PosMap.

bsm_update_bits([#b_literal{val=string},_,#b_literal{val=String}], Bits) ->
    Bits + bit_size(String);
bsm_update_bits([#b_literal{val=utf8}|_], Bits) ->
    Bits + 8;
bsm_update_bits([#b_literal{val=utf16}|_], Bits) ->
    Bits + 16;
bsm_update_bits([#b_literal{val=utf32}|_], Bits) ->
    Bits + 32;
bsm_update_bits([_,_,_,#b_literal{val=Sz},#b_literal{val=U}], Bits)
  when is_integer(Sz) ->
    Bits + Sz*U;
bsm_update_bits(_, Bits) -> Bits.

bsm_shortcut([{L,#b_blk{is=Is,last=Last0}=Blk}|Bs], PosMap) ->
    case {Is,Last0} of
        {[#b_set{op=bs_match,dst=New,args=[_,Old|_]},
          #b_set{op=succeeded,dst=Bool,args=[New]}],
         #b_br{bool=Bool,fail=Fail}} ->
            case PosMap of
                #{Old:=Bits,Fail:={TailBits,NextFail}} when Bits > TailBits ->
                    Last = Last0#b_br{fail=NextFail},
                    [{L,Blk#b_blk{last=Last}}|bsm_shortcut(Bs, PosMap)];
                #{} ->
                    [{L,Blk}|bsm_shortcut(Bs, PosMap)]
            end;
        {_,_} ->
            [{L,Blk}|bsm_shortcut(Bs, PosMap)]
    end;
bsm_shortcut([], _PosMap) -> [].

%%%
%%% Eliminate redundant bs_test_unit2 instructions.
%%%

ssa_opt_bsm_units({#st{ssa=Linear}=St, FuncDb}) ->
    {St#st{ssa=bsm_units(Linear, #{})}, FuncDb}.

bsm_units([{L,#b_blk{last=#b_br{succ=Succ,fail=Fail}}=Block0} | Bs], UnitMaps0) ->
    UnitsIn = maps:get(L, UnitMaps0, #{}),
    {Block, UnitsOut} = bsm_units_skip(Block0, UnitsIn),
    UnitMaps1 = bsm_units_join(Succ, UnitsOut, UnitMaps0),
    UnitMaps = bsm_units_join(Fail, UnitsIn, UnitMaps1),
    [{L, Block} | bsm_units(Bs, UnitMaps)];
bsm_units([{L,#b_blk{last=#b_switch{fail=Fail,list=Switch}}=Block} | Bs], UnitMaps0) ->
    UnitsIn = maps:get(L, UnitMaps0, #{}),
    Labels = [Fail | [Lbl || {_Arg, Lbl} <- Switch]],
    UnitMaps = foldl(fun(Lbl, UnitMaps) ->
                             bsm_units_join(Lbl, UnitsIn, UnitMaps)
                     end, UnitMaps0, Labels),
    [{L, Block} | bsm_units(Bs, UnitMaps)];
bsm_units([{L, Block} | Bs], UnitMaps) ->
    [{L, Block} | bsm_units(Bs, UnitMaps)];
bsm_units([], _UnitMaps) ->
    [].

bsm_units_skip(Block, Units) ->
    bsm_units_skip_1(Block#b_blk.is, Block, Units).

bsm_units_skip_1([#b_set{op=bs_start_match,dst=New}|_], Block, Units) ->
    %% We bail early since there can't be more than one match per block.
    {Block, Units#{ New => 1 }};
bsm_units_skip_1([#b_set{op=bs_match,
                         dst=New,
                         args=[#b_literal{val=skip},
                               Ctx,
                               #b_literal{val=binary},
                               _Flags,
                               #b_literal{val=all},
                               #b_literal{val=OpUnit}]}=Skip | Test],
                 Block0, Units) ->
    [#b_set{op=succeeded,dst=Bool,args=[New]}] = Test, %Assertion.
    #b_br{bool=Bool} = Last0 = Block0#b_blk.last, %Assertion.
    CtxUnit = maps:get(Ctx, Units),
    if
        CtxUnit rem OpUnit =:= 0 ->
            Is = takewhile(fun(I) -> I =/= Skip end, Block0#b_blk.is),
            Last = Last0#b_br{bool=#b_literal{val=true}},
            Block = Block0#b_blk{is=Is,last=Last},
            {Block, Units#{ New => CtxUnit }};
        CtxUnit rem OpUnit =/= 0 ->
            {Block0, Units#{ New => OpUnit, Ctx => OpUnit }}
    end;
bsm_units_skip_1([#b_set{op=bs_match,dst=New,args=Args}|_], Block, Units) ->
    [_,Ctx|_] = Args,
    CtxUnit = maps:get(Ctx, Units),
    OpUnit = bsm_op_unit(Args),
    {Block, Units#{ New => gcd(OpUnit, CtxUnit) }};
bsm_units_skip_1([_I | Is], Block, Units) ->
    bsm_units_skip_1(Is, Block, Units);
bsm_units_skip_1([], Block, Units) ->
    {Block, Units}.

bsm_op_unit([_,_,_,Size,#b_literal{val=U}]) ->
    case Size of
        #b_literal{val=Sz} when is_integer(Sz) -> Sz*U;
        _ -> U
    end;
bsm_op_unit([#b_literal{val=string},_,#b_literal{val=String}]) ->
    bit_size(String);
bsm_op_unit([#b_literal{val=utf8}|_]) ->
    8;
bsm_op_unit([#b_literal{val=utf16}|_]) ->
    16;
bsm_op_unit([#b_literal{val=utf32}|_]) ->
    32;
bsm_op_unit(_) ->
    1.

%% Several paths can lead to the same match instruction and the inferred units
%% may differ between them, so we can only keep the information that is common
%% to all paths.
bsm_units_join(Lbl, MapA, UnitMaps0) when is_map_key(Lbl, UnitMaps0) ->
    MapB = maps:get(Lbl, UnitMaps0),
    Merged = if
                 map_size(MapB) =< map_size(MapA) ->
                     bsm_units_join_1(maps:keys(MapB), MapA, MapB);
                 map_size(MapB) > map_size(MapA) ->
                     bsm_units_join_1(maps:keys(MapA), MapB, MapA)
             end,
    maps:put(Lbl, Merged, UnitMaps0);
bsm_units_join(Lbl, MapA, UnitMaps0) when MapA =/= #{} ->
    maps:put(Lbl, MapA, UnitMaps0);
bsm_units_join(_Lbl, _MapA, UnitMaps0) ->
    UnitMaps0.

bsm_units_join_1([Key | Keys], Left, Right) when is_map_key(Key, Left) ->
    UnitA = maps:get(Key, Left),
    UnitB = maps:get(Key, Right),
    bsm_units_join_1(Keys, Left, maps:put(Key, gcd(UnitA, UnitB), Right));
bsm_units_join_1([Key | Keys], Left, Right) ->
    bsm_units_join_1(Keys, Left, maps:remove(Key, Right));
bsm_units_join_1([], _MapA, Right) ->
    Right.

%%%
%%% Optimize binary construction.
%%%
%%% If an integer segment or a float segment has a literal size and
%%% a literal value, convert to a binary segment. Coalesce adjacent
%%% literal binary segments. Literal binary segments will be converted
%%% to bs_put_string instructions in later pass.
%%%

ssa_opt_bs_puts({#st{ssa=Linear0,cnt=Count0}=St, FuncDb}) ->
    {Linear,Count} = opt_bs_puts(Linear0, Count0, []),
    {St#st{ssa=Linear,cnt=Count}, FuncDb}.

opt_bs_puts([{L,#b_blk{is=Is}=Blk0}|Bs], Count0, Acc0) ->
    case Is of
        [#b_set{op=bs_put}=I0] ->
            case opt_bs_put(L, I0, Blk0, Count0, Acc0) of
                not_possible ->
                    opt_bs_puts(Bs, Count0, [{L,Blk0}|Acc0]);
                {Count,Acc1} ->
                    Acc = opt_bs_puts_merge(Acc1),
                    opt_bs_puts(Bs, Count, Acc)
            end;
        _ ->
            opt_bs_puts(Bs, Count0, [{L,Blk0}|Acc0])
    end;
opt_bs_puts([], Count, Acc) ->
    {reverse(Acc),Count}.

opt_bs_puts_merge([{L1,#b_blk{is=Is}=Blk0},{L2,#b_blk{is=AccIs}}=BAcc|Acc]) ->
    case {AccIs,Is} of
        {[#b_set{op=bs_put,
                 args=[#b_literal{val=binary},
                       #b_literal{},
                       #b_literal{val=Bin0},
                       #b_literal{val=all},
                       #b_literal{val=1}]}],
         [#b_set{op=bs_put,
                 args=[#b_literal{val=binary},
                       #b_literal{},
                       #b_literal{val=Bin1},
                       #b_literal{val=all},
                       #b_literal{val=1}]}=I0]} ->
            %% Coalesce the two segments to one.
            Bin = <<Bin0/bitstring,Bin1/bitstring>>,
            I = I0#b_set{args=bs_put_args(binary, Bin, all)},
            Blk = Blk0#b_blk{is=[I]},
            [{L2,Blk}|Acc];
        {_,_} ->
            [{L1,Blk0},BAcc|Acc]
    end.

opt_bs_put(L, I0, #b_blk{last=Br0}=Blk0, Count0, Acc) ->
    case opt_bs_put(I0) of
        [Bin] when is_bitstring(Bin) ->
            Args = bs_put_args(binary, Bin, all),
            I = I0#b_set{args=Args},
            Blk = Blk0#b_blk{is=[I]},
            {Count0,[{L,Blk}|Acc]};
        [{int,Int,Size},Bin] when is_bitstring(Bin) ->
            %% Construct a bs_put_integer instruction following
            %% by a bs_put_binary instruction.
            IntArgs = bs_put_args(integer, Int, Size),
            BinArgs = bs_put_args(binary, Bin, all),
            {BinL,BinVarNum} = {Count0,Count0+1},
            Count = Count0 + 2,
            BinVar = #b_var{name={'@ssa_bool',BinVarNum}},
            BinI = I0#b_set{dst=BinVar,args=BinArgs},
            BinBlk = Blk0#b_blk{is=[BinI],last=Br0#b_br{bool=BinVar}},
            IntI = I0#b_set{args=IntArgs},
            IntBlk = Blk0#b_blk{is=[IntI],last=Br0#b_br{succ=BinL}},
            {Count,[{BinL,BinBlk},{L,IntBlk}|Acc]};
        not_possible ->
            not_possible
    end.

opt_bs_put(#b_set{args=[#b_literal{val=binary},_,#b_literal{val=Val},
                        #b_literal{val=all},#b_literal{val=Unit}]})
  when is_bitstring(Val) ->
    if
        bit_size(Val) rem Unit =:= 0 ->
            [Val];
        true ->
            not_possible
    end;
opt_bs_put(#b_set{args=[#b_literal{val=Type},#b_literal{val=Flags},
                        #b_literal{val=Val},#b_literal{val=Size},
                        #b_literal{val=Unit}]}=I0) when is_integer(Size) ->
    EffectiveSize = Size * Unit,
    if
        EffectiveSize > 0 ->
            case {Type,opt_bs_put_endian(Flags)} of
                {integer,big} when is_integer(Val) ->
                    if
                        EffectiveSize < 64 ->
                            [<<Val:EffectiveSize>>];
                        true ->
                            opt_bs_put_split_int(Val, EffectiveSize)
                    end;
                {integer,little} when is_integer(Val), EffectiveSize < 128 ->
                    %% To avoid an explosion in code size, we only try
                    %% to optimize relatively small fields.
                    <<Int:EffectiveSize>> = <<Val:EffectiveSize/little>>,
                    Args = bs_put_args(Type, Int, EffectiveSize),
                    I = I0#b_set{args=Args},
                    opt_bs_put(I);
                {binary,_} when is_bitstring(Val) ->
                    <<Bitstring:EffectiveSize/bits,_/bits>> = Val,
                    [Bitstring];
                {float,Endian} ->
                    try
                        [opt_bs_put_float(Val, EffectiveSize, Endian)]
                    catch error:_ ->
                            not_possible
                    end;
                {_,_} ->
                    not_possible
            end;
        true ->
            not_possible
    end;
opt_bs_put(#b_set{}) -> not_possible.

opt_bs_put_float(N, Sz, Endian) ->
    case Endian of
        big -> <<N:Sz/big-float-unit:1>>;
        little -> <<N:Sz/little-float-unit:1>>
    end.

bs_put_args(Type, Val, Size) ->
    [#b_literal{val=Type},
     #b_literal{val=[unsigned,big]},
     #b_literal{val=Val},
     #b_literal{val=Size},
     #b_literal{val=1}].

opt_bs_put_endian([big=E|_]) -> E;
opt_bs_put_endian([little=E|_]) -> E;
opt_bs_put_endian([native=E|_]) -> E;
opt_bs_put_endian([_|Fs]) -> opt_bs_put_endian(Fs).

opt_bs_put_split_int(Int, Size) ->
    Pos = opt_bs_put_split_int_1(Int, 0, Size - 1),
    UpperSize = Size - Pos,
    if
        Pos =:= 0 ->
            %% Value is 0 or -1 -- keep the original instruction.
            not_possible;
        UpperSize < 64 ->
            %% No or few leading zeroes or ones.
            [<<Int:Size>>];
        true ->
            %% There are 64 or more leading ones or zeroes in
            %% the resulting binary. Split into two separate
            %% segments to avoid an explosion in code size.
            [{int,Int bsr Pos,UpperSize},<<Int:Pos>>]
    end.

opt_bs_put_split_int_1(_Int, L, R) when L > R ->
    8 * ((L + 7) div 8);
opt_bs_put_split_int_1(Int, L, R) ->
    Mid = (L + R) div 2,
    case Int bsr Mid of
        Upper when Upper =:= 0; Upper =:= -1 ->
            opt_bs_put_split_int_1(Int, L, Mid - 1);
        _ ->
            opt_bs_put_split_int_1(Int, Mid + 1, R)
    end.

%%%
%%% Optimize expressions such as "tuple_size(Var) =:= 2".
%%%
%%% Consider this code:
%%%
%%% 0:
%%%   .
%%%   .
%%%   .
%%%   Size = bif:tuple_size Var
%%%   BoolVar1 = succeeded Size
%%%   br BoolVar1, label 4, label 3
%%%
%%% 4:
%%%   BoolVar2 = bif:'=:=' Size, literal 2
%%%   br BoolVar2, label 6, label 3
%%%
%%% 6: ...   %% OK
%%%
%%% 3: ...   %% Not a tuple of size 2
%%%
%%% The BEAM code will look this:
%%%
%%%   {bif,tuple_size,{f,3},[{x,0}],{x,0}}.
%%%   {test,is_eq_exact,{f,3},[{x,0},{integer,2}]}.
%%%
%%% Better BEAM code will be produced if we transform the
%%% code like this:
%%%
%%% 0:
%%%   .
%%%   .
%%%   .
%%%   br label 10
%%%
%%% 10:
%%%   NewBoolVar = bif:is_tuple Var
%%%   br NewBoolVar, label 11, label 3
%%%
%%% 11:
%%%   Size = bif:tuple_size Var
%%%   br label 4
%%%
%%% 4:
%%%   BoolVar2 = bif:'=:=' Size, literal 2
%%%   br BoolVar2, label 6, label 3
%%%
%%% (The key part of the transformation is the removal of
%%% the 'succeeded' instruction to signal to the code generator
%%% that the call to tuple_size/1 can't fail.)
%%%
%%% The BEAM code will look like:
%%%
%%%   {test,is_tuple,{f,3},[{x,0}]}.
%%%   {test_arity,{f,3},[{x,0},2]}.
%%%
%%% Those two instructions will be combined into a single
%%% is_tuple_of_arity instruction by the loader.
%%%

ssa_opt_tuple_size({#st{ssa=Linear0,cnt=Count0}=St, FuncDb}) ->
    {Linear,Count} = opt_tup_size(Linear0, Count0, []),
    {St#st{ssa=Linear,cnt=Count}, FuncDb}.

opt_tup_size([{L,#b_blk{is=Is,last=Last}=Blk}|Bs], Count0, Acc0) ->
    case {Is,Last} of
        {[#b_set{op={bif,'=:='},dst=Bool,args=[#b_var{}=Tup,#b_literal{val=Arity}]}],
         #b_br{bool=Bool}} when is_integer(Arity), Arity >= 0 ->
            {Acc,Count} = opt_tup_size_1(Tup, L, Count0, Acc0),
            opt_tup_size(Bs, Count, [{L,Blk}|Acc]);
        {_,_} ->
            opt_tup_size(Bs, Count0, [{L,Blk}|Acc0])
    end;
opt_tup_size([], Count, Acc) ->
    {reverse(Acc),Count}.

opt_tup_size_1(Size, EqL, Count0, [{L,Blk0}|Acc]) ->
    case Blk0 of
        #b_blk{is=Is0,last=#b_br{bool=Bool,succ=EqL,fail=Fail}} ->
            case opt_tup_size_is(Is0, Bool, Size, []) of
                none ->
                    {[{L,Blk0}|Acc],Count0};
                {PreIs,TupleSizeIs,Tuple} ->
                    opt_tup_size_2(PreIs, TupleSizeIs, L, EqL,
                                   Tuple, Fail, Count0, Acc)
            end;
        #b_blk{} ->
            {[{L,Blk0}|Acc],Count0}
    end;
opt_tup_size_1(_, _, Count, Acc) ->
    {Acc,Count}.

opt_tup_size_2(PreIs, TupleSizeIs, PreL, EqL, Tuple, Fail, Count0, Acc) ->
    IsTupleL = Count0,
    TupleSizeL = Count0 + 1,
    Bool = #b_var{name={'@ssa_bool',Count0+2}},
    Count = Count0 + 3,

    True = #b_literal{val=true},
    PreBr = #b_br{bool=True,succ=IsTupleL,fail=IsTupleL},
    PreBlk = #b_blk{is=PreIs,last=PreBr},

    IsTupleIs = [#b_set{op={bif,is_tuple},dst=Bool,args=[Tuple]}],
    IsTupleBr = #b_br{bool=Bool,succ=TupleSizeL,fail=Fail},
    IsTupleBlk = #b_blk{is=IsTupleIs,last=IsTupleBr},

    TupleSizeBr = #b_br{bool=True,succ=EqL,fail=EqL},
    TupleSizeBlk = #b_blk{is=TupleSizeIs,last=TupleSizeBr},
    {[{TupleSizeL,TupleSizeBlk},
      {IsTupleL,IsTupleBlk},
      {PreL,PreBlk}|Acc],Count}.

opt_tup_size_is([#b_set{op={bif,tuple_size},dst=Size,args=[Tuple]}=I,
                 #b_set{op=succeeded,dst=Bool,args=[Size]}],
                Bool, Size, Acc) ->
    {reverse(Acc),[I],Tuple};
opt_tup_size_is([I|Is], Bool, Size, Acc) ->
    opt_tup_size_is(Is, Bool, Size, [I|Acc]);
opt_tup_size_is([], _, _, _Acc) -> none.

%%%
%%% Optimize #b_switch{} instructions.
%%%
%%% If the argument for a #b_switch{} comes from a phi node with all
%%% literals, any values in the switch list which are not in the phi
%%% node can be removed.
%%%
%%% If the values in the phi node and switch list are the same,
%%% the failure label can't be reached and be eliminated.
%%%
%%% A #b_switch{} with only one value can be rewritten to
%%% a #b_br{}. A switch that only verifies that the argument
%%% is 'true' or 'false' can be rewritten to a is_boolean test.
%%%

ssa_opt_sw({#st{ssa=Linear0,cnt=Count0}=St, FuncDb}) ->
    {Linear,Count} = opt_sw(Linear0, #{}, Count0, []),
    {St#st{ssa=Linear,cnt=Count}, FuncDb}.

opt_sw([{L,#b_blk{is=Is,last=#b_switch{}=Last0}=Blk0}|Bs], Phis0, Count0, Acc) ->
    Phis = opt_sw_phis(Is, Phis0),
    case opt_sw_last(Last0, Phis) of
        #b_switch{arg=Arg,fail=Fail,list=[{Lit,Lbl}]} ->
            %% Rewrite a single value switch to a br.
            Bool = #b_var{name={'@ssa_bool',Count0}},
            Count = Count0 + 1,
            IsEq = #b_set{op={bif,'=:='},dst=Bool,args=[Arg,Lit]},
            Br = #b_br{bool=Bool,succ=Lbl,fail=Fail},
            Blk = Blk0#b_blk{is=Is++[IsEq],last=Br},
            opt_sw(Bs, Phis, Count, [{L,Blk}|Acc]);
        #b_switch{arg=Arg,fail=Fail,
                  list=[{#b_literal{val=B1},Lbl},{#b_literal{val=B2},Lbl}]}
          when B1 =:= not B2 ->
            %% Replace with is_boolean test.
            Bool = #b_var{name={'@ssa_bool',Count0}},
            Count = Count0 + 1,
            IsBool = #b_set{op={bif,is_boolean},dst=Bool,args=[Arg]},
            Br = #b_br{bool=Bool,succ=Lbl,fail=Fail},
            Blk = Blk0#b_blk{is=Is++[IsBool],last=Br},
            opt_sw(Bs, Phis, Count, [{L,Blk}|Acc]);
        Last0 ->
            opt_sw(Bs, Phis, Count0, [{L,Blk0}|Acc]);
        Last ->
            Blk = Blk0#b_blk{last=Last},
            opt_sw(Bs, Phis, Count0, [{L,Blk}|Acc])
    end;
opt_sw([{L,#b_blk{is=Is}=Blk}|Bs], Phis0, Count, Acc) ->
    Phis = opt_sw_phis(Is, Phis0),
    opt_sw(Bs, Phis, Count, [{L,Blk}|Acc]);
opt_sw([], _Phis, Count, Acc) ->
    {reverse(Acc),Count}.

opt_sw_phis([#b_set{op=phi,dst=Dst,args=Args}|Is], Phis) ->
    case opt_sw_literals(Args, []) of
        error ->
            opt_sw_phis(Is, Phis);
        Literals ->
            opt_sw_phis(Is, Phis#{Dst=>Literals})
    end;
opt_sw_phis(_, Phis) -> Phis.

opt_sw_last(#b_switch{arg=Arg,fail=Fail,list=List0}=Sw0, Phis) ->
    case Phis of
        #{Arg:=Values0} ->
            Values = gb_sets:from_list(Values0),

            %% Prune the switch list to only contain the possible values.
            List1 = [P || {Lit,_}=P <- List0, gb_sets:is_member(Lit, Values)],

            %% Now test whether the failure label can ever be reached.
            Sw = case gb_sets:size(Values) =:= length(List1) of
                     true ->
                         %% The switch list has the same number of values as the phi node.
                         %% The values must be the same, because the values that were not
                         %% possible were pruned from the switch list. Therefore, the
                         %% failure label can't possibly be reached, and we can choose a
                         %% a new failure label by picking a value from the list.
                         case List1 of
                             [{#b_literal{},Lbl}|List] ->
                                 Sw0#b_switch{fail=Lbl,list=List};
                             [] ->
                                 Sw0#b_switch{list=List1}
                         end;
                     false ->
                         %% There are some values in the phi node that are not in the
                         %% switch list; thus, the failure label can still be reached.
                         Sw0
                 end,
            beam_ssa:normalize(Sw);
        #{} ->
            %% Ensure that no label in the switch list is the same
            %% as the failure label.
            List = [{Val,Lbl} || {Val,Lbl} <- List0, Lbl =/= Fail],
            Sw = Sw0#b_switch{list=List},
            beam_ssa:normalize(Sw)
    end.

opt_sw_literals([{#b_literal{}=Lit,_}|T], Acc) ->
    opt_sw_literals(T, [Lit|Acc]);
opt_sw_literals([_|_], _Acc) ->
    error;
opt_sw_literals([], Acc) -> Acc.


%%%
%%% Merge blocks.
%%%

ssa_opt_merge_blocks({#st{ssa=Blocks}=St, FuncDb}) ->
    Preds = beam_ssa:predecessors(Blocks),
    Merged = merge_blocks_1(beam_ssa:rpo(Blocks), Preds, Blocks),
    {St#st{ssa=Merged}, FuncDb}.

merge_blocks_1([L|Ls], Preds0, Blocks0) ->
    case Preds0 of
        #{L:=[P]} ->
            #{P:=Blk0,L:=Blk1} = Blocks0,
            case is_merge_allowed(L, Blk0, Blk1) of
                true ->
                    #b_blk{is=Is0} = Blk0,
                    #b_blk{is=Is1} = Blk1,
                    verify_merge_is(Is1),
                    Is = Is0 ++ Is1,
                    Blk = Blk1#b_blk{is=Is},
                    Blocks1 = maps:remove(L, Blocks0),
                    Blocks2 = maps:put(P, Blk, Blocks1),
                    Successors = beam_ssa:successors(Blk),
                    Blocks = beam_ssa:update_phi_labels(Successors, L, P, Blocks2),
                    Preds = merge_update_preds(Successors, L, P, Preds0),
                    merge_blocks_1(Ls, Preds, Blocks);
                false ->
                    merge_blocks_1(Ls, Preds0, Blocks0)
            end;
        #{} ->
            merge_blocks_1(Ls, Preds0, Blocks0)
    end;
merge_blocks_1([], _Preds, Blocks) -> Blocks.

merge_update_preds([L|Ls], From, To, Preds0) ->
    Ps = [rename_label(P, From, To) || P <- maps:get(L, Preds0)],
    Preds = maps:put(L, Ps, Preds0),
    merge_update_preds(Ls, From, To, Preds);
merge_update_preds([], _, _, Preds) -> Preds.

rename_label(From, From, To) -> To;
rename_label(Lbl, _, _) -> Lbl.

verify_merge_is([#b_set{op=Op}|_]) ->
    %% The merged block has only one predecessor, so it should not have any phi
    %% nodes.
    true = Op =/= phi;                          %Assertion.
verify_merge_is(_) ->
    ok.

is_merge_allowed(_, #b_blk{}, #b_blk{is=[#b_set{op=peek_message}|_]}) ->
    false;
is_merge_allowed(L, #b_blk{last=#b_br{}}=Blk, #b_blk{}) ->
    %% The predecessor block must have exactly one successor (L) for
    %% the merge to be safe.
    case beam_ssa:successors(Blk) of
        [L] -> true;
        [_|_] -> false
    end;
is_merge_allowed(_, #b_blk{last=#b_switch{}}, #b_blk{}) ->
    false.

%%%
%%% When a tuple is matched, the pattern matching compiler generates a
%%% get_tuple_element instruction for every tuple element that will
%%% ever be used in the rest of the function. That often forces the
%%% extracted tuple elements to be stored in Y registers until it's
%%% time to use them. It could also mean that there could be execution
%%% paths that will never use the extracted elements.
%%%
%%% This optimization will sink get_tuple_element instructions, that
%%% is, move them forward in the execution stream to the last possible
%%% block there they will still dominate all uses. That may reduce the
%%% size of stack frames, reduce register shuffling, and avoid
%%% extracting tuple elements on execution paths that never use the
%%% extracted values.
%%%

ssa_opt_sink({#st{ssa=Blocks0}=St, FuncDb}) ->
    Linear = beam_ssa:linearize(Blocks0),

    %% Create a map with all variables that define get_tuple_element
    %% instructions. The variable name map to the block it is defined in.
    Defs = maps:from_list(def_blocks(Linear)),

    %% Now find all the blocks that use variables defined by get_tuple_element
    %% instructions.
    Used = used_blocks(Linear, Defs, []),

    %% Calculate dominators.
    Dom0 = beam_ssa:dominators(Blocks0),

    %% It is not safe to move get_tuple_element instructions to blocks
    %% that begin with certain instructions. It is also unsafe to move
    %% the instructions into any part of a receive. To avoid such
    %% unsafe moves, pretend that the unsuitable blocks are not
    %% dominators.
    Unsuitable = unsuitable(Linear, Blocks0),
    Dom = case gb_sets:is_empty(Unsuitable) of
              true ->
                  Dom0;
              false ->
                  F = fun(_, DomBy) ->
                              [L || L <- DomBy,
                                    not gb_sets:is_element(L, Unsuitable)]
                      end,
                  maps:map(F, Dom0)
          end,

    %% Calculate new positions for get_tuple_element instructions. The new
    %% position is a block that dominates all uses of the variable.
    DefLoc = new_def_locations(Used, Defs, Dom),

    %% Now move all suitable get_tuple_element instructions to their
    %% new blocks.
    Blocks = foldl(fun({V,To}, A) ->
                           From = maps:get(V, Defs),
                           move_defs(V, From, To, A)
                   end, Blocks0, DefLoc),
    {St#st{ssa=Blocks}, FuncDb}.

def_blocks([{L,#b_blk{is=Is}}|Bs]) ->
    def_blocks_is(Is, L, def_blocks(Bs));
def_blocks([]) -> [].

def_blocks_is([#b_set{op=get_tuple_element,dst=Dst}|Is], L, Acc) ->
    def_blocks_is(Is, L, [{Dst,L}|Acc]);
def_blocks_is([_|Is], L, Acc) ->
    def_blocks_is(Is, L, Acc);
def_blocks_is([], _, Acc) -> Acc.

used_blocks([{L,Blk}|Bs], Def, Acc0) ->
    Used = beam_ssa:used(Blk),
    Acc = [{V,L} || V <- Used, maps:is_key(V, Def)] ++ Acc0,
    used_blocks(Bs, Def, Acc);
used_blocks([], _Def, Acc) ->
    rel2fam(Acc).

%% unsuitable(Linear, Blocks) -> Unsuitable.
%%  Return an ordset of block labels for the blocks that are not
%%  suitable for sinking of get_tuple_element instructions.

unsuitable(Linear, Blocks) ->
    Predecessors = beam_ssa:predecessors(Blocks),
    Unsuitable0 = unsuitable_1(Linear),
    Unsuitable1 = unsuitable_recv(Linear, Blocks, Predecessors),
    gb_sets:from_list(Unsuitable0 ++ Unsuitable1).

unsuitable_1([{L,#b_blk{is=[#b_set{op=Op}|_]}}|Bs]) ->
    Unsuitable = case Op of
                     bs_extract -> true;
                     bs_put -> true;
                     {float,_} -> true;
                     landingpad -> true;
                     peek_message -> true;
                     wait_timeout -> true;
                     _ -> false
                 end,
    case Unsuitable of
        true ->
            [L|unsuitable_1(Bs)];
        false ->
            unsuitable_1(Bs)
    end;
unsuitable_1([{_,#b_blk{}}|Bs]) ->
    unsuitable_1(Bs);
unsuitable_1([]) -> [].

unsuitable_recv([{L,#b_blk{is=[#b_set{op=Op}|_]}}|Bs], Blocks, Predecessors) ->
    Ls = case Op of
             remove_message ->
                 unsuitable_loop(L, Blocks, Predecessors);
             recv_next ->
                 unsuitable_loop(L, Blocks, Predecessors);
             _ ->
                 []
         end,
    Ls ++ unsuitable_recv(Bs, Blocks, Predecessors);
unsuitable_recv([_|Bs], Blocks, Predecessors) ->
    unsuitable_recv(Bs, Blocks, Predecessors);
unsuitable_recv([], _, _) -> [].

unsuitable_loop(L, Blocks, Predecessors) ->
    unsuitable_loop(L, Blocks, Predecessors, []).

unsuitable_loop(L, Blocks, Predecessors, Acc) ->
    Ps = maps:get(L, Predecessors),
    unsuitable_loop_1(Ps, Blocks, Predecessors, Acc).

unsuitable_loop_1([P|Ps], Blocks, Predecessors, Acc0) ->
    case maps:get(P, Blocks) of
        #b_blk{is=[#b_set{op=peek_message}|_]} ->
            unsuitable_loop_1(Ps, Blocks, Predecessors, Acc0);
        #b_blk{} ->
            case ordsets:is_element(P, Acc0) of
                false ->
                    Acc1 = ordsets:add_element(P, Acc0),
                    Acc = unsuitable_loop(P, Blocks, Predecessors, Acc1),
                    unsuitable_loop_1(Ps, Blocks, Predecessors, Acc);
                true ->
                    unsuitable_loop_1(Ps, Blocks, Predecessors, Acc0)
            end
    end;
unsuitable_loop_1([], _, _, Acc) -> Acc.

%% new_def_locations([{Variable,[UsedInBlock]}|Vs], Defs, Dominators) ->
%%          [{Variable,NewDefinitionBlock}]
%%  Calculate new locations for get_tuple_element instructions. For each
%%  variable, the new location is a block that dominates all uses of
%%  variable and as near to the uses of as possible. If no such block
%%  distinct from the block where the instruction currently is, the
%%  variable will not be included in the result list.

new_def_locations([{V,UsedIn}|Vs], Defs, Dom) ->
    DefIn = maps:get(V, Defs),
    case common_dom(UsedIn, DefIn, Dom) of
        [] ->
            new_def_locations(Vs, Defs, Dom);
        [_|_]=BetterDef ->
            L = most_dominated(BetterDef, Dom),
            [{V,L}|new_def_locations(Vs, Defs, Dom)]
    end;
new_def_locations([], _, _) -> [].

common_dom([L|Ls], DefIn, Dom) ->
    DomBy0 = maps:get(L, Dom),
    DomBy = ordsets:subtract(DomBy0, maps:get(DefIn, Dom)),
    common_dom_1(Ls, Dom, DomBy).

common_dom_1(_, _, []) ->
    [];
common_dom_1([L|Ls], Dom, [_|_]=DomBy0) ->
    DomBy1 = maps:get(L, Dom),
    DomBy = ordsets:intersection(DomBy0, DomBy1),
    common_dom_1(Ls, Dom, DomBy);
common_dom_1([], _, DomBy) -> DomBy.

most_dominated([L|Ls], Dom) ->
    most_dominated(Ls, L, maps:get(L, Dom), Dom).

most_dominated([L|Ls], L0, DomBy, Dom) ->
    case member(L, DomBy) of
        true ->
            most_dominated(Ls, L0, DomBy, Dom);
        false ->
            most_dominated(Ls, L, maps:get(L, Dom), Dom)
    end;
most_dominated([], L, _, _) -> L.


%% Move get_tuple_element instructions to their new locations.

move_defs(V, From, To, Blocks) ->
    #{From:=FromBlk0,To:=ToBlk0} = Blocks,
    {Def,FromBlk} = remove_def(V, FromBlk0),
    try insert_def(V, Def, ToBlk0) of
        ToBlk ->
            %%io:format("~p: ~p => ~p\n", [V,From,To]),
            Blocks#{From:=FromBlk,To:=ToBlk}
    catch
        throw:not_possible ->
            Blocks
    end.

remove_def(V, #b_blk{is=Is0}=Blk) ->
    {Def,Is} = remove_def_is(Is0, V, []),
    {Def,Blk#b_blk{is=Is}}.

remove_def_is([#b_set{dst=Dst}=Def|Is], Dst, Acc) ->
    {Def,reverse(Acc, Is)};
remove_def_is([I|Is], Dst, Acc) ->
    remove_def_is(Is, Dst, [I|Acc]).

insert_def(V, Def, #b_blk{is=Is0}=Blk) ->
    Is = insert_def_is(Is0, V, Def),
    Blk#b_blk{is=Is}.

insert_def_is([#b_set{op=phi}=I|Is], V, Def) ->
    case member(V, beam_ssa:used(I)) of
        true ->
            throw(not_possible);
        false ->
            [I|insert_def_is(Is, V, Def)]
    end;
insert_def_is([#b_set{op=Op}=I|Is]=Is0, V, Def) ->
    Action0 = case Op of
                  call -> beyond;
                  'catch_end' -> beyond;
                  set_tuple_element -> beyond;
                  timeout -> beyond;
                  _ -> here
              end,
    Action = case Is of
                 [#b_set{op=succeeded}|_] -> here;
                 _ -> Action0
             end,
    case Action of
        beyond ->
            case member(V, beam_ssa:used(I)) of
                true ->
                    %% The variable is used by this instruction. We must
                    %% place the definition before this instruction.
                    [Def|Is0];
                false ->
                    %% Place it beyond the current instruction.
                    [I|insert_def_is(Is, V, Def)]
            end;
        here ->
            [Def|Is0]
    end;
insert_def_is([], _V, Def) ->
    [Def].


%%%
%%% Common utilities.
%%%

gcd(A, B) ->
    case A rem B of
        0 -> B;
        X -> gcd(B, X)
    end.

rel2fam(S0) ->
    S1 = sofs:relation(S0),
    S = sofs:rel2fam(S1),
    sofs:to_external(S).

sub(I, Sub) ->
    beam_ssa:normalize(sub_1(I, Sub)).

sub_1(#b_set{op=phi,args=Args}=I, Sub) ->
    I#b_set{args=[{sub_arg(A, Sub),P} || {A,P} <- Args]};
sub_1(#b_set{args=Args}=I, Sub) ->
    I#b_set{args=[sub_arg(A, Sub) || A <- Args]};
sub_1(#b_br{bool=#b_var{}=Old}=Br, Sub) ->
    New = sub_arg(Old, Sub),
    Br#b_br{bool=New};
sub_1(#b_switch{arg=#b_var{}=Old}=Sw, Sub) ->
    New = sub_arg(Old, Sub),
    Sw#b_switch{arg=New};
sub_1(#b_ret{arg=#b_var{}=Old}=Ret, Sub) ->
    New = sub_arg(Old, Sub),
    Ret#b_ret{arg=New};
sub_1(Last, _) -> Last.

sub_arg(#b_remote{mod=Mod,name=Name}=Rem, Sub) ->
    Rem#b_remote{mod=sub_arg(Mod, Sub),name=sub_arg(Name, Sub)};
sub_arg(Old, Sub) ->
    case Sub of
        #{Old:=New} -> New;
        #{} -> Old
    end.

new_var(#b_var{name={Base,N}}, Count) ->
    true = is_integer(N),                       %Assertion.
    {#b_var{name={Base,Count}},Count+1};
new_var(#b_var{name=Base}, Count) ->
    {#b_var{name={Base,Count}},Count+1}.