aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_type.erl
blob: a1e9eff8f30f984fdc4ad366b58a519cb7ad09f3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose: Type-based optimisations. See the comment for verified_type/1
%% the very end of this file for a description of the types in the
%% type database.

-module(beam_type).

-export([module/2]).

-import(lists, [foldl/3,member/2,reverse/1,reverse/2,sort/1]).

-define(UNICODE_INT, {integer,{0,16#10FFFF}}).

-spec module(beam_utils:module_code(), [compile:option()]) ->
                    {'ok',beam_utils:module_code()}.

module({Mod,Exp,Attr,Fs0,Lc}, _Opts) ->
    Fs = [function(F) || F <- Fs0],
    {ok,{Mod,Exp,Attr,Fs,Lc}}.

function({function,Name,Arity,CLabel,Asm0}) ->
    try
	Asm1 = beam_utils:live_opt(Asm0),
	Asm2 = opt(Asm1, [], tdb_new()),
	Asm3 = beam_utils:live_opt(Asm2),
	Asm = beam_utils:delete_annos(Asm3),
	{function,Name,Arity,CLabel,Asm}
    catch
        Class:Error:Stack ->
	    io:fwrite("Function: ~w/~w\n", [Name,Arity]),
	    erlang:raise(Class, Error, Stack)
    end.

%% opt([Instruction], Accumulator, TypeDb) -> {[Instruction'],TypeDb'}
%%  Keep track of type information; try to simplify.

opt([{block,Body1}|Is], [{block,Body0}|Acc], Ts0) ->
    {Body2,Ts} = simplify(Body1, Ts0),
    Body = merge_blocks(Body0, Body2),
    opt(Is, [{block,Body}|Acc], Ts);
opt([{block,Body0}|Is], Acc, Ts0) ->
    {Body,Ts} = simplify(Body0, Ts0),
    opt(Is, [{block,Body}|Acc], Ts);
opt([I0|Is], Acc, Ts0) ->
    case simplify_basic([I0], Ts0) of
	{[],Ts} -> opt(Is, Acc, Ts);
	{[I],Ts} -> opt(Is, [I|Acc], Ts)
    end;
opt([], Acc, _) -> reverse(Acc).

%% simplify(Instruction, TypeDb) -> NewInstruction
%%  Simplify an instruction using type information (this is
%%  technically a "strength reduction").

simplify(Is0, TypeDb0) ->
    {Is,_} = BasicRes = simplify_basic(Is0, TypeDb0),
    case simplify_float(Is, TypeDb0) of
	not_possible -> BasicRes;
	{_,_}=Res -> Res
    end.

%% simplify_basic([Instruction], TypeDatabase) -> {[Instruction],TypeDatabase'}
%%  Basic simplification, mostly tuples, no floating point optimizations.

simplify_basic(Is, Ts) ->
    simplify_basic(Is, Ts, []).

simplify_basic([I0|Is], Ts0, Acc) ->
    case simplify_instr(I0, Ts0) of
        [] ->
            simplify_basic(Is, Ts0, Acc);
        [I] ->
            Ts = update(I, Ts0),
            simplify_basic(Is, Ts, [I|Acc])
    end;
simplify_basic([], Ts, Acc) ->
    {reverse(Acc),Ts}.

%% simplify_instr(Instruction, Ts) -> [Instruction].

%%  Simplify a simple instruction using type information. Return an
%%  empty list if the instruction should be removed, or a list with
%%  the original or modified instruction.

simplify_instr({set,[D],[{integer,Index},Reg],{bif,element,_}}=I, Ts) ->
    case max_tuple_size(Reg, Ts) of
        Sz when 0 < Index, Index =< Sz ->
            [{set,[D],[Reg],{get_tuple_element,Index-1}}];
        _ -> [I]
    end;
simplify_instr({test,Test,Fail,[R]}=I, Ts) ->
    case tdb_find(R, Ts) of
        any ->
            [I];
        Type ->
            case will_succeed(Test, Type) of
                yes -> [];
                no -> [{jump,Fail}];
                maybe -> [I]
            end
    end;
simplify_instr({set,[D],[TupleReg],{get_tuple_element,0}}=I, Ts) ->
    case tdb_find(TupleReg, Ts) of
        {tuple,_,_,[Contents]} ->
            [{set,[D],[Contents],move}];
        _ ->
            [I]
    end;
simplify_instr({test,test_arity,_,[R,Arity]}=I, Ts) ->
    case tdb_find(R, Ts) of
        {tuple,exact_size,Arity,_} -> [];
        _ -> [I]
    end;
simplify_instr({test,is_eq_exact,Fail,[R,{atom,A}=Atom]}=I, Ts) ->
    case tdb_find(R, Ts) of
        {atom,_}=Atom -> [];
        boolean when is_boolean(A) -> [I];
        any -> [I];
        _ -> [{jump,Fail}]
    end;
simplify_instr({test,is_record,_,[R,{atom,_}=Tag,{integer,Arity}]}=I, Ts) ->
    case tdb_find(R, Ts) of
        {tuple,exact_size,Arity,[Tag]} -> [];
        _ -> [I]
    end;
simplify_instr({select,select_val,Reg,_,_}=I, Ts) ->
    [case tdb_find(Reg, Ts) of
         {integer,Range} ->
             simplify_select_val_int(I, Range);
         boolean ->
             simplify_select_val_bool(I);
         _ ->
             I
     end];
simplify_instr({test,bs_test_unit,_,[Src,Unit]}=I, Ts) ->
    case tdb_find(Src, Ts) of
        {binary,U} when U rem Unit =:= 0 -> [];
        _ -> [I]
    end;
simplify_instr(I, _) -> [I].

simplify_select_val_int({select,select_val,R,_,L0}=I, {Min,Max}) ->
    Vs = sort([V || {integer,V} <- L0]),
    case eq_ranges(Vs, Min, Max) of
	false -> I;
	true -> simplify_select_val_1(L0, {integer,Max}, R, [])
    end.

simplify_select_val_bool({select,select_val,R,_,L}=I) ->
    Vs = sort([V || {atom,V} <- L]),
    case Vs of
	[false,true] ->
	    simplify_select_val_1(L, {atom,false}, R, []);
	_ ->
	    I
    end.

simplify_select_val_1([Val,F|T], Val, R, Acc) ->
    L = reverse(Acc, T),
    {select,select_val,R,F,L};
simplify_select_val_1([V,F|T], Val, R, Acc) ->
    simplify_select_val_1(T, Val, R, [F,V|Acc]).

eq_ranges([H], H, H) -> true;
eq_ranges([H|T], H, Max) -> eq_ranges(T, H+1, Max);
eq_ranges(_, _, _) -> false.

%% will_succeed(TestOperation, Type) -> yes|no|maybe.
%%  Test whether TestOperation applied to an argument of type Type
%%  will succeed.  Return yes, no, or maybe.
%%
%%  Type is a type as described in the comment for verified_type/1 at
%%  the very end of this file, but it will *never* be 'any'.

will_succeed(is_atom, Type) ->
    case Type of
        {atom,_} -> yes;
        boolean -> yes;
        _ -> no
    end;
will_succeed(is_binary, Type) ->
    case Type of
        {binary,U} when U rem 8 =:= 0 -> yes;
        {binary,_} -> maybe;
        _ -> no
    end;
will_succeed(is_bitstr, Type) ->
    case Type of
        {binary,_} -> yes;
        _ -> no
    end;
will_succeed(is_integer, Type) ->
    case Type of
        integer -> yes;
        {integer,_} -> yes;
        _ -> no
    end;
will_succeed(is_map, Type) ->
    case Type of
        map -> yes;
        _ -> no
    end;
will_succeed(is_nonempty_list, Type) ->
    case Type of
        nonempty_list -> yes;
        _ -> no
    end;
will_succeed(is_tuple, Type) ->
    case Type of
        {tuple,_,_,_} -> yes;
        _ -> no
    end;
will_succeed(_, _) -> maybe.

%% simplify_float([Instruction], TypeDatabase) ->
%%                 {[Instruction],TypeDatabase'} | not_possible
%%  Simplify floating point operations in blocks.
%%
simplify_float(Is0, Ts0) ->
    {Is1,Ts} = simplify_float_1(Is0, Ts0, [], []),
    Is2 = opt_fmoves(Is1, []),
    Is3 = flt_need_heap(Is2),
    try
	{flt_liveness(Is3),Ts}
    catch
	throw:not_possible -> not_possible
    end.

simplify_float_1([{set,[],[],fclearerror}|Is], Ts, Rs, Acc) ->
    simplify_float_1(Is, Ts, Rs, clearerror(Acc));
simplify_float_1([{set,[],[],fcheckerror}|Is], Ts, Rs, Acc) ->
    simplify_float_1(Is, Ts, Rs, checkerror(Acc));
simplify_float_1([{set,[{fr,_}],_,_}=I|Is], Ts, Rs, Acc) ->
    simplify_float_1(Is, Ts, Rs, [I|Acc]);
simplify_float_1([{set,[D0],[A0],{alloc,_,{gc_bif,'-',{f,0}}}}=I|Is]=Is0,
		 Ts0, Rs0, Acc0) ->
    case tdb_find(A0, Ts0) of
	float ->
	    A = coerce_to_float(A0),
	    {Rs1,Acc1} = load_reg(A, Ts0, Rs0, Acc0),
	    {D,Rs} = find_dest(D0, Rs1),
	    Areg = fetch_reg(A, Rs),
	    Acc = [{set,[D],[Areg],{bif,fnegate,{f,0}}}|clearerror(Acc1)],
	    Ts = tdb_store(D0, float, Ts0),
	    simplify_float_1(Is, Ts, Rs, Acc);
	_Other ->
	    Ts = update(I, Ts0),
	    {Rs,Acc} = flush(Rs0, Is0, Acc0),
	    simplify_float_1(Is, Ts, Rs, [I|checkerror(Acc)])
    end;
simplify_float_1([{set,[D0],[A0,B0],{alloc,_,{gc_bif,Op0,{f,0}}}}=I|Is]=Is0,
		 Ts0, Rs0, Acc0) ->
    case float_op(Op0, A0, B0, Ts0) of
	no ->
	    Ts = update(I, Ts0),
	    {Rs,Acc} = flush(Rs0, Is0, Acc0),
	    simplify_float_1(Is, Ts, Rs, [I|checkerror(Acc)]);
	{yes,Op} ->
	    A = coerce_to_float(A0),
	    B = coerce_to_float(B0),
	    {Rs1,Acc1} = load_reg(A, Ts0, Rs0, Acc0),
	    {Rs2,Acc2} = load_reg(B, Ts0, Rs1, Acc1),
	    {D,Rs} = find_dest(D0, Rs2),
	    Areg = fetch_reg(A, Rs),
	    Breg = fetch_reg(B, Rs),
	    Acc = [{set,[D],[Areg,Breg],{bif,Op,{f,0}}}|clearerror(Acc2)],
	    Ts = tdb_store(D0, float, Ts0),
	    simplify_float_1(Is, Ts, Rs, Acc)
    end;
simplify_float_1([{set,_,_,{try_catch,_,_}}=I|Is]=Is0, _Ts, Rs0, Acc0) ->
    Acc = flush_all(Rs0, Is0, Acc0),
    simplify_float_1(Is, tdb_new(), Rs0, [I|Acc]);
simplify_float_1([{set,_,_,{line,_}}=I|Is], Ts, Rs, Acc) ->
    simplify_float_1(Is, Ts, Rs, [I|Acc]);
simplify_float_1([I|Is], Ts0, [], Acc) ->
    Ts = update(I, Ts0),
    simplify_float_1(Is, Ts, [], [I|Acc]);
simplify_float_1([I|Is]=Is0, Ts0, Rs0, Acc0) ->
    Ts = update(I, Ts0),
    {Rs,Acc} = flush(Rs0, Is0, Acc0),
    simplify_float_1(Is, Ts, Rs, [I|checkerror(Acc)]);
simplify_float_1([], Ts, [], Acc) ->
    Is = reverse(Acc),
    {Is,Ts}.

coerce_to_float({integer,I}=Int) ->
    try float(I) of
	F ->
	    {float,F}
    catch _:_ ->
	    %% Let the overflow happen at run-time.
	    Int
    end;
coerce_to_float(Other) -> Other.

opt_fmoves([{set,[{x,_}=R],[{fr,_}]=Src,fmove}=I1,
	    {set,[_]=Dst,[{x,_}=R],move}=I2|Is], Acc) ->
    case beam_utils:is_killed_block(R, Is) of
	false -> opt_fmoves(Is, [I2,I1|Acc]);
	true -> opt_fmoves(Is, [{set,Dst,Src,fmove}|Acc])
    end;
opt_fmoves([I|Is], Acc) ->
    opt_fmoves(Is, [I|Acc]);
opt_fmoves([], Acc) -> reverse(Acc).

clearerror(Is) ->
    clearerror(Is, Is).

clearerror([{set,[],[],fclearerror}|_], OrigIs) -> OrigIs;
clearerror([{set,[],[],fcheckerror}|_], OrigIs) -> [{set,[],[],fclearerror}|OrigIs];
clearerror([_|Is], OrigIs) -> clearerror(Is, OrigIs);
clearerror([], OrigIs) -> [{set,[],[],fclearerror}|OrigIs].

%% merge_blocks(Block1, Block2) -> Block.
%%  Combine two blocks and eliminate any move instructions that assign
%%  to registers that are killed later in the block.
%%
merge_blocks(B1, [{'%anno',_}|B2]) ->
    merge_blocks_1(B1++[{set,[],[],stop_here}|B2]).

merge_blocks_1([{set,[],_,stop_here}|Is]) -> Is;
merge_blocks_1([{set,[D],_,move}=I|Is]) ->
    case beam_utils:is_killed_block(D, Is) of
	true -> merge_blocks_1(Is);
	false -> [I|merge_blocks_1(Is)]
    end;
merge_blocks_1([I|Is]) -> [I|merge_blocks_1(Is)].

%% flt_need_heap([Instruction]) -> [Instruction]
%%  Insert need heap allocation instructions in the instruction stream
%%  to properly account for both inserted floating point operations and
%%  normal term build operations (such as put_list/3).
%%
%%  Ignore old heap allocation instructions (except if they allocate a stack
%%  frame too), as they may be in the wrong place (because gc_bif instructions
%%  could have been converted to floating point operations).

flt_need_heap(Is) ->
    flt_need_heap_1(reverse(Is), 0, 0, []).

flt_need_heap_1([{set,[],[],{alloc,_,Alloc}}|Is], H, Fl, Acc) ->
    case Alloc of
	{_,nostack,_,_} ->
	    %% Remove any existing test_heap/2 instruction.
	    flt_need_heap_1(Is, H, Fl, Acc);
	{Z,Stk,_,Inits} when is_integer(Stk) ->
	    %% Keep any allocate*/2 instruction and recalculate heap need.
	    I = {set,[],[],{alloc,regs,{Z,Stk,build_alloc(H, Fl),Inits}}},
	    flt_need_heap_1(Is, 0, 0, [I|Acc])
    end;
flt_need_heap_1([I|Is], H0, Fl0, Acc) ->
    {Ns,H1,Fl1} = flt_need_heap_2(I, H0, Fl0),
    flt_need_heap_1(Is, H1, Fl1, [I|Ns]++Acc);
flt_need_heap_1([], H, Fl, Acc) ->
    flt_alloc(H, Fl) ++ Acc.

%% First come all instructions that build. We pass through, while we
%% add to the need for heap words and floats on the heap.
flt_need_heap_2({set,[_],[{fr,_}],fmove}, H, Fl) ->
    {[],H,Fl+1};
flt_need_heap_2({set,_,_,put_list}, H, Fl) ->
    {[],H+2,Fl};
flt_need_heap_2({set,_,_,{put_tuple,_}}, H, Fl) ->
    {[],H+1,Fl};
flt_need_heap_2({set,_,_,put}, H, Fl) ->
    {[],H+1,Fl};
%% The following instructions cause the insertion of an allocation
%% instruction if needed.
flt_need_heap_2({set,_,_,{alloc,_,_}}, H, Fl) ->
    {flt_alloc(H, Fl),0,0};
flt_need_heap_2({set,_,_,{set_tuple_element,_}}, H, Fl) ->
    {flt_alloc(H, Fl),0,0};
flt_need_heap_2({'%anno',_}, H, Fl) ->
    {flt_alloc(H, Fl),0,0};
%% All other instructions are "neutral". We just pass them.
flt_need_heap_2(_, H, Fl) ->
    {[],H,Fl}.

flt_alloc(0, 0) ->
    [];
flt_alloc(H, 0) ->
    [{set,[],[],{alloc,regs,{nozero,nostack,H,[]}}}];
flt_alloc(H, F) ->
    [{set,[],[],{alloc,regs,{nozero,nostack,
			     build_alloc(H, F),[]}}}].

build_alloc(Words, 0) -> Words;
build_alloc(Words, Floats) -> {alloc,[{words,Words},{floats,Floats}]}.


%% flt_liveness([Instruction]) -> [Instruction]
%%  (Re)calculate the number of live registers for each heap allocation
%%  function. We base liveness of the number of register map at the
%%  beginning of the instruction sequence.
%%
%%  A 'not_possible' term will be thrown if the set of live registers
%%  is not continous at an allocation function (e.g. if {x,0} and {x,2}
%%  are live, but not {x,1}).

flt_liveness([{'%anno',{used,Regs}}=LiveInstr|Is]) ->
    flt_liveness_1(Is, Regs, [LiveInstr]).

flt_liveness_1([{set,Ds,Ss,{alloc,Live0,Alloc}}|Is], Regs0, Acc) ->
    Live = min(Live0, live_regs(Regs0)),
    I = {set,Ds,Ss,{alloc,Live,Alloc}},
    Regs1 = init_regs(Live),
    Regs = x_live(Ds, Regs1),
    flt_liveness_1(Is, Regs, [I|Acc]);
flt_liveness_1([{set,Ds,_,_}=I|Is], Regs0, Acc) ->
    Regs = x_live(Ds, Regs0),
    flt_liveness_1(Is, Regs, [I|Acc]);
flt_liveness_1([{'%anno',_}], _Regs, Acc) ->
    reverse(Acc).

init_regs(Live) ->
    (1 bsl Live) - 1.

live_regs(Regs) ->
    live_regs_1(Regs, 0).

live_regs_1(0, N) -> N;
live_regs_1(R, N) ->
    case R band 1 of
	0 -> throw(not_possible);
	1 -> live_regs_1(R bsr 1, N+1)
    end.

x_live([{x,N}|Rs], Regs) -> x_live(Rs, Regs bor (1 bsl N));
x_live([_|Rs], Regs) -> x_live(Rs, Regs);
x_live([], Regs) -> Regs.

%% update(Instruction, TypeDb) -> NewTypeDb
%%  Update the type database to account for executing an instruction.
%%
%%  First the cases for instructions inside basic blocks.
update({'%anno',_}, Ts) ->
    Ts;
update({set,[D],[S],move}, Ts) ->
    tdb_copy(S, D, Ts);
update({set,[D],[Index,Reg],{bif,element,_}}, Ts0) ->
    MinSize = case Index of
                  {integer,I} -> I;
                  _ -> 0
              end,
    Ts = tdb_meet(Reg, {tuple,min_size,MinSize,[]}, Ts0),
    tdb_store(D, any, Ts);
update({set,[D],[_Key,Map],{bif,map_get,_}}, Ts0) ->
    Ts = tdb_meet(Map, map, Ts0),
    tdb_store(D, any, Ts);
update({set,[D],Args,{bif,N,_}}, Ts) ->
    Ar = length(Args),
    BoolOp = erl_internal:new_type_test(N, Ar) orelse
	erl_internal:comp_op(N, Ar) orelse
	erl_internal:bool_op(N, Ar),
    Type = case BoolOp of
               true -> boolean;
               false -> unary_op_type(N)
           end,
    tdb_store(D, Type, Ts);
update({set,[D],[S],{get_tuple_element,0}}, Ts0) ->
    if
        D =:= S ->
            tdb_store(D, any, Ts0);
        true ->
            Ts = tdb_store(D, {tuple_element,S,0}, Ts0),
            tdb_store(S, {tuple,min_size,1,[]}, Ts)
    end;
update({set,[D],[S],{alloc,_,{gc_bif,float,{f,0}}}}, Ts0) ->
    %% Make sure we reject non-numeric literal argument.
    case possibly_numeric(S) of
        true ->  tdb_store(D, float, Ts0);
        false -> Ts0
    end;
update({set,[D],[S1,S2],{alloc,_,{gc_bif,'band',{f,0}}}}, Ts) ->
    Type = band_type(S1, S2, Ts),
    tdb_store(D, Type, Ts);
update({set,[D],[S1,S2],{alloc,_,{gc_bif,'/',{f,0}}}}, Ts) ->
    %% Make sure we reject non-numeric literals.
    case possibly_numeric(S1) andalso possibly_numeric(S2) of
        true -> tdb_store(D, float, Ts);
        false -> Ts
    end;
update({set,[D],[S1,S2],{alloc,_,{gc_bif,Op,{f,0}}}}, Ts0) ->
    case op_type(Op) of
	integer ->
	    tdb_store(D, integer, Ts0);
        {float,_} ->
            case {tdb_find(S1, Ts0),tdb_find(S2, Ts0)} of
                {float,_} -> tdb_store(D, float, Ts0);
                {_,float} -> tdb_store(D, float, Ts0);
                {_,_} -> tdb_store(D, any, Ts0)
            end;
        Type ->
            tdb_store(D, Type, Ts0)
    end;
update({set,[D],[_],{alloc,_,{gc_bif,Op,{f,0}}}}, Ts) ->
    tdb_store(D, unary_op_type(Op), Ts);
update({set,[],_Src,_Op}, Ts) ->
    Ts;
update({set,[D],_Src,_Op}, Ts) ->
    tdb_store(D, any, Ts);
update({kill,D}, Ts) ->
    tdb_store(D, any, Ts);

%% Instructions outside of blocks.
update({test,test_arity,_Fail,[Src,Arity]}, Ts) ->
    tdb_meet(Src, {tuple,exact_size,Arity,[]}, Ts);
update({get_map_elements,_,Src,{list,Elems0}}, Ts0) ->
    Ts1 = tdb_meet(Src, map, Ts0),
    {_Ss,Ds} = beam_utils:split_even(Elems0),
    foldl(fun(Dst, A) -> tdb_store(Dst, any, A) end, Ts1, Ds);
update({test,is_eq_exact,_,[Reg,{atom,_}=Atom]}, Ts0) ->
    Ts = case tdb_find_source_tuple(Reg, Ts0) of
             {source_tuple,TupleReg} ->
                 tdb_meet(TupleReg, {tuple,min_size,1,[Atom]}, Ts0);
             none ->
                 Ts0
         end,
    tdb_meet(Reg, Atom, Ts);
update({test,is_record,_Fail,[Src,Tag,{integer,Arity}]}, Ts) ->
    tdb_meet(Src, {tuple,exact_size,Arity,[Tag]}, Ts);

%% Binaries and binary matching.

update({test,bs_get_integer2,_,_,Args,Dst}, Ts) ->
    tdb_store(Dst, get_bs_integer_type(Args), Ts);
update({test,bs_get_utf8,_,_,_,Dst}, Ts) ->
    tdb_store(Dst, ?UNICODE_INT, Ts);
update({test,bs_get_utf16,_,_,_,Dst}, Ts) ->
    tdb_store(Dst, ?UNICODE_INT, Ts);
update({test,bs_get_utf32,_,_,_,Dst}, Ts) ->
    tdb_store(Dst, ?UNICODE_INT, Ts);
update({bs_init,_,{bs_init2,_,_},_,_,Dst}, Ts) ->
    tdb_store(Dst, {binary,8}, Ts);
update({bs_init,_,_,_,_,Dst}, Ts) ->
    tdb_store(Dst, {binary,1}, Ts);
update({bs_put,_,_,_}, Ts) ->
    Ts;
update({bs_save2,_,_}, Ts) ->
    Ts;
update({bs_restore2,_,_}, Ts) ->
    Ts;
update({bs_context_to_binary,Dst}, Ts) ->
    tdb_store(Dst, any, Ts);
update({test,bs_start_match2,_,_,[Src,_],Dst}, Ts0) ->
    Ts = tdb_meet(Src, {binary,1}, Ts0),
    tdb_copy(Src, Dst, Ts);
update({test,bs_get_binary2,_,_,[_,_,Unit,_],Dst}, Ts) ->
    true = is_integer(Unit),                    %Assertion.
    tdb_store(Dst, {binary,Unit}, Ts);
update({test,bs_get_float2,_,_,_,Dst}, Ts) ->
    tdb_store(Dst, float, Ts);
update({test,bs_test_unit,_,[Src,Unit]}, Ts) ->
    tdb_meet(Src, {binary,Unit}, Ts);

%% Other test instructions
update({test,Test,_Fail,[Src]}, Ts) ->
    Type = case Test of
               is_binary -> {binary,8};
               is_bitstr -> {binary,1};
               is_boolean -> boolean;
               is_float -> float;
               is_integer -> integer;
               is_map -> map;
               is_nonempty_list -> nonempty_list;
               _ -> any
           end,
    tdb_meet(Src, Type, Ts);
update({test,_Test,_Fail,_Other}, Ts) ->
    Ts;

%% Calls

update({call_ext,Ar,{extfunc,math,Math,Ar}}, Ts) ->
    case is_math_bif(Math, Ar) of
	true -> tdb_store({x,0}, float, Ts);
	false -> tdb_kill_xregs(Ts)
    end;
update({call_ext,3,{extfunc,erlang,setelement,3}}, Ts0) ->
    Ts = tdb_kill_xregs(Ts0),
    case tdb_find({x,1}, Ts0) of
	{tuple,SzKind,Sz,_}=T0 ->
	    T = case tdb_find({x,0}, Ts0) of
		    {integer,{I,I}} when I > 1 ->
			%% First element is not changed. The result
			%% will have the same type.
			T0;
		    _ ->
			%% Position is 1 or unknown. May change the
			%% first element of the tuple.
			{tuple,SzKind,Sz,[]}
		end,
            tdb_store({x,0}, T, Ts);
	_ ->
	    Ts
    end;
update({call,_Arity,_Func}, Ts) -> tdb_kill_xregs(Ts);
update({call_ext,_Arity,_Func}, Ts) -> tdb_kill_xregs(Ts);
update({make_fun2,_,_,_,_}, Ts) -> tdb_kill_xregs(Ts);
update({call_fun, _}, Ts) -> tdb_kill_xregs(Ts);
update({apply, _}, Ts) -> tdb_kill_xregs(Ts);

update({line,_}, Ts) -> Ts;
update({'%',_}, Ts) -> Ts;

%% The instruction is unknown.  Kill all information.
update(_I, _Ts) -> tdb_new().

band_type({integer,Int}, Other, Ts) ->
    band_type_1(Int, Other, Ts);
band_type(Other, {integer,Int}, Ts) ->
    band_type_1(Int, Other, Ts);
band_type(_, _, _) -> integer.

band_type_1(Int, OtherSrc, Ts) ->
    Type = band_type_2(Int, 0),
    OtherType = tdb_find(OtherSrc, Ts),
    meet(Type, OtherType).

band_type_2(N, Bits) when Bits < 64 ->
    case 1 bsl Bits of
	P when P =:= N + 1 ->
	    {integer,{0,N}};
	P when P > N + 1 ->
	    integer;
	_ ->
	    band_type_2(N, Bits+1)
    end;
band_type_2(_, _) ->
    %% Negative or large positive number. Give up.
    integer.

get_bs_integer_type([_,{integer,N},U,{field_flags,Fl}])
  when N*U < 64 ->
    NumBits = N*U,
    case member(unsigned, Fl) of
	true ->
	    {integer,{0,(1 bsl NumBits)-1}};
	false ->
	    %% Signed integer. Don't bother.
	    integer
    end;
get_bs_integer_type(_) ->
    %% Avoid creating ranges with a huge upper limit.
    integer.

is_math_bif(cos, 1) -> true;
is_math_bif(cosh, 1) -> true;
is_math_bif(sin, 1) -> true;
is_math_bif(sinh, 1) -> true;
is_math_bif(tan, 1) -> true;
is_math_bif(tanh, 1) -> true;
is_math_bif(acos, 1) -> true;
is_math_bif(acosh, 1) -> true;
is_math_bif(asin, 1) -> true;
is_math_bif(asinh, 1) -> true;
is_math_bif(atan, 1) -> true;
is_math_bif(atanh, 1) -> true;
is_math_bif(erf, 1) -> true;
is_math_bif(erfc, 1) -> true;
is_math_bif(exp, 1) -> true;
is_math_bif(log, 1) -> true;
is_math_bif(log2, 1) -> true;
is_math_bif(log10, 1) -> true;
is_math_bif(sqrt, 1) -> true;
is_math_bif(atan2, 2) -> true;
is_math_bif(pow, 2) -> true;
is_math_bif(ceil, 1) -> true;
is_math_bif(floor, 1) -> true;
is_math_bif(fmod, 2) -> true;
is_math_bif(pi, 0) -> true;
is_math_bif(_, _) -> false.

%% Reject non-numeric literals.
possibly_numeric({x,_}) -> true;
possibly_numeric({y,_}) -> true;
possibly_numeric({integer,_}) -> true;
possibly_numeric({float,_}) -> true;
possibly_numeric(_) -> false.

max_tuple_size(Reg, Ts) ->
    case tdb_find(Reg, Ts) of
	{tuple,_,Sz,_} -> Sz;
	_Other -> 0
    end.

float_op('/', A, B, _) ->
    case possibly_numeric(A) andalso possibly_numeric(B) of
	true -> {yes,fdiv};
	false -> no
    end;
float_op(Op, {float,_}, B, _) ->
    case possibly_numeric(B) of
	true -> arith_op(Op);
	false -> no
    end;
float_op(Op, A, {float,_}, _) ->
    case possibly_numeric(A) of
	true -> arith_op(Op);
	false -> no
    end;
float_op(Op, A, B, Ts) ->
    case {tdb_find(A, Ts),tdb_find(B, Ts)} of
	{float,_} -> arith_op(Op);
	{_,float} -> arith_op(Op);
	{_,_} -> no
    end.

find_dest(V, Rs0) ->
    case find_reg(V, Rs0) of
	{ok,FR} ->
	    {FR,mark(V, Rs0, dirty)};
	error ->
	    Rs = put_reg(V, Rs0, dirty),
	    {ok,FR} = find_reg(V, Rs),
	    {FR,Rs}
    end.

load_reg({float,_}=F, _, Rs0, Is0) ->
    Rs = put_reg(F, Rs0, clean),
    {ok,FR} = find_reg(F, Rs),
    Is = [{set,[FR],[F],fmove}|Is0],
    {Rs,Is};
load_reg(V, Ts, Rs0, Is0) ->
    case find_reg(V, Rs0) of
	{ok,_FR} -> {Rs0,Is0};
	error ->
	    Rs = put_reg(V, Rs0, clean),
	    {ok,FR} = find_reg(V, Rs),
	    Op = case tdb_find(V, Ts) of
		     float -> fmove;
		     _ -> fconv
		 end,
	    Is = [{set,[FR],[V],Op}|Is0],
	    {Rs,Is}
    end.

arith_op(Op) ->
    case op_type(Op) of
	{float,Instr} -> {yes,Instr};
	_ -> no
    end.

op_type('+') -> {float,fadd};
op_type('-') -> {float,fsub};
op_type('*') -> {float,fmul};
%% '/' and 'band' are specially handled.
op_type('bor') -> integer;
op_type('bxor') -> integer;
op_type('bsl') -> integer;
op_type('bsr') -> integer;
op_type('div') -> integer;
op_type(_) -> any.

unary_op_type(bit_size) -> integer;
unary_op_type(byte_size) -> integer;
unary_op_type(length) -> integer;
unary_op_type(map_size) -> integer;
unary_op_type(size) -> integer;
unary_op_type(tuple_size) -> integer;
unary_op_type(_) -> any.

flush(Rs, [{set,[_],[_,_,_],{bif,is_record,_}}|_]=Is0, Acc0) ->
    Acc = flush_all(Rs, Is0, Acc0),
    {[],Acc};
flush(Rs, [{set,[_],[],{put_tuple,_}}|_]=Is0, Acc0) ->
    Acc = flush_all(Rs, Is0, Acc0),
    {[],Acc};
flush(Rs0, [{set,Ds,Ss,_Op}|_], Acc0) ->
    Save = cerl_sets:from_list(Ss),
    Acc = save_regs(Rs0, Save, Acc0),
    Rs1 = foldl(fun(S, A) -> mark(S, A, clean) end, Rs0, Ss),
    Kill = cerl_sets:from_list(Ds),
    Rs = kill_regs(Rs1, Kill),
    {Rs,Acc};
flush(Rs0, Is, Acc0) ->
    Acc = flush_all(Rs0, Is, Acc0),
    {[],Acc}.

flush_all([{_,{float,_},_}|Rs], Is, Acc) ->
    flush_all(Rs, Is, Acc);
flush_all([{I,V,dirty}|Rs], Is, Acc0) ->
    Acc = checkerror(Acc0),
    case beam_utils:is_killed_block(V, Is) of
	true  -> flush_all(Rs, Is, Acc);
	false -> flush_all(Rs, Is, [{set,[V],[{fr,I}],fmove}|Acc])
    end;
flush_all([{_,_,clean}|Rs], Is, Acc) -> flush_all(Rs, Is, Acc);
flush_all([free|Rs], Is, Acc) -> flush_all(Rs, Is, Acc);
flush_all([], _, Acc) -> Acc.

save_regs(Rs, Save, Acc) ->
    foldl(fun(R, A) -> save_reg(R, Save, A) end, Acc, Rs).

save_reg({I,V,dirty}, Save, Acc) ->
    case cerl_sets:is_element(V, Save) of
	true -> [{set,[V],[{fr,I}],fmove}|checkerror(Acc)];
	false -> Acc
    end;
save_reg(_, _, Acc) -> Acc.

kill_regs(Rs, Kill) ->
    [kill_reg(R, Kill) || R <- Rs].

kill_reg({_,V,_}=R, Kill) ->
    case cerl_sets:is_element(V, Kill) of
	true -> free;
	false -> R
    end;
kill_reg(R, _) -> R.

mark(V, [{I,V,_}|Rs], Mark) -> [{I,V,Mark}|Rs];
mark(V, [R|Rs], Mark) -> [R|mark(V, Rs, Mark)];
mark(_, [], _) -> [].

fetch_reg(V, [{I,V,_}|_]) -> {fr,I};
fetch_reg(V, [_|SRs]) -> fetch_reg(V, SRs).

find_reg(V, [{I,V,_}|_]) -> {ok,{fr,I}};
find_reg(V, [_|SRs]) -> find_reg(V, SRs);
find_reg(_, []) -> error.

put_reg(V, Rs, Dirty) -> put_reg_1(V, Rs, Dirty, 0).

put_reg_1(V, [free|Rs], Dirty, I) -> [{I,V,Dirty}|Rs];
put_reg_1(V, [R|Rs], Dirty, I) -> [R|put_reg_1(V, Rs, Dirty, I+1)];
put_reg_1(V, [], Dirty, I) -> [{I,V,Dirty}].

checkerror(Is) ->
    checkerror_1(Is, Is).

checkerror_1([{set,[],[],fcheckerror}|_], OrigIs) -> OrigIs;
checkerror_1([{set,_,_,{bif,fadd,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([{set,_,_,{bif,fsub,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([{set,_,_,{bif,fmul,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([{set,_,_,{bif,fdiv,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([{set,_,_,{bif,fnegate,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([_|Is], OrigIs) -> checkerror_1(Is, OrigIs);
checkerror_1([], OrigIs) -> OrigIs.

checkerror_2(OrigIs) -> [{set,[],[],fcheckerror}|OrigIs].


%%% Routines for maintaining a type database.  The type database
%%% associates type information with registers.
%%%
%%% See the comment for verified_type/1 at the end of module for
%%% a description of the possible types.

%% tdb_new() -> EmptyDataBase
%%  Creates a new, empty type database.

tdb_new() -> [].

%% tdb_find(Register, Db) -> Type
%%  Returns type information or the atom error if there is no type
%%  information available for Register.
%%
%%  See the comment for verified_type/1 at the end of module for
%%  a description of the possible types.

tdb_find(Reg, Ts) ->
    case tdb_find_raw(Reg, Ts) of
        {tuple_element,_,_} -> any;
        Type -> Type
    end.

%% tdb_find_source_tuple(Register, Ts) -> {source_tuple,Register} | 'none'.
%%  Find the tuple whose first element was fetched to the register Register.

tdb_find_source_tuple(Reg, Ts) ->
    case tdb_find_raw(Reg, Ts) of
        {tuple_element,Src,0} ->
            {source_tuple,Src};
        _ ->
            none
    end.

%% tdb_copy(Source, Dest, Db) -> Db'
%%  Update the type information for Dest to have the same type
%%  as the Source.

tdb_copy({Tag,_}=S, D, Ts) when Tag =:= x; Tag =:= y ->
    case tdb_find_raw(S, Ts) of
        any -> orddict:erase(D, Ts);
        Type -> orddict:store(D, Type, Ts)
    end;
tdb_copy(Literal, D, Ts) ->
    Type = case Literal of
	       {atom,_} -> Literal;
	       {float,_} -> float;
	       {integer,Int} -> {integer,{Int,Int}};
	       {literal,[_|_]} -> nonempty_list;
	       {literal,#{}} -> map;
	       {literal,Tuple} when tuple_size(Tuple) >= 1 ->
		   Lit = tag_literal(element(1, Tuple)),
		   {tuple,exact_size,tuple_size(Tuple),[Lit]};
	       _ -> any
	   end,
    tdb_store(D, verified_type(Type), Ts).

%% tdb_store(Register, Type, Ts0) -> Ts.
%%  Store a new type for register Register. Return the update type
%%  database. Use this function when a new value is assigned to
%%  a register.
%%
%%  See the comment for verified_type/1 at the end of module for
%%  a description of the possible types.

tdb_store(Reg, any, Ts) ->
    erase(Reg, Ts);
tdb_store(Reg, Type, Ts) ->
    store(Reg, verified_type(Type), Ts).

store(Key, New, [{K,_}|_]=Dict) when Key < K ->
    [{Key,New}|Dict];
store(Key, New, [{K,Val}=E|Dict]) when Key > K ->
    case Val of
        {tuple_element,Key,_} -> store(Key, New, Dict);
        _ -> [E|store(Key, New, Dict)]
    end;
store(Key, New, [{_K,Old}|Dict]) ->		%Key == K
    case Old of
        {tuple,_,_,_} ->
            [{Key,New}|erase_tuple_element(Key, Dict)];
        _ ->
            [{Key,New}|Dict]
    end;
store(Key, New, []) -> [{Key,New}].

erase(Key, [{K,_}=E|Dict]) when Key < K ->
    [E|Dict];
erase(Key, [{K,Val}=E|Dict]) when Key > K ->
    case Val of
        {tuple_element,Key,_} -> erase(Key, Dict);
        _ -> [E|erase(Key, Dict)]
    end;
erase(Key, [{_K,Val}|Dict]) ->                 %Key == K
    case Val of
        {tuple,_,_,_} -> erase_tuple_element(Key, Dict);
        _ -> Dict
    end;
erase(_, []) -> [].

erase_tuple_element(Key, [{_,{tuple_element,Key,_}}|Dict]) ->
    erase_tuple_element(Key, Dict);
erase_tuple_element(Key, [E|Dict]) ->
    [E|erase_tuple_element(Key, Dict)];
erase_tuple_element(_Key, []) -> [].

%% tdb_meet(Register, Type, Ts0) -> Ts.
%%  Update information of a register that is used as the source for an
%%  instruction. The type Type will be combined using the meet operation
%%  with the previous type information for the register, resulting in
%%  narrower (more specific) type.
%%
%%  For example, if the previous type is {tuple,min_size,2,[]} and the
%%  the new type is {tuple,exact_size,5,[]}, the meet of the types will
%%  be {tuple,exact_size,5,[]}.
%%
%%  See the comment for verified_type/1 at the end of module for
%%  a description of the possible types.

tdb_meet(Reg, NewType, Ts) ->
    Update = fun(Type0) -> meet(Type0, NewType) end,
    orddict:update(Reg, Update, NewType, Ts).

%%%
%%% Here follows internal helper functions for accessing and
%%% updating the type database.
%%%

tdb_find_raw({x,_}=K, Ts) -> tdb_find_raw_1(K, Ts);
tdb_find_raw({y,_}=K, Ts) -> tdb_find_raw_1(K, Ts);
tdb_find_raw(_, _) -> any.

tdb_find_raw_1(K, Ts) ->
    case orddict:find(K, Ts) of
	{ok,Val} -> Val;
	error -> any
    end.

tag_literal(A) when is_atom(A) -> {atom,A};
tag_literal(F) when is_float(F) -> {float,F};
tag_literal(I) when is_integer(I) -> {integer,I};
tag_literal([]) -> nil;
tag_literal(Lit) -> {literal,Lit}.

%% tdb_kill_xregs(Db) -> NewDb
%%  Kill all information about x registers. Also kill all tuple_element
%%  dependencies from y registers to x registers.

tdb_kill_xregs([{{x,_},_Type}|Db]) -> tdb_kill_xregs(Db);
tdb_kill_xregs([{{y,_},{tuple_element,{x,_},_}}|Db]) -> tdb_kill_xregs(Db);
tdb_kill_xregs([Any|Db]) -> [Any|tdb_kill_xregs(Db)];
tdb_kill_xregs([]) -> [].

%% meet(Type1, Type2) -> Type
%%  Returns the "meet" of Type1 and Type2. The meet is a narrower
%%  type than Type1 and Type2. For example:
%%
%%     meet(integer, {integer,{0,3}}) -> {integer,{0,3}}
%%
%%  The meet for two different types result in 'none', which is
%%  the bottom element for our type lattice:
%%
%%     meet(integer, map) -> none

meet(T, T) ->
    T;
meet({integer,_}=T, integer) ->
    T;
meet(integer, {integer,_}=T) ->
    T;
meet({integer,{Min1,Max1}}, {integer,{Min2,Max2}}) ->
    {integer,{max(Min1, Min2),min(Max1, Max2)}};
meet({tuple,min_size,Sz1,Same}, {tuple,min_size,Sz2,Same}=Max) when Sz1 < Sz2 ->
    Max;
meet({tuple,min_size,Sz1,Same}=Max, {tuple,min_size,Sz2,Same}) when Sz1 > Sz2 ->
    Max;
meet({tuple,exact_size,_,Same}=Exact, {tuple,_,_,Same}) ->
    Exact;
meet({tuple,_,_,Same},{tuple,exact_size,_,Same}=Exact) ->
    Exact;
meet({tuple,SzKind1,Sz1,[]}, {tuple,_SzKind2,_Sz2,First}=Tuple2) ->
    meet({tuple,SzKind1,Sz1,First}, Tuple2);
meet({tuple,_SzKind1,_Sz1,First}=Tuple1, {tuple,SzKind2,Sz2,_}) ->
    meet(Tuple1, {tuple,SzKind2,Sz2,First});
meet({binary,U1}, {binary,U2}) ->
    {binary,max(U1, U2)};
meet(T1, T2) ->
    case is_any(T1) of
        true ->
            verified_type(T2);
        false ->
            case is_any(T2) of
                true ->
                    verified_type(T1);
                false ->
                    none                        %The bottom element.
            end
    end.

is_any(any) -> true;
is_any({tuple_element,_,_}) -> true;
is_any(_) -> false.

%% verified_type(Type) -> Type
%%  Returns the passed in type if it is one of the defined types.
%%  Crashes if there is anything wrong with the type.
%%
%%  Here are all possible types:
%%
%%  any                  Any Erlang term (top element for the type lattice).
%%
%%  {atom,Atom}          The specific atom Atom.
%%  {binary,Unit}        Binary/bitstring aligned to unit Unit.
%%  boolean              'true' | 'false'
%%  float                Floating point number.
%%  integer              Integer.
%%  {integer,{Min,Max}}  Integer in the inclusive range Min through Max.
%%  map                  Map.
%%  nonempty_list        Nonempty list.
%%  {tuple,_,_,_}        Tuple (see below).
%%
%%  none                 No type (bottom element for the type lattice).
%%
%%  {tuple,min_size,Size,First} means that the corresponding register
%%  contains a tuple with *at least* Size elements (conversely,
%%  {tuple,exact_size,Size,First} means that it contains a tuple with
%%  *exactly* Size elements). An tuple with unknown size is
%%  represented as {tuple,min_size,0,[]}. First is either [] (meaning
%%  that the tuple's first element is unknown) or [FirstElement] (the
%%  contents of the first element).
%%
%%  There is also a pseudo-type called {tuple_element,_,_}:
%%
%%    {tuple_element,SrcTuple,ElementNumber}
%%
%%  that does not provide any information about the type of the
%%  register itself, but provides a link back to the source tuple that
%%  the register got its value from.
%%
%%  Note that {tuple_element,_,_} will *never* be returned by tdb_find/2.
%%  Use tdb_find_source_tuple/2 to locate the source tuple for a register.

verified_type(any=T) -> T;
verified_type({atom,_}=T) -> T;
verified_type({binary,U}=T) when is_integer(U) -> T;
verified_type(boolean=T) -> T;
verified_type(integer=T) -> T;
verified_type({integer,{Min,Max}}=T)
  when is_integer(Min), is_integer(Max) -> T;
verified_type(map=T) -> T;
verified_type(nonempty_list=T) -> T;
verified_type({tuple,_,Sz,[]}=T) when is_integer(Sz) -> T;
verified_type({tuple,_,Sz,[_]}=T) when is_integer(Sz) -> T;
verified_type({tuple_element,_,_}=T) -> T;
verified_type(float=T) -> T;
verified_type(none=T) -> T.