1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2010. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Do necessary checking of Core Erlang code.
%% Check Core module for errors. Seeing this module is used in the
%% compiler after optimisations we do more checking than would be
%% necessary after just parsing. Don't check all constructs.
%%
%% We check the following:
%%
%% All referred functions, called and exported, are defined.
%% Format of export list.
%% Format of attributes
%% Used variables are defined.
%% Variables in let and funs.
%% Patterns case clauses.
%% Values only as multiple values/variables/patterns.
%% Return same number of values as requested
%% Correct number of arguments
%%
%% Checks to add:
%%
%% Consistency of values/variables
%% Consistency of function return values/calls.
%%
%% We keep the names defined variables and functions in a ordered list
%% of variable names and function name/arity pairs.
-module(core_lint).
-export([module/1,module/2,format_error/1]).
-import(lists, [reverse/1,all/2,foldl/3]).
-import(ordsets, [add_element/2,is_element/2,union/2]).
-include("core_parse.hrl").
%%-----------------------------------------------------------------------
%% Types used in this module
-type fa() :: {atom(), arity()}.
-type err_desc() :: 'invalid_attributes' | 'invalid_exports'
| {'arg_mismatch', fa()} | {'bittype_unit', fa()}
| {'illegal_expr', fa()} | {'illegal_guard', fa()}
| {'illegal_pattern', fa()} | {'illegal_try', fa()}
| {'not_bs_pattern', fa()} | {'not_pattern', fa()}
| {'not_var', fa()} | {'pattern_mismatch', fa()}
| {'return_mismatch', fa()} | {'undefined_function', fa()}
| {'duplicate_var', cerl:var_name(), fa()}
| {'unbound_var', cerl:var_name(), fa()}
| {'undefined_function', fa(), fa()}
| {'tail_segment_not_at_end', fa()}.
-type error() :: {module(), err_desc()}.
-type warning() :: {module(), term()}.
%%-----------------------------------------------------------------------
%% Define the lint state record.
-record(lint, {module :: module(), % Current module
func :: fa(), % Current function
errors = [] :: [error()], % Errors
warnings= [] :: [warning()]}). % Warnings
%%----------------------------------------------------------------------
%% format_error(Error)
%% Return a string describing the error.
-spec format_error(err_desc()) -> [char() | list()].
format_error(invalid_attributes) -> "invalid attributes";
format_error(invalid_exports) -> "invalid exports";
format_error({arg_mismatch,{F,A}}) ->
io_lib:format("argument count mismatch in ~w/~w", [F,A]);
format_error({bittype_unit,{F,A}}) ->
io_lib:format("unit without size in bit syntax pattern/expression in ~w/~w", [F,A]);
format_error({illegal_expr,{F,A}}) ->
io_lib:format("illegal expression in ~w/~w", [F,A]);
format_error({illegal_guard,{F,A}}) ->
io_lib:format("illegal guard expression in ~w/~w", [F,A]);
format_error({illegal_pattern,{F,A}}) ->
io_lib:format("illegal pattern in ~w/~w", [F,A]);
format_error({illegal_try,{F,A}}) ->
io_lib:format("illegal try expression in ~w/~w", [F,A]);
format_error({not_bs_pattern,{F,A}}) ->
io_lib:format("expecting bit syntax pattern in ~w/~w", [F,A]);
format_error({not_pattern,{F,A}}) ->
io_lib:format("expecting pattern in ~w/~w", [F,A]);
format_error({not_var,{F,A}}) ->
io_lib:format("expecting variable in ~w/~w", [F,A]);
format_error({pattern_mismatch,{F,A}}) ->
io_lib:format("pattern count mismatch in ~w/~w", [F,A]);
format_error({return_mismatch,{F,A}}) ->
io_lib:format("return count mismatch in ~w/~w", [F,A]);
format_error({undefined_function,{F,A}}) ->
io_lib:format("function ~w/~w undefined", [F,A]);
format_error({duplicate_var,N,{F,A}}) ->
io_lib:format("duplicate variable ~s in ~w/~w", [N,F,A]);
format_error({unbound_var,N,{F,A}}) ->
io_lib:format("unbound variable ~s in ~w/~w", [N,F,A]);
format_error({undefined_function,{F1,A1},{F2,A2}}) ->
io_lib:format("undefined function ~w/~w in ~w/~w", [F1,A1,F2,A2]);
format_error({tail_segment_not_at_end,{F,A}}) ->
io_lib:format("binary tail segment not at end in ~w/~w", [F,A]).
-type ret() :: {'ok', [{module(), [warning(),...]}]}
| {'error', [{module(), [error(),...]}],
[{module(), [warning(),...]}]}.
-spec module(cerl:c_module()) -> ret().
module(M) -> module(M, []).
-spec module(cerl:c_module(), [compile:option()]) -> ret().
module(#c_module{name=M,exports=Es,attrs=As,defs=Ds}, _Opts) ->
Defined = defined_funcs(Ds),
St0 = #lint{module=M#c_literal.val},
St1 = check_exports(Es, St0),
St2 = check_attrs(As, St1),
St3 = module_defs(Ds, Defined, St2),
St4 = check_state(Es, Defined, St3),
return_status(St4).
%% defined_funcs([FuncDef]) -> [Fname].
defined_funcs(Fs) ->
foldl(fun ({#c_var{name={_I,_A}=IA},_}, Def) ->
add_element(IA, Def)
end, [], Fs).
%% return_status(State) ->
%% {ok,[Warning]} | {error,[Error],[Warning]}
%% Pack errors and warnings properly and return ok | error.
return_status(St) ->
Ws = reverse(St#lint.warnings),
case reverse(St#lint.errors) of
[] -> {ok,[{St#lint.module,Ws}]};
Es -> {error,[{St#lint.module,Es}],[{St#lint.module,Ws}]}
end.
%% add_error(ErrorDescriptor, State) -> State'
%% add_warning(ErrorDescriptor, State) -> State'
%% Note that we don't use line numbers here.
add_error(E, St) -> St#lint{errors=[{?MODULE,E}|St#lint.errors]}.
%%add_warning(W, St) -> St#lint{warnings=[{none,core_lint,W}|St#lint.warnings]}.
check_exports(Es, St) ->
case all(fun (#c_var{name={Name,Arity}})
when is_atom(Name), is_integer(Arity) -> true;
(_) -> false
end, Es) of
true -> St;
false -> add_error(invalid_exports, St)
end.
check_attrs(As, St) ->
case all(fun ({#c_literal{},V}) -> core_lib:is_literal(V);
(_) -> false
end, As) of
true -> St;
false -> add_error(invalid_attributes, St)
end.
check_state(Es, Defined, St) ->
foldl(fun (#c_var{name={_N,_A}=F}, St1) ->
case is_element(F, Defined) of
true -> St1;
false -> add_error({undefined_function,F}, St)
end
end, St, Es).
%% module_defs(CoreBody, Defined, State) -> State.
module_defs(B, Def, St) ->
%% Set top level function name.
foldl(fun (Func, St0) ->
{#c_var{name={_F,_A}=FA},_} = Func,
St1 = St0#lint{func=FA},
function(Func, Def, St1)
end, St, B).
%% functions([Fdef], Defined, State) -> State.
functions(Fs, Def, St0) ->
foldl(fun (F, St) -> function(F, Def, St) end, St0, Fs).
%% function(CoreFunc, Defined, State) -> State.
function({#c_var{name={_,_}},B}, Def, St) ->
%% Body must be a fun!
case B of
#c_fun{} -> expr(B, Def, any, St);
_ -> add_error({illegal_expr,St#lint.func}, St)
end.
%% body(Expr, Defined, RetCount, State) -> State.
body(#c_values{es=Es}, Def, Rt, St) ->
return_match(Rt, length(Es), expr_list(Es, Def, St));
body(E, Def, Rt, St0) ->
St1 = expr(E, Def, Rt, St0),
case is_simple_top(E) of
true -> return_match(Rt, 1, St1);
false -> St1
end.
%% guard(Expr, Defined, State) -> State.
%% Guards are boolean expressions with test wrapped in a protected.
guard(Expr, Def, St) -> gexpr(Expr, Def, 1, St).
%% guard_list([Expr], Defined, State) -> State.
%% guard_list(Es, Def, St0) ->
%% foldl(fun (E, St) -> guard(E, Def, St) end, St0, Es).
%% gbody(Expr, Defined, RetCount, State) -> State.
gbody(#c_values{es=Es}, Def, Rt, St) ->
return_match(Rt, length(Es), gexpr_list(Es, Def, St));
gbody(E, Def, Rt, St0) ->
St1 = gexpr(E, Def, Rt, St0),
case is_simple_top(E) of
true -> return_match(Rt, 1, St1);
false -> St1
end.
gexpr(#c_var{name=N}, Def, _Rt, St) -> expr_var(N, Def, St);
gexpr(#c_literal{}, _Def, _Rt, St) -> St;
gexpr(#c_cons{hd=H,tl=T}, Def, _Rt, St) ->
gexpr_list([H,T], Def, St);
gexpr(#c_tuple{es=Es}, Def, _Rt, St) ->
gexpr_list(Es, Def, St);
gexpr(#c_binary{segments=Ss}, Def, _Rt, St) ->
gbitstr_list(Ss, Def, St);
gexpr(#c_seq{arg=Arg,body=B}, Def, Rt, St0) ->
St1 = gexpr(Arg, Def, any, St0), %Ignore values
gbody(B, Def, Rt, St1);
gexpr(#c_let{vars=Vs,arg=Arg,body=B}, Def, Rt, St0) ->
St1 = gbody(Arg, Def, let_varcount(Vs), St0), %This is a guard body
{Lvs,St2} = variable_list(Vs, St1),
gbody(B, union(Lvs, Def), Rt, St2);
gexpr(#c_call{module=#c_literal{val=erlang},
name=#c_literal{},
args=As}, Def, 1, St) ->
gexpr_list(As, Def, St);
gexpr(#c_primop{name=#c_literal{val=A},args=As}, Def, _Rt, St0) when is_atom(A) ->
gexpr_list(As, Def, St0);
gexpr(#c_try{arg=E,vars=[#c_var{name=X}],body=#c_var{name=X},
evars=[#c_var{},#c_var{}],handler=#c_literal{val=false}},
Def, Rt, St) ->
gbody(E, Def, Rt, St);
gexpr(#c_case{arg=Arg,clauses=Cs}, Def, Rt, St0) ->
PatCount = case_patcount(Cs),
St1 = gbody(Arg, Def, PatCount, St0),
clauses(Cs, Def, PatCount, Rt, St1);
gexpr(_Core, _, _, St) ->
add_error({illegal_guard,St#lint.func}, St).
%% gexpr_list([Expr], Defined, State) -> State.
gexpr_list(Es, Def, St0) ->
foldl(fun (E, St) -> gexpr(E, Def, 1, St) end, St0, Es).
%% gbitstr_list([Elem], Defined, State) -> State.
gbitstr_list(Es, Def, St0) ->
foldl(fun (E, St) -> gbitstr(E, Def, St) end, St0, Es).
gbitstr(#c_bitstr{val=V,size=S}, Def, St) ->
gexpr_list([V,S], Def, St).
%% expr(Expr, Defined, RetCount, State) -> State.
expr(#c_var{name={_,_}=FA}, Def, _Rt, St) ->
expr_fname(FA, Def, St);
expr(#c_var{name=N}, Def, _Rt, St) -> expr_var(N, Def, St);
expr(#c_literal{}, _Def, _Rt, St) -> St;
expr(#c_cons{hd=H,tl=T}, Def, _Rt, St) ->
expr_list([H,T], Def, St);
expr(#c_tuple{es=Es}, Def, _Rt, St) ->
expr_list(Es, Def, St);
expr(#c_binary{segments=Ss}, Def, _Rt, St) ->
bitstr_list(Ss, Def, St);
expr(#c_fun{vars=Vs,body=B}, Def, Rt, St0) ->
{Vvs,St1} = variable_list(Vs, St0),
return_match(Rt, 1, body(B, union(Vvs, Def), any, St1));
expr(#c_seq{arg=Arg,body=B}, Def, Rt, St0) ->
St1 = expr(Arg, Def, any, St0), %Ignore values
body(B, Def, Rt, St1);
expr(#c_let{vars=Vs,arg=Arg,body=B}, Def, Rt, St0) ->
St1 = body(Arg, Def, let_varcount(Vs), St0), %This is a body
{Lvs,St2} = variable_list(Vs, St1),
body(B, union(Lvs, Def), Rt, St2);
expr(#c_letrec{defs=Fs,body=B}, Def0, Rt, St0) ->
Def1 = union(defined_funcs(Fs), Def0), %All defined stuff
St1 = functions(Fs, Def1, St0),
body(B, Def1, Rt, St1#lint{func=St0#lint.func});
expr(#c_case{arg=Arg,clauses=Cs}, Def, Rt, St0) ->
Pc = case_patcount(Cs),
St1 = body(Arg, Def, Pc, St0),
clauses(Cs, Def, Pc, Rt, St1);
expr(#c_receive{clauses=Cs,timeout=#c_literal{val=infinity},
action=#c_literal{}},
Def, Rt, St) ->
%% If the timeout is 'infinity', the after code can never
%% be reached. We don't care if the return count is wrong.
clauses(Cs, Def, 1, Rt, St);
expr(#c_receive{clauses=Cs,timeout=T,action=A}, Def, Rt, St0) ->
St1 = expr(T, Def, 1, St0),
St2 = body(A, Def, Rt, St1),
clauses(Cs, Def, 1, Rt, St2);
expr(#c_apply{op=Op,args=As}, Def, _Rt, St0) ->
St1 = apply_op(Op, Def, length(As), St0),
expr_list(As, Def, St1);
expr(#c_call{module=M,name=N,args=As}, Def, _Rt, St0) ->
St1 = expr(M, Def, 1, St0),
St2 = expr(N, Def, 1, St1),
expr_list(As, Def, St2);
expr(#c_primop{name=#c_literal{val=A},args=As}, Def, _Rt, St0) when is_atom(A) ->
expr_list(As, Def, St0);
expr(#c_catch{body=B}, Def, Rt, St) ->
return_match(Rt, 1, body(B, Def, 1, St));
expr(#c_try{arg=A,vars=Vs,body=B,evars=Evs,handler=H}, Def, Rt, St0) ->
St1 = case Evs of
[_, _, _] -> St0;
_ -> add_error({illegal_try,St0#lint.func}, St0)
end,
St2 = body(A, Def, let_varcount(Vs), St1),
{Ns,St3} = variable_list(Vs, St2),
St4 = body(B, union(Ns, Def), Rt, St3),
{Ens,St5} = variable_list(Evs, St4),
body(H, union(Ens, Def), Rt, St5);
expr(_Other, _, _, St) ->
%%io:fwrite("clint: ~p~n", [_Other]),
add_error({illegal_expr,St#lint.func}, St).
%% expr_list([Expr], Defined, State) -> State.
expr_list(Es, Def, St0) ->
foldl(fun (E, St) -> expr(E, Def, 1, St) end, St0, Es).
%% bitstr_list([Elem], Defined, State) -> State.
bitstr_list(Es, Def, St0) ->
foldl(fun (E, St) -> bitstr(E, Def, St) end, St0, Es).
bitstr(#c_bitstr{val=V,size=S}, Def, St) ->
expr_list([V,S], Def, St).
%% apply_op(Op, Defined, ArgCount, State) -> State.
%% A apply op is either an fname or an expression.
apply_op(#c_var{name={_I,A}=IA}, Def, Ac, St0) ->
St1 = expr_fname(IA, Def, St0),
arg_match(Ac, A, St1);
apply_op(E, Def, _, St) -> expr(E, Def, 1, St). %Hard to check
%% expr_var(VarName, Defined, State) -> State.
expr_var(N, Def, St) ->
case is_element(N, Def) of
true -> St;
false -> add_error({unbound_var,N,St#lint.func}, St)
end.
%% expr_fname(Fname, Defined, State) -> State.
expr_fname(Fname, Def, St) ->
case is_element(Fname, Def) of
true -> St;
false -> add_error({undefined_function,Fname,St#lint.func}, St)
end.
%% let_varcount([Var]) -> int().
let_varcount([]) -> any; %Ignore values
let_varcount(Es) -> length(Es).
%% case_patcount([Clause]) -> int().
case_patcount([#c_clause{pats=Ps}|_]) -> length(Ps).
%% clauses([Clause], Defined, PatCount, RetCount, State) -> State.
clauses(Cs, Def, Pc, Rt, St0) ->
foldl(fun (C, St) -> clause(C, Def, Pc, Rt, St) end, St0, Cs).
%% clause(Clause, Defined, PatCount, RetCount, State) -> State.
clause(#c_clause{pats=Ps,guard=G,body=B}, Def0, Pc, Rt, St0) ->
St1 = pattern_match(Pc, length(Ps), St0),
{Pvs,St2} = pattern_list(Ps, Def0, St1),
Def1 = union(Pvs, Def0),
St3 = guard(G, Def1, St2),
body(B, Def1, Rt, St3).
%% variable(Var, [PatVar], State) -> {[VarName],State}.
variable(#c_var{name=N}, Ps, St) ->
case is_element(N, Ps) of
true -> {[],add_error({duplicate_var,N,St#lint.func}, St)};
false -> {[N],St}
end;
variable(_, Def, St) -> {Def,add_error({not_var,St#lint.func}, St)}.
%% variable_list([Var], State) -> {[Var],State}.
%% variable_list([Var], [PatVar], State) -> {[Var],State}.
variable_list(Vs, St) -> variable_list(Vs, [], St).
variable_list(Vs, Ps, St) ->
foldl(fun (V, {Ps0,St0}) ->
{Vvs,St1} = variable(V, Ps0, St0),
{union(Vvs, Ps0),St1}
end, {Ps,St}, Vs).
%% pattern(Pattern, Defined, State) -> {[PatVar],State}.
%% pattern(Pattern, Defined, [PatVar], State) -> {[PatVar],State}.
%% Patterns are complicated by sizes in binaries. These are pure
%% input variables which create no bindings. We, therefore, need to
%% carry around the original defined variables to get the correct
%% handling.
%% pattern(P, Def, St) -> pattern(P, Def, [], St).
pattern(#c_var{name=N}, Def, Ps, St) ->
pat_var(N, Def, Ps, St);
pattern(#c_literal{}, _Def, Ps, St) -> {Ps,St};
pattern(#c_cons{hd=H,tl=T}, Def, Ps, St) ->
pattern_list([H,T], Def, Ps, St);
pattern(#c_tuple{es=Es}, Def, Ps, St) ->
pattern_list(Es, Def, Ps, St);
pattern(#c_binary{segments=Ss}, Def, Ps, St0) ->
St = pat_bin_tail_check(Ss, St0),
pat_bin(Ss, Def, Ps, St);
pattern(#c_alias{var=V,pat=P}, Def, Ps, St0) ->
{Vvs,St1} = variable(V, Ps, St0),
pattern(P, Def, union(Vvs, Ps), St1);
pattern(_, _, Ps, St) -> {Ps,add_error({not_pattern,St#lint.func}, St)}.
pat_var(N, _Def, Ps, St) ->
case is_element(N, Ps) of
true -> {Ps,add_error({duplicate_var,N,St#lint.func}, St)};
false -> {add_element(N, Ps),St}
end.
%% pat_bin_list([Elem], Defined, [PatVar], State) -> {[PatVar],State}.
pat_bin(Es, Def0, Ps0, St0) ->
{Ps,_,St} = foldl(fun (E, {Ps,Def,St}) ->
pat_segment(E, Def, Ps, St)
end, {Ps0,Def0,St0}, Es),
{Ps,St}.
pat_segment(#c_bitstr{val=V,size=S,type=T}, Def0, Ps0, St0) ->
St1 = pat_bit_expr(S, T, Def0, St0),
{Ps,St2} = pattern(V, Def0, Ps0, St1),
Def = case V of
#c_var{name=Name} -> add_element(Name, Def0);
_ -> Def0
end,
{Ps,Def,St2};
pat_segment(_, Def, Ps, St) ->
{Ps,Def,add_error({not_bs_pattern,St#lint.func}, St)}.
%% pat_bin_tail_check([Elem], State) -> State.
%% There must be at most one tail segment (a size-less segment of
%% type binary) and it must occur at the end.
pat_bin_tail_check([#c_bitstr{size=#c_literal{val=all}}], St) ->
%% Size-less field is OK at the end of the list of segments.
St;
pat_bin_tail_check([#c_bitstr{size=#c_literal{val=all}}|_], St) ->
add_error({tail_segment_not_at_end,St#lint.func}, St);
pat_bin_tail_check([_|Ss], St) ->
pat_bin_tail_check(Ss, St);
pat_bin_tail_check([], St) -> St.
%% pat_bit_expr(SizePat, Type, Defined, State) -> State.
%% Check the Size pattern, this is an input! Because of optimizations,
%% we must allow any kind of constant and literal here.
pat_bit_expr(#c_var{name=N}, _, Def, St) -> expr_var(N, Def, St);
pat_bit_expr(#c_literal{}, _, _, St) -> St;
pat_bit_expr(#c_binary{}, _, _Def, St) ->
%% Literal binaries may be expressed as a bit syntax construction
%% expression if such expression is more compact than the literal.
%% Example: <<0:100000000>>
St;
pat_bit_expr(_, _, _, St) ->
add_error({illegal_expr,St#lint.func}, St).
%% pattern_list([Var], Defined, State) -> {[PatVar],State}.
%% pattern_list([Var], Defined, [PatVar], State) -> {[PatVar],State}.
pattern_list(Pats, Def, St) -> pattern_list(Pats, Def, [], St).
pattern_list(Pats, Def, Ps0, St0) ->
foldl(fun (P, {Ps,St}) -> pattern(P, Def, Ps, St) end, {Ps0,St0}, Pats).
%% pattern_match(Required, Supplied, State) -> State.
%% Check that the required number of patterns match the supplied.
pattern_match(N, N, St) -> St;
pattern_match(_Req, _Sup, St) ->
add_error({pattern_mismatch,St#lint.func}, St).
%% return_match(Required, Supplied, State) -> State.
%% Check that the required number of return values match the supplied.
return_match(any, _Sup, St) -> St;
return_match(N, N, St) -> St;
return_match(_Req, _Sup, St) ->
add_error({return_mismatch,St#lint.func}, St).
%% arg_match(Required, Supplied, State) -> State.
arg_match(N, N, St) -> St;
arg_match(_Req, _Sup, St) ->
add_error({arg_mismatch,St#lint.func}, St).
%% Only check if the top-level is a simple.
-spec is_simple_top(cerl:cerl()) -> boolean().
is_simple_top(#c_var{}) -> true;
is_simple_top(#c_cons{}) -> true;
is_simple_top(#c_tuple{}) -> true;
is_simple_top(#c_binary{}) -> true;
is_simple_top(#c_literal{}) -> true;
is_simple_top(_) -> false.
|