aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/sys_core_fold.erl
blob: 395b6bd677a9f1bfb6db2e902ad0f2a6fbc0027d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2017. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Constant folding optimisation for Core

%% Propagate atomic values and fold in values of safe calls to
%% constant arguments.  Also detect and remove literals which are
%% ignored in a 'seq'.  Could handle lets better by chasing down
%% complex 'arg' expressions and finding values.
%%
%% Try to optimise case expressions by removing unmatchable or
%% unreachable clauses.  Also change explicit tuple arg into multiple
%% values and extend clause patterns.  We must be careful here not to
%% generate cases which we know to be safe but later stages will not
%% recognise as such, e.g. the following is NOT acceptable:
%%
%%    case 'b' of
%%        <'b'> -> ...
%%    end
%%
%% Variable folding is complicated by variable shadowing, for example
%% in:
%%    'foo'/1 =
%%        fun (X) ->
%%            let <A> = X
%%            in  let <X> = Y
%%                in ... <use A>
%% If we were to simply substitute X for A then we would be using the
%% wrong X.  Our solution is to rename variables that are the values
%% of substitutions.  We could rename all shadowing variables but do
%% the minimum.  We would then get:
%%    'foo'/1 =
%%        fun (X) ->
%%            let <A> = X
%%            in  let <X1> = Y
%%                in ... <use A>
%% which is optimised to:
%%    'foo'/1 =
%%        fun (X) ->
%%            let <X1> = Y
%%            in ... <use X>
%%
%% This is done by carefully shadowing variables and substituting
%% values.  See details when defining functions.
%%
%% It would be possible to extend to replace repeated evaluation of
%% "simple" expressions by the value (variable) of the first call.
%% For example, after a "let Z = X+1" then X+1 would be replaced by Z
%% where X is valid.  The Sub uses the full Core expression as key.
%% It would complicate handling of patterns as we would have to remove
%% all values where the key contains pattern variables.

-module(sys_core_fold).

-export([module/2,format_error/1]).

-import(lists, [map/2,foldl/3,foldr/3,mapfoldl/3,all/2,any/2,
		reverse/1,reverse/2,member/2,flatten/1,
		unzip/1,keyfind/3]).

-import(cerl, [ann_c_cons/3,ann_c_map/3,ann_c_tuple/2]).

-include("core_parse.hrl").

%%-define(DEBUG, 1).

-ifdef(DEBUG).
-define(ASSERT(E),
	case E of
	    true ->
		ok;
	    false ->
		io:format("~p, line ~p: assertion failed\n", [?MODULE,?LINE]),
		error(assertion_failed)
	end).
-else.
-define(ASSERT(E), ignore).
-endif.

%% Variable value info.
-record(sub, {v=[],                                 %Variable substitutions
              s=cerl_sets:new() :: cerl_sets:set(), %Variables in scope
              t=#{} :: map(),                       %Types
              in_guard=false}).                     %In guard or not.

-type type_info() :: cerl:cerl() | 'bool' | 'integer'.
-type yes_no_maybe() :: 'yes' | 'no' | 'maybe'.
-type sub() :: #sub{}.

-spec module(cerl:c_module(), [compile:option()]) ->
	{'ok', cerl:c_module(), [_]}.

module(#c_module{defs=Ds0}=Mod, Opts) ->
    put(no_inline_list_funcs, not member(inline_list_funcs, Opts)),
    init_warnings(),
    Ds1 = [function_1(D) || D <- Ds0],
    erase(new_var_num),
    erase(no_inline_list_funcs),
    {ok,Mod#c_module{defs=Ds1},get_warnings()}.

function_1({#c_var{name={F,Arity}}=Name,B0}) ->
    %% Find a suitable starting value for the variable counter. Note
    %% that this pass assumes that new_var_name/1 returns a variable
    %% name distinct from any variable used in the entire body of
    %% the function. We use integers as variable names to avoid
    %% filling up the atom table when compiling huge functions.
    Count = cerl_trees:next_free_variable_name(B0),
    put(new_var_num, Count),
    try
        %% Find a suitable starting value for the variable
        %% counter. Note that this pass assumes that new_var_name/1
        %% returns a variable name distinct from any variable used in
        %% the entire body of the function. We use integers as
        %% variable names to avoid filling up the atom table when
        %% compiling huge functions.
        Count = cerl_trees:next_free_variable_name(B0),
        put(new_var_num, Count),
	B = find_fixpoint(fun(Core) ->
				  %% This must be a fun!
				  expr(Core, value, sub_new())
			  end, B0, 20),
	{Name,B}
    catch
        Class:Error:Stack ->
	    io:fwrite("Function: ~w/~w\n", [F,Arity]),
	    erlang:raise(Class, Error, Stack)
    end.

find_fixpoint(_OptFun, Core, 0) ->
    Core;
find_fixpoint(OptFun, Core0, Max) ->
    case OptFun(Core0) of
	Core0 -> Core0;
	Core -> find_fixpoint(OptFun, Core, Max-1)
    end.

%% body(Expr, Sub) -> Expr.
%% body(Expr, Context, Sub) -> Expr.
%%  No special handling of anything except values.

body(Body, Sub) ->
    body(Body, value, Sub).

body(#c_values{anno=A,es=Es0}, value, Sub) ->
    Es1 = expr_list(Es0, value, Sub),
    #c_values{anno=A,es=Es1};
body(E, Ctxt, Sub) ->
    ?ASSERT(verify_scope(E, Sub)),
    expr(E, Ctxt, Sub).

%% guard(Expr, Sub) -> Expr.
%%  Do guard expression.  We optimize it in the same way as
%%  expressions in function bodies.

guard(Expr, Sub) ->
    ?ASSERT(verify_scope(Expr, Sub)),
    expr(Expr, value, Sub#sub{in_guard=true}).

%% opt_guard_try(Expr) -> Expr.
%%
opt_guard_try(#c_seq{arg=Arg,body=Body0}=Seq) ->
    Body = opt_guard_try(Body0),
    WillFail = case Body of
		   #c_call{module=#c_literal{val=erlang},
			   name=#c_literal{val=error},
			   args=[_]} ->
		       true;
		   #c_literal{val=false} ->
		       true;
		   _ ->
		       false
	       end,
    case Arg of
	#c_call{module=#c_literal{val=Mod},
		name=#c_literal{val=Name},
		args=Args} when WillFail ->
	    %% We have sequence consisting of a call (evaluated
	    %% for a possible exception and/or side effect only),
	    %% followed by 'false' or a call to error/1.
	    %%   Since the sequence is inside a try block that will
	    %% default to 'false' if any exception occurs, not
	    %% evalutating the call will not change the behaviour
	    %% provided that the call has no side effects.
	    case erl_bifs:is_pure(Mod, Name, length(Args)) of
		false ->
		    %% Not a pure BIF (meaning that this is not
		    %% a guard and that we must keep the call).
		    Seq#c_seq{body=Body};
		true ->
		    %% The BIF has no side effects, so it can
		    %% be safely removed.
		    Body
	    end;
	_ ->
	    Seq#c_seq{body=Body}
    end;
opt_guard_try(#c_case{clauses=Cs}=Term) ->
    Term#c_case{clauses=opt_guard_try_list(Cs)};
opt_guard_try(#c_clause{body=B0}=Term) ->
    Term#c_clause{body=opt_guard_try(B0)};
opt_guard_try(#c_let{arg=Arg,body=B0}=Term) ->
    case opt_guard_try(B0) of
	#c_literal{}=B ->
	    opt_guard_try(#c_seq{arg=Arg,body=B});
	B ->
	    Term#c_let{body=B}
    end;
opt_guard_try(Term) -> Term.

opt_guard_try_list([C|Cs]) ->
    [opt_guard_try(C)|opt_guard_try_list(Cs)];
opt_guard_try_list([]) -> [].

%% expr(Expr, Sub) -> Expr.
%% expr(Expr, Context, Sub) -> Expr.

expr(Expr, Sub) ->
    expr(Expr, value, Sub).

expr(#c_var{}=V, Ctxt, Sub) ->
    %% Return void() in effect context to potentially shorten the life time
    %% of the variable and potentially generate better code
    %% (for instance, if the variable no longer needs to survive a function
    %% call, there will be no need to save it in the stack frame).
    case Ctxt of
	effect -> void();
	value -> sub_get_var(V, Sub)
    end;
expr(#c_literal{val=Val}=L, Ctxt, _Sub) ->
    case Ctxt of
	effect ->
	    case Val of
		[] ->
		    %% Keep as [] - might give slightly better code.
		    L;
		_ when is_atom(Val) ->
		    %% For cleanliness replace with void().
		    void();
		_ ->
		    %% Warn and replace with void().
		    add_warning(L, useless_building),
		    void()
	    end;
	value -> L
    end;
expr(#c_cons{anno=Anno,hd=H0,tl=T0}=Cons, Ctxt, Sub) ->
    H1 = expr(H0, Ctxt, Sub),
    T1 = expr(T0, Ctxt, Sub),
    case Ctxt of
	effect ->
	    add_warning(Cons, useless_building),
	    make_effect_seq([H1,T1], Sub);
	value ->
	    ann_c_cons(Anno, H1, T1)
    end;
expr(#c_tuple{anno=Anno,es=Es0}=Tuple, Ctxt, Sub) ->
    Es = expr_list(Es0, Ctxt, Sub),
    case Ctxt of
	effect ->
	    add_warning(Tuple, useless_building),
	    make_effect_seq(Es, Sub);
	value ->
	    ann_c_tuple(Anno, Es)
    end;
expr(#c_map{anno=Anno,arg=V0,es=Es0}=Map, Ctxt, Sub) ->
    Es = pair_list(Es0, Ctxt, Sub),
    case Ctxt of
	effect ->
	    add_warning(Map, useless_building),
	    make_effect_seq(Es, Sub);
	value ->
	    V = expr(V0, Ctxt, Sub),
	    ann_c_map(Anno,V,Es)
    end;
expr(#c_binary{segments=Ss}=Bin0, Ctxt, Sub) ->
    %% Warn for useless building, but always build the binary
    %% anyway to preserve a possible exception.
    case Ctxt of
	effect -> add_warning(Bin0, useless_building);
	value -> ok
    end,
    Bin1 = Bin0#c_binary{segments=bitstr_list(Ss, Sub)},
    Bin = bin_un_utf(Bin1),
    eval_binary(Bin);
expr(#c_fun{}=Fun, effect, _) ->
    %% A fun is created, but not used. Warn, and replace with the void value.
    add_warning(Fun, useless_building),
    void();
expr(#c_fun{vars=Vs0,body=B0}=Fun, Ctxt0, Sub0) ->
    {Vs1,Sub1} = var_list(Vs0, Sub0),
    Ctxt = case Ctxt0 of
	       {letrec,Ctxt1} -> Ctxt1;
	       value -> value
	   end,
    B1 = body(B0, Ctxt, Sub1),
    Fun#c_fun{vars=Vs1,body=B1};
expr(#c_seq{arg=Arg0,body=B0}=Seq0, Ctxt, Sub) ->
    %% Optimise away pure literal arg as its value is ignored.
    B1 = body(B0, Ctxt, Sub),
    Arg = body(Arg0, effect, Sub),
    case will_fail(Arg) of
	true ->
	    Arg;
	false ->
	    %% Arg cannot be "values" here - only a single value
	    %% make sense here.
            case {Ctxt,is_safe_simple(Arg, Sub)} of
                {effect,true} -> B1;
                {effect,false} ->
                    case is_safe_simple(B1, Sub) of
                        true -> Arg;
                        false -> Seq0#c_seq{arg=Arg,body=B1}
                    end;
                {value,true} -> B1;
                {value,false} -> Seq0#c_seq{arg=Arg,body=B1}
	    end
    end;
expr(#c_let{}=Let0, Ctxt, Sub) ->
    Let = opt_case_in_let(Let0),
    case simplify_let(Let, Sub) of
	impossible ->
	    %% The argument for the let is "simple", i.e. has no
	    %% complex structures such as let or seq that can be entered.
	    ?ASSERT(verify_scope(Let, Sub)),
	    opt_simple_let(Let, Ctxt, Sub);
	Expr ->
	    %% The let body was successfully moved into the let argument.
	    %% Now recursively re-process the new expression.
	    Expr
    end;
expr(#c_letrec{body=#c_var{}}=Letrec, effect, _Sub) ->
    %% This is named fun in an 'effect' context. Warn and ignore.
    add_warning(Letrec, useless_building),
    void();
expr(#c_letrec{defs=Fs0,body=B0}=Letrec, Ctxt, Sub) ->
    Fs1 = map(fun ({Name,Fb}) ->
		      {Name,expr(Fb, {letrec,Ctxt}, Sub)}
	      end, Fs0),
    B1 = body(B0, Ctxt, Sub),
    Letrec#c_letrec{defs=Fs1,body=B1};
expr(#c_case{}=Case0, Ctxt, Sub) ->
    %% Ideally, the compiler should only emit warnings when there is
    %% a real mistake in the code being compiled. We use the follow
    %% heuristics in an attempt to approach that ideal:
    %%
    %% * If the guard for a clause always fails, we will emit a
    %%   warning.
    %%
    %% * If a case expression is a literal, we will emit no warnings
    %%   for clauses that will not match or for clauses that are
    %%   shadowed after a clause that will always match. That means
    %%   that code such as:
    %%
    %%      case ?DEBUG of
    %%         false -> ok;
    %%         true -> ...
    %%      end
    %%
    %%   (where ?DEBUG expands to either 'true' or 'false') will not
    %%   produce any warnings.
    %%
    %% * If the case expression is not literal, warnings will be
    %%   emitted for every clause that don't match and for all
    %%   clauses following a clause that will always match.
    %%
    %% * If no clause will ever match, there will be a warning
    %%   (in addition to any warnings that may have been emitted
    %%   according to the rules above).
    %%
    case opt_bool_case(Case0, Sub) of
	#c_case{arg=Arg0,clauses=Cs0}=Case1 ->
	    Arg1 = body(Arg0, value, Sub),
	    LitExpr = cerl:is_literal(Arg1),
	    {Arg2,Cs1} = case_opt(Arg1, Cs0, Sub),
	    Cs2 = clauses(Arg2, Cs1, Ctxt, Sub, LitExpr),
	    Case = Case1#c_case{arg=Arg2,clauses=Cs2},
	    warn_no_clause_match(Case1, Case),
	    Expr = eval_case(Case, Sub),
            move_case_into_arg(Expr, Sub);
	Other ->
	    expr(Other, Ctxt, Sub)
    end;
expr(#c_receive{clauses=Cs0,timeout=T0,action=A0}=Recv, Ctxt, Sub) ->
    Cs1 = clauses(#c_var{name='_'}, Cs0, Ctxt, Sub, false),
    T1 = expr(T0, value, Sub),
    A1 = body(A0, Ctxt, Sub),
    Recv#c_receive{clauses=Cs1,timeout=T1,action=A1};
expr(#c_apply{anno=Anno,op=Op0,args=As0}=App, _, Sub) ->
    Op1 = expr(Op0, value, Sub),
    As1 = expr_list(As0, value, Sub),
    case cerl:is_data(Op1) of
        false ->
	    App#c_apply{op=Op1,args=As1};
	true ->
	    add_warning(App, invalid_call),
	    Err = #c_call{anno=Anno,
			  module=#c_literal{val=erlang},
			  name=#c_literal{val=error},
			  args=[#c_tuple{es=[#c_literal{val='badfun'},
					     Op1]}]},
	    make_effect_seq(As1++[Err], Sub)
    end;
expr(#c_call{module=M0,name=N0}=Call0, Ctxt, Sub) ->
    M1 = expr(M0, value, Sub),
    N1 = expr(N0, value, Sub),
    Call = Call0#c_call{module=M1,name=N1},
    case useless_call(Ctxt, Call) of
	no -> call(Call, M1, N1, Sub);
	{yes,Seq} -> expr(Seq, Ctxt, Sub)
    end;
expr(#c_primop{name=#c_literal{val=build_stacktrace}}, effect, _Sub) ->
    void();
expr(#c_primop{args=As0}=Prim, _, Sub) ->
    As1 = expr_list(As0, value, Sub),
    Prim#c_primop{args=As1};
expr(#c_catch{anno=Anno,body=B}, effect, Sub) ->
    %% When the return value of the 'catch' is ignored, we can replace it
    %% with a try/catch to avoid building a stack trace when an exception
    %% occurs.
    Var = #c_var{name='catch_value'},
    Evs = [#c_var{name='Class'},#c_var{name='Reason'},#c_var{name='Stk'}],
    Try = #c_try{anno=Anno,arg=B,vars=[Var],body=Var,
                 evars=Evs,handler=void()},
    expr(Try, effect, Sub);
expr(#c_catch{body=B0}=Catch, _, Sub) ->
    %% We can remove catch if the value is simple
    B1 = body(B0, value, Sub),
    case is_safe_simple(B1, Sub) of
	true -> B1;
	false -> Catch#c_catch{body=B1}
    end;
expr(#c_try{arg=E0,vars=[#c_var{name=X}],body=#c_var{name=X},
	    handler=#c_literal{val=false}=False}=Try, _, Sub) ->
    %% Since guard may call expr/2, we must do some optimization of
    %% the kind of try's that occur in guards.
    E1 = body(E0, value, Sub),
    case will_fail(E1) of
	false ->
	    %% Remove any calls that are evaluated for effect only.
	    E2 = opt_guard_try(E1),

	    %% We can remove try/catch if the expression is an
	    %% expression that cannot fail.
	    case is_safe_bool_expr(E2, Sub) orelse is_safe_simple(E2, Sub) of
		true -> E2;
		false -> Try#c_try{arg=E2}
	    end;
	true ->
	    %% Expression will always fail.
	    False
    end;
expr(#c_try{anno=A,arg=E0,vars=Vs0,body=B0,evars=Evs0,handler=H0}=Try, _, Sub0) ->
    %% Here is the general try/catch construct outside of guards.
    %% We can remove try if the value is simple and replace it with a let.
    E1 = body(E0, value, Sub0),
    {Vs1,Sub1} = var_list(Vs0, Sub0),
    B1 = body(B0, value, Sub1),
    case is_safe_simple(E1, Sub0) of
	true ->
	    expr(#c_let{anno=A,vars=Vs1,arg=E1,body=B1}, value, Sub0);
	false ->
	    {Evs1,Sub2} = var_list(Evs0, Sub0),
	    H1 = body(H0, value, Sub2),
	    Try#c_try{arg=E1,vars=Vs1,body=B1,evars=Evs1,handler=H1}
    end.

expr_list(Es, Ctxt, Sub) ->
    [expr(E, Ctxt, Sub) || E <- Es].

pair_list(Es, Ctxt, Sub) ->
    [pair(E, Ctxt, Sub) || E <- Es].

pair(#c_map_pair{key=K,val=V}, effect, Sub) ->
    make_effect_seq([K,V], Sub);
pair(#c_map_pair{key=K0,val=V0}=Pair, value=Ctxt, Sub) ->
    K = expr(K0, Ctxt, Sub),
    V = expr(V0, Ctxt, Sub),
    Pair#c_map_pair{key=K,val=V}.

bitstr_list(Es, Sub) ->
    [bitstr(E, Sub) || E <- Es].

bitstr(#c_bitstr{val=Val,size=Size}=BinSeg, Sub) ->
    BinSeg#c_bitstr{val=expr(Val, Sub),size=expr(Size, value, Sub)}.

%% is_safe_simple(Expr, Sub) -> true | false.
%%  A safe simple cannot fail with badarg and is safe to use
%%  in a guard.
%%
%%  Currently, we don't attempt to check binaries because they
%%  are difficult to check.

is_safe_simple(#c_var{}=Var, _) ->
    not cerl:is_c_fname(Var);
is_safe_simple(#c_cons{hd=H,tl=T}, Sub) ->
    is_safe_simple(H, Sub) andalso is_safe_simple(T, Sub);
is_safe_simple(#c_tuple{es=Es}, Sub) -> is_safe_simple_list(Es, Sub);
is_safe_simple(#c_literal{}, _) -> true;
is_safe_simple(#c_call{module=#c_literal{val=erlang},
		       name=#c_literal{val=Name},
		       args=Args}, Sub) when is_atom(Name) ->
    NumArgs = length(Args),
    case erl_internal:bool_op(Name, NumArgs) of
	true ->
	    %% Boolean operators are safe if the arguments are boolean.
	    all(fun(C) -> is_boolean_type(C, Sub) =:= yes end, Args);
	false ->
	    %% We need a rather complicated test to ensure that
	    %% we only allow safe calls that are allowed in a guard.
	    %% (Note that is_function/2 is a type test, but is not safe.)
	    erl_bifs:is_safe(erlang, Name, NumArgs) andalso
		      (erl_internal:comp_op(Name, NumArgs) orelse
		       erl_internal:new_type_test(Name, NumArgs))
    end;
is_safe_simple(_, _) -> false.

is_safe_simple_list(Es, Sub) -> all(fun(E) -> is_safe_simple(E, Sub) end, Es).

%% will_fail(Expr) -> true|false.
%%  Determine whether the expression will fail with an exception.
%%  Return true if the expression always will fail with an exception,
%%  i.e. never return normally.

will_fail(#c_let{arg=A,body=B}) ->
    will_fail(A) orelse will_fail(B);
will_fail(#c_call{module=#c_literal{val=Mod},name=#c_literal{val=Name},args=Args}) ->
    erl_bifs:is_exit_bif(Mod, Name, length(Args));
will_fail(#c_primop{name=#c_literal{val=match_fail},args=[_]}) -> true;
will_fail(_) -> false.

%% bin_un_utf(#c_binary{}) -> #c_binary{}
%%  Convert any literal UTF-8/16/32 literals to byte-sized
%%  integer fields.

bin_un_utf(#c_binary{anno=Anno,segments=Ss}=Bin) ->
    Bin#c_binary{segments=bin_un_utf_1(Ss, Anno)}.

bin_un_utf_1([#c_bitstr{val=#c_literal{},type=#c_literal{val=utf8}}=H|T],
	     Anno) ->
    bin_un_utf_eval(H, Anno) ++ bin_un_utf_1(T, Anno);
bin_un_utf_1([#c_bitstr{val=#c_literal{},type=#c_literal{val=utf16}}=H|T],
	     Anno) ->
    bin_un_utf_eval(H, Anno) ++ bin_un_utf_1(T, Anno);
bin_un_utf_1([#c_bitstr{val=#c_literal{},type=#c_literal{val=utf32}}=H|T],
	     Anno) ->
    bin_un_utf_eval(H, Anno) ++ bin_un_utf_1(T, Anno);
bin_un_utf_1([H|T], Anno) ->
    [H|bin_un_utf_1(T, Anno)];
bin_un_utf_1([], _) -> [].

bin_un_utf_eval(Bitstr, Anno) ->
    Segments = [Bitstr],
    case eval_binary(#c_binary{anno=Anno,segments=Segments}) of
	#c_literal{anno=Anno,val=Bytes} when is_binary(Bytes) ->
	    [#c_bitstr{anno=Anno,
		       val=#c_literal{anno=Anno,val=B},
		       size=#c_literal{anno=Anno,val=8},
		       unit=#c_literal{anno=Anno,val=1},
		       type=#c_literal{anno=Anno,val=integer},
		       flags=#c_literal{anno=Anno,val=[unsigned,big]}} ||
		B <- binary_to_list(Bytes)];
	_ ->
	    Segments
    end.

%% eval_binary(#c_binary{}) -> #c_binary{} | #c_literal{}
%%  Evaluate a binary at compile time if possible to create
%%  a binary literal.

eval_binary(#c_binary{anno=Anno,segments=Ss}=Bin) ->
    try
	#c_literal{anno=Anno,val=eval_binary_1(Ss, <<>>)}
    catch
	throw:impossible ->
	    Bin;
	  throw:{badarg,Warning} ->
	    add_warning(Bin, Warning),
	    #c_call{anno=Anno,
		    module=#c_literal{val=erlang},
		    name=#c_literal{val=error},
		    args=[#c_literal{val=badarg}]}
    end.

eval_binary_1([#c_bitstr{val=#c_literal{val=Val},size=#c_literal{val=Sz},
			 unit=#c_literal{val=Unit},type=#c_literal{val=Type},
			 flags=#c_literal{val=Flags}}|Ss], Acc0) ->
    Endian = case member(big, Flags) of
		 true ->
		     big;
		 false ->
		     case member(little, Flags) of
			 true -> little;
			 false -> throw(impossible) %Native endian.
		     end
	     end,

    %% Make sure that the size is reasonable.
    case Type of
	binary when is_bitstring(Val) ->
	    if
		Sz =:= all ->
		    ok;
		Sz*Unit =< bit_size(Val) ->
		    ok;
		true ->
		    %% Field size is greater than the actual binary - will fail.
		    throw({badarg,embedded_binary_size})
	    end;
	integer when is_integer(Val) ->
	    %% Estimate the number of bits needed to to hold the integer
	    %% literal. Check whether the field size is reasonable in
	    %% proportion to the number of bits needed.
	    if
		Sz*Unit =< 256 ->
		    %% Don't be cheap - always accept fields up to this size.
		    ok;
		true ->
		    case count_bits(Val) of
			BitsNeeded when 2*BitsNeeded >= Sz*Unit ->
			    ok;
			_ ->
			    %% More than about half of the field size will be
			    %% filled out with zeroes - not acceptable.
			    throw(impossible)
		    end
	    end;
	float when is_float(Val) ->
	    %% Bad float size.
	    case Sz*Unit of
		32 -> ok;
		64 -> ok;
		_ -> throw(impossible)
	    end;
	utf8 -> ok;
	utf16 -> ok;
	utf32 -> ok;
	_ ->
	    throw(impossible)
    end,

    %% Evaluate the field.
    try eval_binary_2(Acc0, Val, Sz, Unit, Type, Endian) of
	Acc -> eval_binary_1(Ss, Acc)
    catch
	error:_ ->
	    throw(impossible)
    end;
eval_binary_1([], Acc) -> Acc;
eval_binary_1(_, _) -> throw(impossible).

eval_binary_2(Acc, Val, Size, Unit, integer, little) ->
    <<Acc/bitstring,Val:(Size*Unit)/little>>;
eval_binary_2(Acc, Val, Size, Unit, integer, big) ->
    <<Acc/bitstring,Val:(Size*Unit)/big>>;
eval_binary_2(Acc, Val, _Size, _Unit, utf8, _) ->
    try
	<<Acc/bitstring,Val/utf8>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, _Size, _Unit, utf16, big) ->
    try
	<<Acc/bitstring,Val/big-utf16>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, _Size, _Unit, utf16, little) ->
    try
	<<Acc/bitstring,Val/little-utf16>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, _Size, _Unit, utf32, big) ->
    try
	<<Acc/bitstring,Val/big-utf32>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, _Size, _Unit, utf32, little) ->
    try
	<<Acc/bitstring,Val/little-utf32>>
    catch
	error:_ ->
	    throw({badarg,bad_unicode})
    end;
eval_binary_2(Acc, Val, Size, Unit, float, little) ->
    <<Acc/bitstring,Val:(Size*Unit)/little-float>>;
eval_binary_2(Acc, Val, Size, Unit, float, big) ->
    <<Acc/bitstring,Val:(Size*Unit)/big-float>>;
eval_binary_2(Acc, Val, all, Unit, binary, _) ->
    case bit_size(Val) of
	Size when Size rem Unit =:= 0 ->
	    <<Acc/bitstring,Val:Size/bitstring>>;
	Size ->
	    throw({badarg,{embedded_unit,Unit,Size}})
    end;
eval_binary_2(Acc, Val, Size, Unit, binary, _) ->
    <<Acc/bitstring,Val:(Size*Unit)/bitstring>>.

%% Count the number of bits approximately needed to store Int.
%% (We don't need an exact result for this purpose.)

count_bits(Int) ->
    count_bits_1(abs(Int), 64).

count_bits_1(0, Bits) -> Bits;
count_bits_1(Int, Bits) -> count_bits_1(Int bsr 64, Bits+64).

%% useless_call(Context, #c_call{}) -> no | {yes,Expr}
%%  Check whether the function is called only for effect,
%%  and if the function either has no effect whatsoever or
%%  the only effect is an exception. Generate appropriate
%%  warnings. If the call is "useless" (has no effect),
%%  a rewritten expression consisting of a sequence of
%%  the arguments only is returned.

useless_call(effect, #c_call{module=#c_literal{val=Mod},
			     name=#c_literal{val=Name},
			     args=Args}=Call) ->
    A = length(Args),
    case erl_bifs:is_safe(Mod, Name, A) of
	false ->
	    case erl_bifs:is_pure(Mod, Name, A) of
		true -> add_warning(Call, result_ignored);
		false -> ok
	    end,
	    no;
	true ->
	    add_warning(Call, {no_effect,{Mod,Name,A}}),
	    {yes,make_effect_seq(Args, sub_new())}
    end;
useless_call(_, _) -> no.

%% make_effect_seq([Expr], Sub) -> #c_seq{}|void()
%%  Convert a list of expressions evaluated in effect context to a chain of
%%  #c_seq{}. The body in the innermost #c_seq{} will be void().
%%  Anything that will not have any effect will be thrown away.

make_effect_seq([H|T], Sub) ->
    case is_safe_simple(H, Sub) of
	true -> make_effect_seq(T, Sub);
	false -> #c_seq{arg=H,body=make_effect_seq(T, Sub)}
    end;
make_effect_seq([], _) -> void().

%% Handling remote calls. The module/name fields have been processed.

call(#c_call{args=As}=Call, #c_literal{val=M}=M0, #c_literal{val=N}=N0, Sub) ->
    case get(no_inline_list_funcs) of
  	true ->
	    call_1(Call, M0, N0, As, Sub);
  	false ->
	    case sys_core_fold_lists:call(Call, M, N, As) of
		none ->
		    call_1(Call, M0, N0, As, Sub);
		Core ->
		    expr(Core, Sub)
	    end

      end;
call(#c_call{args=As}=Call, M, N, Sub) ->
    call_1(Call, M, N, As, Sub).

call_1(Call, M, N, As0, Sub) ->
    As1 = expr_list(As0, value, Sub),
    fold_call(Call#c_call{args=As1}, M, N, As1, Sub).

%% fold_call(Call, Mod, Name, Args, Sub) -> Expr.
%%  Try to safely evaluate the call.  Just try to evaluate arguments,
%%  do the call and convert return values to literals.  If this
%%  succeeds then use the new value, otherwise just fail and use
%%  original call.  Do this at every level.
%%
%%  We attempt to evaluate calls to certain BIFs even if the
%%  arguments are not literals. For instance, we evaluate length/1
%%  if the shape of the list is known, and element/2 and setelement/3
%%  if the position is constant and the shape of the tuple is known.
%%
fold_call(Call, #c_literal{val=M}, #c_literal{val=F}, Args, Sub) ->
    fold_call_1(Call, M, F, Args, Sub);
fold_call(Call, _M, _N, _Args, _Sub) -> Call.

fold_call_1(Call, erlang, apply, [Mod,Func,Args], _) ->
    simplify_apply(Call, Mod, Func, Args);
fold_call_1(Call, Mod, Name, Args, Sub) ->
    NumArgs = length(Args),
    case erl_bifs:is_pure(Mod, Name, NumArgs) of
	false -> Call;				%Not pure - keep call.
	true -> fold_call_2(Call, Mod, Name, Args, Sub)
    end.

fold_call_2(Call, Module, Name, Args, Sub) ->
    case all(fun cerl:is_literal/1, Args) of
	true ->
	    %% All arguments are literals.
	    fold_lit_args(Call, Module, Name, Args);
	false ->
	    %% At least one non-literal argument.
	    fold_non_lit_args(Call, Module, Name, Args, Sub)
    end.

fold_lit_args(Call, Module, Name, Args0) ->
    Args = [cerl:concrete(A) || A <- Args0],
    try apply(Module, Name, Args) of
	Val ->
	    case cerl:is_literal_term(Val) of
		true ->
		    cerl:ann_abstract(cerl:get_ann(Call), Val);
		false ->
		    %% Successful evaluation, but it was not possible
		    %% to express the computed value as a literal.
		    Call
	    end
    catch
	error:Reason ->
	    %% Evaluation of the function failed. Warn and replace
	    %% the call with a call to erlang:error/1.
	    eval_failure(Call, Reason)
    end.

%% fold_non_lit_args(Call, Module, Name, Args, Sub) -> Expr.
%%  Attempt to evaluate some pure BIF calls with one or more
%%  non-literals arguments.
%%
fold_non_lit_args(Call, erlang, is_boolean, [Arg], Sub) ->
    eval_is_boolean(Call, Arg, Sub);
fold_non_lit_args(Call, erlang, element, [Arg1,Arg2], Sub) ->
    eval_element(Call, Arg1, Arg2, Sub);
fold_non_lit_args(Call, erlang, length, [Arg], _) ->
    eval_length(Call, Arg);
fold_non_lit_args(Call, erlang, '++', [Arg1,Arg2], _) ->
    eval_append(Call, Arg1, Arg2);
fold_non_lit_args(Call, lists, append, [Arg1,Arg2], _) ->
    eval_append(Call, Arg1, Arg2);
fold_non_lit_args(Call, erlang, setelement, [Arg1,Arg2,Arg3], _) ->
    eval_setelement(Call, Arg1, Arg2, Arg3);
fold_non_lit_args(Call, erlang, is_record, [Arg1,Arg2,Arg3], Sub) ->
    eval_is_record(Call, Arg1, Arg2, Arg3, Sub);
fold_non_lit_args(Call, erlang, N, Args, Sub) ->
    NumArgs = length(Args),
    case erl_internal:comp_op(N, NumArgs) of
	true ->
	    eval_rel_op(Call, N, Args, Sub);
	false ->
	    case erl_internal:bool_op(N, NumArgs) of
		true ->
		    eval_bool_op(Call, N, Args, Sub);
		false ->
		    Call
	    end
    end;
fold_non_lit_args(Call, _, _, _, _) -> Call.

%% Evaluate a relational operation using type information.
eval_rel_op(Call, Op, [#c_var{name=V},#c_var{name=V}], _) ->
    Bool = erlang:Op(same, same),
    #c_literal{anno=cerl:get_ann(Call),val=Bool};
eval_rel_op(Call, '=:=', [Term,#c_literal{val=true}], Sub) ->
    %% BoolVar =:= true  ==>  BoolVar
    case is_boolean_type(Term, Sub) of
	yes -> Term;
	maybe -> Call;
	no -> #c_literal{val=false}
    end;
eval_rel_op(Call, '==', Ops, Sub) ->
    case is_exact_eq_ok(Ops, Sub) of
	true ->
	    Name = #c_literal{anno=cerl:get_ann(Call),val='=:='},
	    Call#c_call{name=Name};
	false ->
	    Call
    end;
eval_rel_op(Call, '/=', Ops, Sub) ->
    case is_exact_eq_ok(Ops, Sub) of
	true ->
	    Name = #c_literal{anno=cerl:get_ann(Call),val='=/='},
	    Call#c_call{name=Name};
	false ->
	    Call
    end;
eval_rel_op(Call, _, _, _) -> Call.

is_exact_eq_ok([A,B]=L, Sub) ->
    case is_int_type(A, Sub) =:= yes andalso is_int_type(B, Sub) =:= yes of
	true -> true;
	false -> is_exact_eq_ok_1(L)
    end.

is_exact_eq_ok_1([#c_literal{val=Lit}|_]) ->
    is_non_numeric(Lit);
is_exact_eq_ok_1([_|T]) ->
    is_exact_eq_ok_1(T);
is_exact_eq_ok_1([]) -> false.

is_non_numeric([H|T]) ->
    is_non_numeric(H) andalso is_non_numeric(T);
is_non_numeric(Tuple) when is_tuple(Tuple) ->
    is_non_numeric_tuple(Tuple, tuple_size(Tuple));
is_non_numeric(Map) when is_map(Map) ->
    %% Note that 17.x and 18.x compare keys in different ways.
    %% Be very conservative -- require that both keys and values
    %% are non-numeric.
    is_non_numeric(maps:to_list(Map));
is_non_numeric(Num) when is_number(Num) ->
    false;
is_non_numeric(_) -> true.

is_non_numeric_tuple(Tuple, El) when El >= 1 ->
    is_non_numeric(element(El, Tuple)) andalso
	is_non_numeric_tuple(Tuple, El-1);
is_non_numeric_tuple(_Tuple, 0) -> true.

%% Evaluate a bool op using type information. We KNOW that
%% there must be at least one non-literal argument (i.e.
%% there is no need to handle the case that all argments
%% are literal).

eval_bool_op(Call, 'and', [#c_literal{val=true},Term], Sub) ->
    eval_bool_op_1(Call, Term, Term, Sub);
eval_bool_op(Call, 'and', [Term,#c_literal{val=true}], Sub) ->
    eval_bool_op_1(Call, Term, Term, Sub);
eval_bool_op(Call, 'and', [#c_literal{val=false}=Res,Term], Sub) ->
    eval_bool_op_1(Call, Res, Term, Sub);
eval_bool_op(Call, 'and', [Term,#c_literal{val=false}=Res], Sub) ->
    eval_bool_op_1(Call, Res, Term, Sub);
eval_bool_op(Call, _, _, _) -> Call.

eval_bool_op_1(Call, Res, Term, Sub) ->
    case is_boolean_type(Term, Sub) of
	yes -> Res;
	no -> eval_failure(Call, badarg);
	maybe -> Call
    end.

%% Evaluate is_boolean/1 using type information.
eval_is_boolean(Call, Term, Sub) ->
    case is_boolean_type(Term, Sub) of
	no -> #c_literal{val=false};
	yes -> #c_literal{val=true};
	maybe -> Call
    end.

%% eval_length(Call, List) -> Val.
%%  Evaluates the length for the prefix of List which has a known
%%  shape.
%%
eval_length(Call, Core) -> eval_length(Call, Core, 0).

eval_length(Call, #c_literal{val=Val}, Len0) ->
    try
	Len = Len0 + length(Val),
	#c_literal{anno=Call#c_call.anno,val=Len}
    catch
	_:_ ->
	    eval_failure(Call, badarg)
    end;
eval_length(Call, #c_cons{tl=T}, Len) ->
    eval_length(Call, T, Len+1);
eval_length(Call, _List, 0) ->
    Call;		%Could do nothing
eval_length(Call, List, Len) ->
    A = Call#c_call.anno,
    #c_call{anno=A,
	    module=#c_literal{anno=A,val=erlang},
	    name=#c_literal{anno=A,val='+'},
	    args=[#c_literal{anno=A,val=Len},Call#c_call{args=[List]}]}.

%% eval_append(Call, FirstList, SecondList) -> Val.
%%  Evaluates the constant part of '++' expression.
%%
eval_append(Call, #c_literal{val=Cs1}=S1, #c_literal{val=Cs2}) ->
    try
	S1#c_literal{val=Cs1 ++ Cs2}
    catch error:badarg ->
	    eval_failure(Call, badarg)
    end;
eval_append(Call, #c_literal{val=Cs}, List) when length(Cs) =< 4 ->
    Anno = Call#c_call.anno,
    foldr(fun (C, L) ->
		  ann_c_cons(Anno, #c_literal{val=C}, L)
	  end, List, Cs);
eval_append(Call, #c_cons{anno=Anno,hd=H,tl=T}, List) ->
    ann_c_cons(Anno, H, eval_append(Call, T, List));
eval_append(Call, X, Y) ->
    Call#c_call{args=[X,Y]}.			%Rebuild call arguments.

%% eval_element(Call, Pos, Tuple, Types) -> Val.
%%  Evaluates element/2 if the position Pos is a literal and
%%  the shape of the tuple Tuple is known.
%%
eval_element(Call, #c_literal{val=Pos}, Tuple, Types)
  when is_integer(Pos) ->
    case get_type(Tuple, Types) of
	none ->
	    Call;
	Type ->
	    Es = case cerl:is_c_tuple(Type) of
		     false -> [];
		     true -> cerl:tuple_es(Type)
		 end,
	    if
		1 =< Pos, Pos =< length(Es) ->
		    El = lists:nth(Pos, Es),
		    try
			cerl:set_ann(pat_to_expr(El), [compiler_generated])
		    catch
			throw:impossible ->
			    Call
		    end;
		true ->
		    %% Index outside tuple or not a tuple.
		    eval_failure(Call, badarg)
	    end
    end;
eval_element(Call, Pos, Tuple, Sub) ->
    case is_int_type(Pos, Sub) =:= no orelse
	is_tuple_type(Tuple, Sub) =:= no of
	true ->
	    eval_failure(Call, badarg);
	false ->
	    Call
    end.

%% eval_is_record(Call, Var, Tag, Size, Types) -> Val.
%%  Evaluates is_record/3 using type information.
%%
eval_is_record(Call, Term, #c_literal{val=NeededTag},
	       #c_literal{val=Size}, Types) ->
    case get_type(Term, Types) of
	none ->
	    Call;
	Type ->
	    Es = case cerl:is_c_tuple(Type) of
		     false -> [];
		     true -> cerl:tuple_es(Type)
		 end,
	    case Es of
		[#c_literal{val=Tag}|_] ->
		    Bool = Tag =:= NeededTag andalso
			length(Es) =:= Size,
		    #c_literal{val=Bool};
		_ ->
		    #c_literal{val=false}
	    end
    end;
eval_is_record(Call, _, _, _, _) -> Call.

%% eval_setelement(Call, Pos, Tuple, NewVal) -> Core.
%%  Evaluates setelement/3 if position Pos is an integer
%%  and the shape of the tuple Tuple is known.
%%
eval_setelement(Call, #c_literal{val=Pos}, Tuple, NewVal)
  when is_integer(Pos) ->
    case cerl:is_data(Tuple) of
	false ->
	    Call;
	true ->
	    Es0 = case cerl:is_c_tuple(Tuple) of
		      false -> [];
		      true -> cerl:tuple_es(Tuple)
		  end,
	    if
		1 =< Pos, Pos =< length(Es0) ->
		    Es = eval_setelement_1(Pos, Es0, NewVal),
		    cerl:update_c_tuple(Tuple, Es);
		true ->
		    eval_failure(Call, badarg)
	    end
    end;
eval_setelement(Call, _, _, _) -> Call.

eval_setelement_1(1, [_|T], NewVal) ->
    [NewVal|T];
eval_setelement_1(Pos, [H|T], NewVal) when Pos > 1 ->
    [H|eval_setelement_1(Pos-1, T, NewVal)].

%% eval_failure(Call, Reason) -> Core.
%%  Warn for a call that will fail and replace the call with
%%  a call to erlang:error(Reason).
%%
eval_failure(Call, Reason) ->
    add_warning(Call, {eval_failure,Reason}),
    Call#c_call{module=#c_literal{val=erlang},
		name=#c_literal{val=error},
		args=[#c_literal{val=Reason}]}.

%% simplify_apply(Call0, Mod, Func, Args) -> Call
%%  Simplify an apply/3 to a call if the number of arguments
%%  are known at compile time.

simplify_apply(Call, Mod, Func, Args) ->
    case is_atom_or_var(Mod) andalso is_atom_or_var(Func) of
	true -> simplify_apply_1(Args, Call, Mod, Func, []);
	false -> Call
    end.

simplify_apply_1(#c_literal{val=MoreArgs0}, Call, Mod, Func, Args)
  when length(MoreArgs0) >= 0 ->
    MoreArgs = [#c_literal{val=Arg} || Arg <- MoreArgs0],
    Call#c_call{module=Mod,name=Func,args=reverse(Args, MoreArgs)};
simplify_apply_1(#c_cons{hd=Arg,tl=T}, Call, Mod, Func, Args) ->
    simplify_apply_1(T, Call, Mod, Func, [Arg|Args]);
simplify_apply_1(_, Call, _, _, _) -> Call.

is_atom_or_var(#c_literal{val=Atom}) when is_atom(Atom) -> true;
is_atom_or_var(#c_var{}) -> true;
is_atom_or_var(_) -> false.

%% clause(Clause, Cepxr, Context, Sub) -> Clause.

clause(#c_clause{pats=Ps0}=Cl, Cexpr, Ctxt, Sub0) ->
    try pattern_list(Ps0, Sub0) of
	{Ps1,Sub1} ->
	    clause_1(Cl, Ps1, Cexpr, Ctxt, Sub1)
    catch
	nomatch ->
	    Cl#c_clause{anno=[compiler_generated],
			guard=#c_literal{val=false}}
    end.

clause_1(#c_clause{guard=G0,body=B0}=Cl, Ps1, Cexpr, Ctxt, Sub1) ->
    Sub2 = update_types(Cexpr, Ps1, Sub1),
    GSub = case {Cexpr,Ps1,G0} of
	       {_,_,#c_literal{}} ->
		   %% No need for substitution tricks when the guard
		   %% does not contain any variables.
		   Sub2;
	       {#c_var{name='_'},_,_} ->
		   %% In a 'receive', Cexpr is the variable '_', which represents the
		   %% message being matched. We must NOT do any extra substiutions.
		   Sub2;
	       {#c_var{},[#c_var{}=Var],_} ->
		   %% The idea here is to optimize expressions such as
		   %%
		   %%   case A of A -> ...
		   %%
		   %% to get rid of the extra guard test that the compiler
		   %% added when converting to the Core Erlang representation:
		   %%
		   %%   case A of NewVar when A =:= NewVar -> ...
		   %%
		   %% By replacing NewVar with A everywhere in the guard
		   %% expression, we get
		   %%
		   %%   case A of NewVar when A =:= A -> ...
		   %%
		   %% which by constant-expression evaluation is reduced to
		   %%
		   %%   case A of NewVar when true -> ...
		   %%
		   case cerl:is_c_fname(Cexpr) of
		       false ->
			   sub_set_var(Var, Cexpr, Sub2);
		       true ->
			   %% We must not copy funs, and especially not into guards.
			   Sub2
		   end;
	       _ ->
		   Sub2
	   end,
    G1 = guard(G0, GSub),
    B1 = body(B0, Ctxt, Sub2),
    Cl#c_clause{pats=Ps1,guard=G1,body=B1}.

%% let_substs(LetVars, LetArg, Sub) -> {[Var],[Val],Sub}.
%%  Add suitable substitutions to Sub of variables in LetVars.  First
%%  remove variables in LetVars from Sub, then fix subs.  N.B. must
%%  work out new subs in parallel and then apply them to subs.  Return
%%  the unsubstituted variables and values.

let_substs(Vs0, As0, Sub0) ->
    {Vs1,Sub1} = var_list(Vs0, Sub0),
    {Vs2,As1,Ss} = let_substs_1(Vs1, As0, Sub1),
    Sub2 = sub_add_scope([V || #c_var{name=V} <- Vs2], Sub1),
    {Vs2,As1,
    foldl(fun ({V,S}, Sub) -> sub_set_name(V, S, Sub) end, Sub2, Ss)}.

let_substs_1(Vs, #c_values{es=As}, Sub) ->
    let_subst_list(Vs, As, Sub);
let_substs_1([V], A, Sub) -> let_subst_list([V], [A], Sub);
let_substs_1(Vs, A, _) -> {Vs,A,[]}.

let_subst_list([V|Vs0], [A0|As0], Sub) ->
    {Vs1,As1,Ss} = let_subst_list(Vs0, As0, Sub),
    case is_subst(A0) of
	true ->
	    A = case is_compiler_generated(V) andalso
		    not is_compiler_generated(A0) of
		    true ->
			%% Propagate the 'compiler_generated' annotation
			%% along with the value.
			Ann = [compiler_generated|cerl:get_ann(A0)],
			cerl:set_ann(A0, Ann);
		    false ->
			A0
		end,
	    {Vs1,As1,sub_subst_var(V, A, Sub) ++ Ss};
	false ->
	    {[V|Vs1],[A0|As1],Ss}
    end;
let_subst_list([], [], _) -> {[],[],[]}.

%% pattern(Pattern, InSub) -> {Pattern,OutSub}.
%% pattern(Pattern, InSub, OutSub) -> {Pattern,OutSub}.
%%  Variables occurring in Pattern will shadow so they must be removed
%%  from Sub.  If they occur as a value in Sub then we create a new
%%  variable and then add a substitution for that.
%%
%%  Patterns are complicated by sizes in binaries.  These are pure
%%  input variables which create no bindings.  We, therefore, need to
%%  carry around the original substitutions to get the correct
%%  handling.

%%pattern(Pat, Sub) -> pattern(Pat, Sub, Sub).

pattern(#c_var{}=Pat, Isub, Osub) ->
    case sub_is_val(Pat, Isub) of
	true ->
	    V1 = make_var_name(),
	    Pat1 = #c_var{name=V1},
	    {Pat1,sub_set_var(Pat, Pat1, sub_add_scope([V1], Osub))};
	false ->
	    {Pat,sub_del_var(Pat, Osub)}
    end;
pattern(#c_literal{}=Pat, _, Osub) -> {Pat,Osub};
pattern(#c_cons{anno=Anno,hd=H0,tl=T0}, Isub, Osub0) ->
    {H1,Osub1} = pattern(H0, Isub, Osub0),
    {T1,Osub2} = pattern(T0, Isub, Osub1),
    {ann_c_cons(Anno, H1, T1),Osub2};
pattern(#c_tuple{anno=Anno,es=Es0}, Isub, Osub0) ->
    {Es1,Osub1} = pattern_list(Es0, Isub, Osub0),
    {ann_c_tuple(Anno, Es1),Osub1};
pattern(#c_map{anno=Anno,es=Es0}=Map, Isub, Osub0) ->
    {Es1,Osub1} = map_pair_pattern_list(Es0, Isub, Osub0),
    {Map#c_map{anno=Anno,es=Es1},Osub1};
pattern(#c_binary{segments=V0}=Pat, Isub, Osub0) ->
    {V1,Osub1} = bin_pattern_list(V0, Isub, Osub0),
    {Pat#c_binary{segments=V1},Osub1};
pattern(#c_alias{var=V0,pat=P0}=Pat, Isub, Osub0) ->
    {V1,Osub1} = pattern(V0, Isub, Osub0),
    {P1,Osub2} = pattern(P0, Isub, Osub1),
    Osub = update_types(V1, [P1], Osub2),
    {Pat#c_alias{var=V1,pat=P1},Osub}.

map_pair_pattern_list(Ps0, Isub, Osub0) ->
    {Ps,{_,Osub}} = mapfoldl(fun map_pair_pattern/2, {Isub,Osub0}, Ps0),
    {Ps,Osub}.

map_pair_pattern(#c_map_pair{op=#c_literal{val=exact},key=K0,val=V0}=Pair,{Isub,Osub0}) ->
    K = expr(K0, Isub),
    {V,Osub} = pattern(V0,Isub,Osub0),
    {Pair#c_map_pair{key=K,val=V},{Isub,Osub}}.

bin_pattern_list(Ps0, Isub, Osub0) ->
    {Ps,{_,Osub}} = mapfoldl(fun bin_pattern/2, {Isub,Osub0}, Ps0),
    {Ps,Osub}.

bin_pattern(#c_bitstr{val=E0,size=Size0}=Pat0, {Isub0,Osub0}) ->
    Size1 = expr(Size0, Isub0),
    {E1,Osub} = pattern(E0, Isub0, Osub0),
    Isub = case E0 of
	       #c_var{} -> sub_set_var(E0, E1, Isub0);
	       _ -> Isub0
	   end,
    Pat = Pat0#c_bitstr{val=E1,size=Size1},
    bin_pat_warn(Pat),
    {Pat,{Isub,Osub}}.

pattern_list(Ps, Sub) -> pattern_list(Ps, Sub, Sub).

pattern_list(Ps0, Isub, Osub0) ->
    mapfoldl(fun (P, Osub) -> pattern(P, Isub, Osub) end, Osub0, Ps0).

%% var_list([Var], InSub) -> {Pattern,OutSub}.
%%  Works like pattern_list/2 but only accept variables and is
%%  guaranteed not to throw an exception.

var_list(Vs, Sub0) ->
    mapfoldl(fun (#c_var{}=V, Sub) ->
		     pattern(V, Sub, Sub)
	     end, Sub0, Vs).


%%%
%%% Generate warnings for binary patterns that will not match.
%%%

bin_pat_warn(#c_bitstr{type=#c_literal{val=Type},
		       val=Val0,
		       size=#c_literal{val=Sz},
		       unit=#c_literal{val=Unit},
		       flags=Fl}=Pat) ->
    case {Type,Sz} of
	{_,_} when is_integer(Sz), Sz >= 0 -> ok;
	{binary,all} -> ok;
	{utf8,undefined} -> ok;
	{utf16,undefined} -> ok;
	{utf32,undefined} -> ok;
	{_,_} ->
	    add_warning(Pat, {nomatch_bit_syntax_size,Sz}),
	    throw(nomatch)
    end,
    case {Type,Val0} of
	{integer,#c_literal{val=Val}} when is_integer(Val) ->
	    Signedness = signedness(Fl),
	    TotalSz = Sz * Unit,
	    bit_pat_warn_int(Val, TotalSz, Signedness, Pat);
	{float,#c_literal{val=Val}} when is_float(Val) ->
	    ok;
	{utf8,#c_literal{val=Val}} when is_integer(Val) ->
	    bit_pat_warn_unicode(Val, Pat);
	{utf16,#c_literal{val=Val}} when is_integer(Val) ->
	    bit_pat_warn_unicode(Val, Pat);
	{utf32,#c_literal{val=Val}} when is_integer(Val) ->
	    bit_pat_warn_unicode(Val, Pat);
	{_,#c_literal{val=Val}} ->
	    add_warning(Pat, {nomatch_bit_syntax_type,Val,Type}),
	    throw(nomatch);
	{_,_} ->
	    ok
    end;
bin_pat_warn(#c_bitstr{type=#c_literal{val=Type},val=Val0,flags=Fl}=Pat) ->
    %% Size is variable. Not much that we can check.
    case {Type,Val0} of
	{integer,#c_literal{val=Val}} when is_integer(Val) ->
	    case signedness(Fl) of
		unsigned when Val < 0 ->
		    add_warning(Pat, {nomatch_bit_syntax_unsigned,Val}),
		    throw(nomatch);
		_ ->
		    ok
	    end;
	{float,#c_literal{val=Val}} when is_float(Val) ->
	    ok;
	{_,#c_literal{val=Val}} ->
	    add_warning(Pat, {nomatch_bit_syntax_type,Val,Type}),
	    throw(nomatch);
	{_,_} ->
	    ok
    end.

bit_pat_warn_int(Val, 0, signed, Pat) ->
    if
	Val =:= 0 ->
	    ok;
	true ->
	    add_warning(Pat, {nomatch_bit_syntax_truncated,signed,Val,0}),
	    throw(nomatch)
    end;
bit_pat_warn_int(Val, Sz, signed, Pat) ->
    if
	Val < 0, Val bsr (Sz - 1) =/= -1 ->
	    add_warning(Pat, {nomatch_bit_syntax_truncated,signed,Val,Sz}),
	    throw(nomatch);
	Val > 0, Val bsr (Sz - 1) =/= 0 ->
	    add_warning(Pat, {nomatch_bit_syntax_truncated,signed,Val,Sz}),
	    throw(nomatch);
	true ->
	    ok
    end;
bit_pat_warn_int(Val, _Sz, unsigned, Pat) when Val < 0 ->
    add_warning(Pat, {nomatch_bit_syntax_unsigned,Val}),
    throw(nomatch);
bit_pat_warn_int(Val, Sz, unsigned, Pat) ->
    if
	Val bsr Sz =:= 0 ->
	    ok;
	true ->
	    add_warning(Pat, {nomatch_bit_syntax_truncated,unsigned,Val,Sz}),
	    throw(nomatch)
    end.

bit_pat_warn_unicode(U, _Pat) when 0 =< U, U =< 16#10FFFF ->
    ok;
bit_pat_warn_unicode(U, Pat) ->
    add_warning(Pat, {nomatch_bit_syntax_unicode,U}),
    throw(nomatch).

signedness(#c_literal{val=Flags}) ->
    [S] = [F || F <- Flags, F =:= signed orelse F =:= unsigned],
    S.


%% is_subst(Expr) -> true | false.
%%  Test whether an expression is a suitable substitution.

is_subst(#c_var{name={_,_}}) ->
    %% Funs must not be duplicated (which will happen if the variable
    %% is used more than once), because the funs will not be equal
    %% (their "index" fields will be different).
    false;
is_subst(#c_var{}) -> true;
is_subst(#c_literal{}) -> true;
is_subst(_) -> false.

%% sub_new() -> #sub{}.
%% sub_get_var(Var, #sub{}) -> Value.
%% sub_set_var(Var, Value, #sub{}) -> #sub{}.
%% sub_set_name(Name, Value, #sub{}) -> #sub{}.
%% sub_del_var(Var, #sub{}) -> #sub{}.
%% sub_subst_var(Var, Value, #sub{}) -> [{Name,Value}].
%% sub_is_val(Var, #sub{}) -> boolean().
%% sub_add_scope(#sub{}) -> #sub{}
%% sub_subst_scope(#sub{}) -> #sub{}
%%
%%  We use the variable name as key so as not have problems with
%%  annotations.  When adding a new substitute we fold substitute
%%  chains so we never have to search more than once.  Use orddict so
%%  we know the format.
%%
%%  In addition to the list of substitutions, we also keep track of
%%  all variable currently live (the scope).
%%
%%  sub_add_scope/2 adds variables to the scope.  sub_subst_scope/1
%%  adds dummy substitutions for all variables in the scope in order
%%  to force renaming if variables in the scope occurs as pattern
%%  variables.

sub_new() -> #sub{v=orddict:new(),s=cerl_sets:new(),t=#{}}.

sub_new(#sub{}=Sub) ->
    Sub#sub{v=orddict:new(),t=#{}}.

sub_get_var(#c_var{name=V}=Var, #sub{v=S}) ->
    case orddict:find(V, S) of
	{ok,Val} -> Val;
	error -> Var
    end.

sub_set_var(#c_var{name=V}, Val, Sub) ->
    sub_set_name(V, Val, Sub).

sub_set_name(V, Val, #sub{v=S,s=Scope,t=Tdb0}=Sub) ->
    Tdb1 = kill_types(V, Tdb0),
    Tdb = copy_type(V, Val, Tdb1),
    Sub#sub{v=orddict:store(V, Val, S),s=cerl_sets:add_element(V, Scope),t=Tdb}.

sub_del_var(#c_var{name=V}, #sub{v=S,s=Scope,t=Tdb}=Sub) ->
    %% Profiling shows that for programs with many record operations,
    %% sub_del_var/2 is a bottleneck. Since the scope contains all
    %% variables that are live, we know that V cannot be present in S
    %% if it is not in the scope.
    case cerl_sets:is_element(V, Scope) of
	false ->
	    Sub#sub{s=cerl_sets:add_element(V, Scope)};
	true ->
	    Sub#sub{v=orddict:erase(V, S),t=kill_types(V, Tdb)}
    end.

sub_subst_var(#c_var{name=V}, Val, #sub{v=S0}) ->
    %% Fold chained substitutions.
    [{V,Val}] ++ [ {K,Val} || {K,#c_var{name=V1}} <- S0, V1 =:= V].

sub_add_scope(Vs, #sub{s=Scope0}=Sub) ->
    Scope = foldl(fun(V, S) when is_integer(V); is_atom(V) ->
			  cerl_sets:add_element(V, S)
		  end, Scope0, Vs),
    Sub#sub{s=Scope}.

sub_subst_scope(#sub{v=S0,s=Scope}=Sub) ->
    Initial = case S0 of
                  [{NegInt,_}|_] when is_integer(NegInt), NegInt < 0 ->
                      NegInt - 1;
                  _ ->
                      -1
              end,
    S = sub_subst_scope_1(cerl_sets:to_list(Scope), Initial, S0),
    Sub#sub{v=orddict:from_list(S)}.

%% The keys in an orddict must be unique. Make them so!
sub_subst_scope_1([H|T], Key, Acc) ->
    sub_subst_scope_1(T, Key-1, [{Key,#c_var{name=H}}|Acc]);
sub_subst_scope_1([], _, Acc) -> Acc.

sub_is_val(#c_var{name=V}, #sub{v=S,s=Scope}) ->
    %% When the bottleneck in sub_del_var/2 was eliminated, this
    %% became the new bottleneck. Since the scope contains all
    %% live variables, a variable V can only be the target for
    %% a substitution if it is in the scope.
    cerl_sets:is_element(V, Scope) andalso v_is_value(V, S).

v_is_value(Var, [{_,#c_var{name=Var}}|_]) -> true;
v_is_value(Var, [_|T]) -> v_is_value(Var, T);
v_is_value(_, []) -> false.

%% warn_no_clause_match(CaseOrig, CaseOpt) -> ok
%%  Generate a warning if none of the user-specified clauses
%%  will match.

warn_no_clause_match(CaseOrig, CaseOpt) ->
    OrigCs = cerl:case_clauses(CaseOrig),
    OptCs = cerl:case_clauses(CaseOpt),
    case any(fun(C) -> not is_compiler_generated(C) end, OrigCs) andalso
	all(fun is_compiler_generated/1, OptCs) of
	true ->
	    %% The original list of clauses did contain at least one
	    %% user-specified clause, but none of them will match.
	    %% That is probably a mistake.
	    add_warning(CaseOrig, no_clause_match);
	false ->
	    %% Either there were user-specified clauses left in
	    %% the transformed clauses, or else none of the original
	    %% clauses were user-specified to begin with (as in 'andalso').
	    ok
    end.

%% clauses(E, [Clause], TopLevel, Context, Sub) -> [Clause].
%%  Trim the clauses by removing all clauses AFTER the first one which
%%  is guaranteed to match.  Also remove all trivially false clauses.

clauses(E, [C0|Cs], Ctxt, Sub, LitExpr) ->
    #c_clause{pats=Ps,guard=G} = C1 = clause(C0, E, Ctxt, Sub),
    %%ok = io:fwrite("~w: ~p~n", [?LINE,{E,Ps}]),
    case {will_match(E, Ps),will_succeed(G)} of
	{yes,yes} ->
	    case LitExpr of
		false ->
		    Line = get_line(cerl:get_ann(C1)),
		    shadow_warning(Cs, Line);
		true ->
		    %% If the case expression is a literal,
		    %% it is probably OK that some clauses don't match.
		    %% It is a probably some sort of debug macro.
		    ok
	    end,
	    [C1];				%Skip the rest
	{_Mat,no} ->				%Guard fails.
	    add_warning(C1, nomatch_guard),
	    clauses(E, Cs, Ctxt, Sub, LitExpr);	%Skip this clause
	{_Mat,_Suc} ->
	    [C1|clauses(E, Cs, Ctxt, Sub, LitExpr)]
    end;
clauses(_, [], _, _, _) -> [].

shadow_warning([C|Cs], none) ->
    add_warning(C, nomatch_shadow),
    shadow_warning(Cs, none);
shadow_warning([C|Cs], Line) ->
    add_warning(C, {nomatch_shadow, Line}),
    shadow_warning(Cs, Line);
shadow_warning([], _) -> ok.

%% will_succeed(Guard) -> yes | maybe | no.
%%  Test if we know whether a guard will succeed/fail or just don't
%%  know.  Be VERY conservative!

will_succeed(#c_literal{val=true}) -> yes;
will_succeed(#c_literal{val=false}) -> no;
will_succeed(_Guard) -> maybe.

%% will_match(Expr, [Pattern]) -> yes | maybe.
%%  We KNOW that this function is only used after optimizations
%%  in case_opt/4. Therefore clauses that can definitely not match
%%  have already been pruned.

will_match(#c_values{es=Es}, Ps) ->
    will_match_1(cerl_clauses:match_list(Ps, Es));
will_match(E, [P]) ->
    will_match_1(cerl_clauses:match(P, E)).

will_match_1({false,_}) -> maybe;
will_match_1({true,_}) -> yes.

%% opt_bool_case(CoreExpr, Sub) - CoreExpr'.
%%
%%  In bodies, do various optimizations to case statements that have
%%  boolean case expressions. We don't do the optimizations in guards,
%%  because they would thwart the optimization in v3_kernel.
%%
%%  We start with some simple optimizations and normalization
%%  to facilitate later optimizations.
%%
%%  If the case expression can only return a boolean
%%  (or fail), we can remove any clause that cannot
%%  possibly match 'true' or 'false'. Also, any clause
%%  following both 'true' and 'false' clause can
%%  be removed. If successful, we will end up like this:
%%
%%  case BoolExpr of           	    case BoolExpr of
%%     true ->			       false ->
%%       ...; 			    	  ...;
%%     false ->            OR          true ->
%%       ...				  ...
%%     end.			    end.
%%
%%  We give up if there are clauses with guards, or if there
%%  is a variable clause that matches anything.

opt_bool_case(#c_case{}=Case, #sub{in_guard=true}) ->
    %% v3_kernel does a better job without "help".
    Case;
opt_bool_case(#c_case{arg=Arg}=Case0, #sub{in_guard=false}) ->
    case is_bool_expr(Arg) of
	false ->
	    Case0;
	true ->
	    try opt_bool_clauses(Case0) of
		Case ->
		    opt_bool_not(Case)
	    catch
		impossible ->
		    Case0
	    end
    end.

opt_bool_clauses(#c_case{clauses=Cs}=Case) ->
    Case#c_case{clauses=opt_bool_clauses(Cs, false, false)}.

opt_bool_clauses(Cs, true, true) ->
    %% We have now seen clauses that match both true and false.
    %% Any remaining clauses cannot possibly match.
    case Cs of
	[_|_] ->
	    shadow_warning(Cs, none),
	    [];
	[] ->
	    []
    end;
opt_bool_clauses([#c_clause{pats=[#c_literal{val=Lit}],
			    guard=#c_literal{val=true}}=C|Cs], SeenT, SeenF) ->
    case is_boolean(Lit) of
	false ->
	    %% Not a boolean - this clause can't match.
	    add_warning(C, nomatch_clause_type),
	    opt_bool_clauses(Cs, SeenT, SeenF);
	true ->
	    %% This clause will match.
	    case {Lit,SeenT,SeenF} of
                {false,_,false} ->
                    [C|opt_bool_clauses(Cs, SeenT, true)];
                {true,false,_} ->
                    [C|opt_bool_clauses(Cs, true, SeenF)];
                _ ->
                    add_warning(C, nomatch_shadow),
                    opt_bool_clauses(Cs, SeenT, SeenF)
	    end
    end;
opt_bool_clauses([#c_clause{pats=Ps,guard=#c_literal{val=true}}=C|Cs], SeenT, SeenF) ->
    case Ps of
	[#c_var{}] ->
	    %% Will match a boolean.
	    throw(impossible);
	[#c_alias{}] ->
	    %% Might match a boolean.
	    throw(impossible);
	_ ->
	    %% The clause cannot possible match a boolean.
	    %% We can remove it.
	    add_warning(C, nomatch_clause_type),
	    opt_bool_clauses(Cs, SeenT, SeenF)
    end;
opt_bool_clauses([_|_], _, _) ->
    %% A clause with a guard. Give up.
    throw(impossible).
%% We intentionally do not have a clause that match an empty
%% list. An empty list would indicate that the clauses do not
%% match all possible values for the case expression, which
%% means that the Core Erlang program is illegal. We prefer to
%% crash on such illegal input, rather than producing code that will
%% fail mysteriously at run time.


%% opt_bool_not(Case) -> CoreExpr.
%%  Try to eliminate one or more calls to 'not' at the top level
%%  of the case expression.
%%
%%  We KNOW that the case expression is guaranteed to return
%%  a boolean and that there are exactly two clauses: one that
%%  matches 'true' and one that matches 'false'.
%%
%%  case not Expr of       	    case Expr of
%%     true ->			       false ->
%%       ...; 			    	  ...;
%%     false ->           ==>          true ->
%%       ...				  ...;
%%     end.			       NewVar ->
%%                                        erlang:error(badarg)
%%                                  end.

opt_bool_not(#c_case{arg=Arg,clauses=Cs0}=Case0) ->
    case Arg of
	#c_call{anno=Anno,module=#c_literal{val=erlang},
 		name=#c_literal{val='not'},
 		args=[Expr]} ->
	    Cs = [opt_bool_not_invert(C) || C <- Cs0] ++
		 [#c_clause{anno=[compiler_generated],
			    pats=[#c_var{name=cor_variable}],
			    guard=#c_literal{val=true},
			    body=#c_call{anno=Anno,
					 module=#c_literal{val=erlang},
					 name=#c_literal{val=error},
					 args=[#c_literal{val=badarg}]}}],
	    Case = Case0#c_case{arg=Expr,clauses=Cs},
	    opt_bool_not(Case);
	_ ->
	    opt_bool_case_redundant(Case0)
    end.

opt_bool_not_invert(#c_clause{pats=[#c_literal{val=Bool}]}=C) ->
    C#c_clause{pats=[#c_literal{val=not Bool}]}.

%% opt_bool_case_redundant(Core) -> Core'.
%%  If the sole purpose of the case is to verify that the case
%%  expression is indeed boolean, we do not need the case
%%  (since we have already verified that the case expression is
%%  boolean).
%%
%%    case BoolExpr of
%%      true -> true   	       	       ==>      BoolExpr
%%      false -> false
%%    end.
%%
opt_bool_case_redundant(#c_case{arg=Arg,clauses=Cs}=Case) ->
    case all(fun opt_bool_case_redundant_1/1, Cs) of
	true -> Arg;
	false -> opt_bool_case_guard(Case)
    end.

opt_bool_case_redundant_1(#c_clause{pats=[#c_literal{val=B}],
				    body=#c_literal{val=B}}) ->
    true;
opt_bool_case_redundant_1(_) -> false.

%% opt_bool_case_guard(Case) -> Case'.
%%  Move a boolean case expression into the guard if we are sure that
%%  it cannot fail.
%%
%%    case SafeBoolExpr of	 	case <> of
%%      true -> TrueClause;    	   ==>    <> when SafeBoolExpr -> TrueClause;
%%      false -> FalseClause		  <> when true -> FalseClause
%%    end.		 		end.
%%
%%  Generally, evaluting a boolean expression in a guard should
%%  be faster than evaulating it in the body.
%%
opt_bool_case_guard(#c_case{arg=#c_literal{}}=Case) ->
    %% It is not necessary to move a literal case expression into the
    %% guard, because it will be handled quite well in other
    %% optimizations, and moving the literal into the guard will
    %% cause some extra warnings, for instance for this code
    %%
    %%    case true of
    %%       true -> ...;
    %%       false -> ...
    %%    end.
    %%
    Case;
opt_bool_case_guard(#c_case{arg=Arg,clauses=Cs0}=Case) ->
    case is_safe_bool_expr(Arg, sub_new()) of
	false ->
	    Case;
	true ->
	    Cs = opt_bool_case_guard(Arg, Cs0),
	    Case#c_case{arg=#c_values{anno=cerl:get_ann(Arg),es=[]},
			clauses=Cs}
    end.

opt_bool_case_guard(Arg, [#c_clause{pats=[#c_literal{val=true}]}=Tc,Fc]) ->
    [Tc#c_clause{pats=[],guard=Arg},Fc#c_clause{pats=[]}];
opt_bool_case_guard(Arg, [#c_clause{pats=[#c_literal{val=false}]}=Fc,Tc]) ->
    [Tc#c_clause{pats=[],guard=Arg},Fc#c_clause{pats=[]}].

%% eval_case(Case) -> #c_case{} | #c_let{}.
%%  If possible, evaluate a case at compile time.  We know that the
%%  last clause is guaranteed to match so if there is only one clause
%%  with a pattern containing only variables then rewrite to a let.

eval_case(#c_case{arg=E,clauses=[#c_clause{pats=Ps0,
					   guard=#c_literal{val=true},
					   body=B}]}=Case, Sub) ->
    Es = case cerl:is_c_values(E) of
	     true -> cerl:values_es(E);
	     false -> [E]
	 end,
    %% Consider:
    %%
    %%   case SomeSideEffect() of
    %%      X=Y -> ...
    %%   end
    %%
    %% We must not rewrite it to:
    %%
    %%   let <X,Y> = <SomeSideEffect(),SomeSideEffect()> in ...
    %%
    %% because SomeSideEffect() would be evaluated twice.
    %%
    %% Instead we must evaluate the case expression in an outer let
    %% like this:
    %%
    %%   let NewVar = SomeSideEffect() in
    %%       let <X,Y> = <NewVar,NewVar> in ...
    %%
    Vs = make_vars([], length(Es)),
    case cerl_clauses:match_list(Ps0, Vs) of
	{false,_} ->
	    %% This can only happen if the Core Erlang code is
	    %% handwritten or generated by another code generator
	    %% than v3_core. Assuming that the Core Erlang program
	    %% is correct, the clause will always match at run-time.
	    Case;
	{true,Bs} ->
	    eval_case_warn(B),
	    {Ps,As} = unzip(Bs),
	    InnerLet = cerl:c_let(Ps, core_lib:make_values(As), B),
	    Let = cerl:c_let(Vs, E, InnerLet),
	    expr(Let, sub_new(Sub))
    end;
eval_case(Case, _) -> Case.

eval_case_warn(#c_primop{anno=Anno,
			 name=#c_literal{val=match_fail},
			 args=[_]}=Core) ->
    case keyfind(eval_failure, 1, Anno) of
	false ->
	    ok;
	{eval_failure,Reason} ->
	    %% Example: M = not_map, M#{k:=v}
	    add_warning(Core, {eval_failure,Reason})
    end;
eval_case_warn(_) -> ok.

%% case_opt(CaseArg, [Clause]) -> {CaseArg,[Clause]}.
%%  Try and optimise a case by avoid building tuples or lists
%%  in the case expression. Instead combine the variable parts
%%  of the case expression to multiple "values". If a clause
%%  refers to the constructed term in the case expression (which
%%  was not built), introduce a let into the guard and/or body to
%%  build the term.
%%
%%     case {ok,[Expr1,Expr2]} of	case <Expr1,Expr2> of
%%         {ok,[P1,P2]} -> ...		    <P1,P2> -> ...
%%          .  	       	       	  ==>        .
%%          .				     .
%%          .				     .
%%         Var ->                           <Var1,Var2> ->
%%             ... Var ...                     let <Var> = {ok,[Var1,Var2]}
%%                                                 in ... Var ...
%%          .                                 .
%%          .                                 .
%%          .				      .
%%     end.				end.
%%
case_opt(Arg, Cs0, Sub) ->
    Cs1 = [{cerl:clause_pats(C),C,[],[]} || C <- Cs0],
    Args0 = case cerl:is_c_values(Arg) of
		false -> [Arg];
		true -> cerl:values_es(Arg)
	    end,
    LitExpr = cerl:is_literal(Arg),
    {Args,Cs2} = case_opt_args(Args0, Cs1, Sub, LitExpr, []),
    Cs = [cerl:update_c_clause(C,
			       reverse(Ps),
			       letify(Bs, cerl:clause_guard(C)),
			       letify(Bs, cerl:clause_body(C))) ||
	     {[],C,Ps,Bs} <- Cs2],
    {core_lib:make_values(Args),Cs}.

case_opt_args([A0|As0], Cs0, Sub, LitExpr, Acc) ->
    case case_opt_arg(A0, Sub, Cs0, LitExpr) of
        {error,Cs1} ->
	    %% Nothing to be done. Move on to the next argument.
            Cs = [{Ps,C,[P|PsAcc],Bs} || {[P|Ps],C,PsAcc,Bs} <- Cs1],
	    case_opt_args(As0, Cs, Sub, LitExpr, [A0|Acc]);
	{ok,As1,Cs} ->
	    %% The argument was either expanded (from tuple/list) or
	    %% removed (literal).
	    case_opt_args(As1++As0, Cs, Sub, LitExpr, Acc)
    end;
case_opt_args([], Cs, _Sub, _LitExpr, Acc) ->
    {reverse(Acc),Cs}.

%% case_opt_arg(Expr, Sub, Clauses0, LitExpr) ->
%%         {ok,Args,Clauses} | error
%%  Try to expand one argument to several arguments (if tuple/list)
%%  or to remove a literal argument.
%%
case_opt_arg(E0, Sub, Cs, LitExpr) ->
    case cerl:is_c_var(E0) of
	false ->
	    case_opt_arg_1(E0, Cs, LitExpr);
	true ->
	    case case_will_var_match(Cs) of
		true ->
		    %% All clauses will match a variable in the
		    %% current position. Don't expand this variable
		    %% (that can only make the code worse).
		    {error,Cs};
		false ->
		    %% If possible, expand this variable to a previously
		    %% matched term.
		    E = case_expand_var(E0, Sub),
		    case_opt_arg_1(E, Cs, LitExpr)
	    end
    end.

case_opt_arg_1(E0, Cs0, LitExpr) ->
    case cerl:is_data(E0) of
	false ->
            {error,Cs0};
	true ->
	    E = case_opt_compiler_generated(E0),
	    Cs = case_opt_nomatch(E, Cs0, LitExpr),
            case cerl:is_literal(E) of
                true ->
		    case_opt_lit(E, Cs);
		false ->
		    case_opt_data(E, Cs)
	    end
    end.

%% case_will_var_match([Clause]) -> true | false.
%%  Return if all clauses will match a variable in the
%%  current position.
%%
case_will_var_match(Cs) ->
    all(fun({[P|_],_,_,_}) ->
		case cerl_clauses:match(P, any) of
		    {true,_} -> true;
		    _ -> false
		end
	end, Cs).


%% case_opt_compiler_generated(Core) -> Core'
%%  Mark Core expressions as compiler generated to ensure that
%%  no warnings are generated if they turn out to be unused.
%%  To pretty-printed Core Erlang easier to read, don't mark
%%  constructs that can't cause warnings to be emitted.
%%
case_opt_compiler_generated(Core) ->
    F = fun(C) ->
		case cerl:type(C) of
		    alias -> C;
		    var -> C;
		    _ -> cerl:set_ann(C, [compiler_generated])
		end
	end,
    cerl_trees:map(F, Core).


%% case_expand_var(Expr0, Sub) -> Expr
%%  If Expr0 is a variable that has been previously matched and
%%  is known to be a tuple, return the tuple instead. Otherwise
%%  return Expr0 unchanged.
%%
case_expand_var(E, #sub{t=Tdb}) ->
    Key = cerl:var_name(E),
    case Tdb of
        #{Key:=T0} ->
	    case cerl:is_c_tuple(T0) of
		false ->
		    E;
		true ->
		    %% The pattern was a tuple. Now we must make sure
		    %% that the elements of the tuple are suitable. In
		    %% particular, we don't want binary or map
		    %% construction here, since that means that the
		    %% binary or map will be constructed in the 'case'
		    %% argument. That is wasteful for binaries. Even
		    %% worse is that any map pattern that use the ':='
		    %% operator will fail when used in map
		    %% construction (only the '=>' operator is allowed
		    %% when constructing a map from scratch).
		    try
			cerl_trees:map(fun coerce_to_data/1, T0)
		    catch
			throw:impossible ->
			    %% Something unsuitable was found (map or
			    %% or binary). Keep the variable.
			    E
		    end
	    end;
        _ ->
	    E
    end.

%% coerce_to_data(Core) -> Core'
%%  Coerce an element originally from a pattern to an data item or or
%%  variable. Throw an 'impossible' exception if non-data Core Erlang
%%  terms such as binary construction or map construction are
%%  encountered.

coerce_to_data(C) ->
    case cerl:is_c_alias(C) of
	false ->
	    case cerl:is_data(C) orelse cerl:is_c_var(C) of
		true -> C;
		false -> throw(impossible)
	    end;
	true ->
	    coerce_to_data(cerl:alias_pat(C))
    end.

%% case_opt_nomatch(E, Clauses, LitExpr) -> Clauses'
%%  Remove all clauses that cannot possibly match.

case_opt_nomatch(E, [{[P|_],C,_,_}=Current|Cs], LitExpr) ->
    case cerl_clauses:match(P, E) of
        none ->
            %% The pattern will not match the case expression. Remove
            %% the clause.  Unless the entire case expression is a
            %% literal, also emit a warning.
            case LitExpr of
                false -> add_warning(C, nomatch_clause_type);
                true -> ok
            end,
            case_opt_nomatch(E, Cs, LitExpr);
        _ ->
            [Current|case_opt_nomatch(E, Cs, LitExpr)]
    end;
case_opt_nomatch(_, [], _) -> [].

%% case_opt_lit(Literal, Clauses0) -> {ok,[],Clauses} | error
%%  The current part of the case expression is a literal. That
%%  means that we will know at compile-time whether a clause
%%  will match, and we can remove the corresponding pattern from
%%  each clause.
%%
%%  The only complication is if the literal is a binary or map.
%%  In general, it is difficult to know whether a binary or
%%  map pattern will match, so we give up in that case.

case_opt_lit(Lit, Cs0) ->
    try case_opt_lit_1(Lit, Cs0) of
	Cs ->
	    {ok,[],Cs}
    catch
	throw:impossible ->
            {error,Cs0}
    end.

case_opt_lit_1(E, [{[P|Ps],C,PsAcc,Bs0}|Cs]) ->
    %% Non-matching clauses have already been removed
    %% in case_opt_nomatch/3.
    case cerl_clauses:match(P, E) of
	{true,Bs} ->
	    %% The pattern matches the literal. Remove the pattern
	    %% and update the bindings.
            [{Ps,C,PsAcc,Bs++Bs0}|case_opt_lit_1(E, Cs)];
	{false,_} ->
	    %% Binary literal and pattern. We are not sure whether
	    %% the pattern will match.
	    throw(impossible)
    end;
case_opt_lit_1(_, []) -> [].

%% case_opt_data(Expr, Clauses0, LitExpr) -> {ok,Exprs,Clauses}
%%  The case expression is a non-atomic data constructor (cons
%%  or tuple). We can know at compile time whether each clause
%%  will match, and we can delay the building of the data to
%%  the clauses where it is actually needed.

case_opt_data(E, Cs0) ->
    TypeSig = {cerl:data_type(E),cerl:data_arity(E)},
    try case_opt_data_1(Cs0, TypeSig) of
	Cs ->
	    Es = cerl:data_es(E),
	    {ok,Es,Cs}
    catch
	throw:impossible ->
	    %% The pattern contained a binary or map.
	    {error,Cs0}
    end.

case_opt_data_1([{[P0|Ps0],C,PsAcc,Bs0}|Cs], TypeSig) ->
    P = case_opt_compiler_generated(P0),
    {Ps1,Bs} = case_opt_data_2(P, TypeSig, Bs0),
    [{Ps1++Ps0,C,PsAcc,Bs}|case_opt_data_1(Cs, TypeSig)];
case_opt_data_1([], _) -> [].

case_opt_data_2(P, TypeSig, Bs0) ->
    case case_analyze_pat(P) of
	{[],Pat} when Pat =/= none ->
	    DataEs = cerl:data_es(P),
	    {DataEs,Bs0};
	{[V|Vs],none} ->
	    {Type,Arity} = TypeSig,
	    Ann = [compiler_generated],
	    Vars = make_vars(Ann, Arity),
	    Data = cerl:ann_make_data(Ann, Type, Vars),
	    Bs = [{V,Data} | [{Var,V} || Var <- Vs] ++ Bs0],
	    {Vars,Bs};
	{[V|Vs],Pat} when Pat =/= none ->
	    {Type,_} = TypeSig,
	    DataEs = cerl:data_es(Pat),
	    Vars = pat_to_expr_list(DataEs),
	    Ann = [compiler_generated],
	    Data = cerl:ann_make_data(Ann, Type, Vars),
	    Bs = [{V,Data} | [{Var,V} || Var <- Vs] ++ Bs0],
	    {DataEs,Bs}
    end.

case_analyze_pat(P) ->
    case_analyze_pat_1(P, [], none).

case_analyze_pat_1(P, Vs, Pat) ->
    case cerl:type(P) of
	alias ->
	    V = cerl:alias_var(P),
	    Apat = cerl:alias_pat(P),
	    case_analyze_pat_1(Apat, [V|Vs], Pat);
	var ->
	    {[P|Vs],Pat};
	_ ->
	    {Vs,P}
    end.

%% pat_to_expr(Pattern) -> Expression.
%%  Convert a pattern to an expression if possible. We KNOW that
%%  all variables in the pattern will be bound.
%%
%%  Throw an 'impossible' exception if a map or (non-literal)
%%  binary is encountered. Trying to use a map pattern as an
%%  expression is incorrect, while rebuilding a potentially
%%  huge binary in an expression would be wasteful.

pat_to_expr(P) ->
    case cerl:type(P) of
	alias ->
	    cerl:alias_var(P);
	var ->
	    P;
	_ ->
	    case cerl:is_data(P) of
		false ->
		    %% Map or binary.
		    throw(impossible);
		true ->
		    Es = pat_to_expr_list(cerl:data_es(P)),
		    cerl:update_data(P, cerl:data_type(P), Es)
	    end
    end.

pat_to_expr_list(Ps) -> [pat_to_expr(P) || P <- Ps].

make_vars(A, Max) ->
    make_vars(A, 1, Max).

make_vars(A, I, Max) when I =< Max ->
    [make_var(A)|make_vars(A, I+1, Max)];
make_vars(_, _, _) -> [].

make_var(A) ->
    #c_var{anno=A,name=make_var_name()}.

make_var_name() ->
    N = get(new_var_num),
    put(new_var_num, N+1),
    N.

letify(Bs, Body) ->
    Ann = cerl:get_ann(Body),
    foldr(fun({V,Val}, B) ->
		  cerl:ann_c_let(Ann, [V], Val, B)
	  end, Body, Bs).

%% opt_not_in_let(Let) -> Cerl
%%  Try to optimize away a 'not' operator in a 'let'.

-spec opt_not_in_let(cerl:c_let()) -> cerl:cerl().

opt_not_in_let(#c_let{vars=[_]=Vs0,arg=Arg0,body=Body0}=Let) ->
    case opt_not_in_let_0(Vs0, Arg0, Body0) of
	{[],#c_values{es=[]},Body} ->
	    Body;
	{Vs,Arg,Body} ->
	    Let#c_let{vars=Vs,arg=Arg,body=Body}
    end;
opt_not_in_let(Let) -> Let.

opt_not_in_let_0([#c_var{name=V}]=Vs0, Arg0, Body0) ->
    case cerl:type(Body0) of
	call ->
	    %% let <V> = Expr in not V  ==>
	    %%    let <> = <> in notExpr
	    case opt_not_in_let_1(V, Body0, Arg0) of
		no ->
		    {Vs0,Arg0,Body0};
		{yes,Body} ->
		    {[],#c_values{es=[]},Body}
	    end;
	'let' ->
	    %% let <V> = Expr in let <Var> = not V in Body  ==>
	    %%    let <Var> = notExpr in Body
	    %% V must not be used in Body.
	    LetArg = cerl:let_arg(Body0),
	    case opt_not_in_let_1(V, LetArg, Arg0) of
		no ->
		    {Vs0,Arg0,Body0};
		{yes,Arg} ->
		    LetBody = cerl:let_body(Body0),
		    case core_lib:is_var_used(V, LetBody) of
			true ->
			    {Vs0,Arg0,Body0};
			false ->
			    LetVars = cerl:let_vars(Body0),
			    {LetVars,Arg,LetBody}
		    end
	    end;
	_ ->
	    {Vs0,Arg0,Body0}
    end.

opt_not_in_let_1(V, Call, Body) ->
    case Call of
	#c_call{module=#c_literal{val=erlang},
		name=#c_literal{val='not'},
		args=[#c_var{name=V}]} ->
	    opt_not_in_let_2(Body, Call);
	_ ->
	    no
    end.

opt_not_in_let_2(#c_case{clauses=Cs0}=Case, NotCall) ->
    Vars = make_vars([], 1),
    Body = NotCall#c_call{args=Vars},
    Cs = [begin
	      Let = #c_let{vars=Vars,arg=B,body=Body},
	      C#c_clause{body=opt_not_in_let(Let)}
	  end || #c_clause{body=B}=C <- Cs0],
    {yes,Case#c_case{clauses=Cs}};
opt_not_in_let_2(#c_call{}=Call0, _NotCall) ->
    invert_call(Call0);
opt_not_in_let_2(_, _) -> no.

invert_call(#c_call{module=#c_literal{val=erlang},
		    name=#c_literal{val=Name0},
		    args=[_,_]}=Call) ->
    case inverse_rel_op(Name0) of
	no -> no;
	Name -> {yes,Call#c_call{name=#c_literal{val=Name}}}
    end;
invert_call(#c_call{}) -> no.

%% inverse_rel_op(Op) -> no | RevOp

inverse_rel_op('=:=') -> '=/=';
inverse_rel_op('=/=') -> '=:=';
inverse_rel_op('==') -> '/=';
inverse_rel_op('/=') -> '==';
inverse_rel_op('>') -> '=<';
inverse_rel_op('<') -> '>=';
inverse_rel_op('>=') -> '<';
inverse_rel_op('=<') -> '>';
inverse_rel_op(_) -> no.


%% opt_bool_case_in_let(LetExpr) -> Core

opt_bool_case_in_let(#c_let{vars=Vs,arg=Arg,body=B}=Let, Sub) ->
    opt_bool_case_in_let_1(Vs, Arg, B, Let, Sub).

opt_bool_case_in_let_1([#c_var{name=V}], Arg,
		  #c_case{arg=#c_var{name=V}}=Case0, Let, Sub) ->
    case is_simple_case_arg(Arg) of
	true ->
	    Case = opt_bool_case(Case0#c_case{arg=Arg}, Sub),
	    case core_lib:is_var_used(V, Case) of
		false -> Case;
		true -> Let
	    end;
	false ->
	    Let
    end;
opt_bool_case_in_let_1(_, _, _, Let, _) -> Let.

%% is_simple_case_arg(Expr) -> true|false
%%  Determine whether the Expr is simple enough to be worth
%%  substituting into a case argument. (Common substitutions
%%  of variables and literals are assumed to have been already
%%  handled by the caller.)

is_simple_case_arg(#c_cons{}) -> true;
is_simple_case_arg(#c_tuple{}) -> true;
is_simple_case_arg(#c_call{}) -> true;
is_simple_case_arg(#c_apply{}) -> true;
is_simple_case_arg(_) -> false.

%% is_bool_expr(Core) -> true|false
%%  Check whether the Core expression is guaranteed to return
%%  a boolean IF IT RETURNS AT ALL.
%%
is_bool_expr(Core) ->
    is_bool_expr(Core, sub_new()).

%% is_bool_expr(Core, Sub) -> true|false
%%  Check whether the Core expression is guaranteed to return
%%  a boolean IF IT RETURNS AT ALL. Uses type information
%%  to be able to identify more expressions as booleans.
%%
is_bool_expr(#c_call{module=#c_literal{val=erlang},
		     name=#c_literal{val=Name},args=Args}=Call, _) ->
    NumArgs = length(Args),
    erl_internal:comp_op(Name, NumArgs) orelse
	erl_internal:new_type_test(Name, NumArgs) orelse
        erl_internal:bool_op(Name, NumArgs) orelse
	will_fail(Call);
is_bool_expr(#c_try{arg=E,vars=[#c_var{name=X}],body=#c_var{name=X},
		   handler=#c_literal{val=false}}, Sub) ->
    is_bool_expr(E, Sub);
is_bool_expr(#c_case{clauses=Cs}, Sub) ->
    is_bool_expr_list(Cs, Sub);
is_bool_expr(#c_clause{body=B}, Sub) ->
    is_bool_expr(B, Sub);
is_bool_expr(#c_let{vars=[V],arg=Arg,body=B}, Sub0) ->
    Sub = case is_bool_expr(Arg, Sub0) of
	      true -> update_types(V, [bool], Sub0);
	      false -> Sub0
	  end,
    is_bool_expr(B, Sub);
is_bool_expr(#c_let{body=B}, Sub) ->
    %% Binding of multiple variables.
    is_bool_expr(B, Sub);
is_bool_expr(C, Sub) ->
    is_boolean_type(C, Sub) =:= yes.

is_bool_expr_list([C|Cs], Sub) ->
    is_bool_expr(C, Sub) andalso is_bool_expr_list(Cs, Sub);
is_bool_expr_list([], _) -> true.

%% is_safe_bool_expr(Core) -> true|false
%%  Check whether the Core expression ALWAYS returns a boolean
%%  (i.e. it cannot fail). Also make sure that the expression
%%  is suitable for a guard (no calls to non-guard BIFs, local
%%  functions, or is_record/2).
%%
is_safe_bool_expr(Core, Sub) ->
    is_safe_bool_expr_1(Core, Sub, cerl_sets:new()).

is_safe_bool_expr_1(#c_call{module=#c_literal{val=erlang},
                            name=#c_literal{val=is_record},
                            args=[A,#c_literal{val=Tag},#c_literal{val=Size}]},
                    Sub, _BoolVars) when is_atom(Tag), is_integer(Size) ->
    is_safe_simple(A, Sub);
is_safe_bool_expr_1(#c_call{module=#c_literal{val=erlang},
                            name=#c_literal{val=is_record}},
                    _Sub, _BoolVars) ->
    %% The is_record/2 BIF is NOT allowed in guards.
    %% The is_record/3 BIF where its second argument is not an atom or its third
    %% is not an integer is NOT allowed in guards.
    %%
    %% NOTE: Calls like is_record(Expr, LiteralTag), where LiteralTag
    %% is a literal atom referring to a defined record, have already
    %% been rewritten to is_record(Expr, LiteralTag, TupleSize).
    false;
is_safe_bool_expr_1(#c_call{module=#c_literal{val=erlang},
                            name=#c_literal{val=is_function},
                            args=[A,#c_literal{val=Arity}]},
                    Sub, _BoolVars) when is_integer(Arity), Arity >= 0 ->
    is_safe_simple(A, Sub);
is_safe_bool_expr_1(#c_call{module=#c_literal{val=erlang},
                            name=#c_literal{val=is_function}},
                    _Sub, _BoolVars) ->
    false;
is_safe_bool_expr_1(#c_call{module=#c_literal{val=erlang},
			    name=#c_literal{val=Name},args=Args},
		    Sub, BoolVars) ->
    NumArgs = length(Args),
    case (erl_internal:comp_op(Name, NumArgs) orelse
	  erl_internal:new_type_test(Name, NumArgs)) andalso
	is_safe_simple_list(Args, Sub) of
	true ->
	    true;
	false ->
	    %% Boolean operators are safe if all arguments are boolean.
	    erl_internal:bool_op(Name, NumArgs) andalso
		is_safe_bool_expr_list(Args, Sub, BoolVars)
    end;
is_safe_bool_expr_1(#c_let{vars=Vars,arg=Arg,body=B}, Sub, BoolVars) ->
    case is_safe_simple(Arg, Sub) of
	true ->
	    case {is_safe_bool_expr_1(Arg, Sub, BoolVars),Vars} of
		{true,[#c_var{name=V}]} ->
		    is_safe_bool_expr_1(B, Sub, cerl_sets:add_element(V, BoolVars));
		{false,_} ->
		    is_safe_bool_expr_1(B, Sub, BoolVars)
	    end;
	false -> false
    end;
is_safe_bool_expr_1(#c_literal{val=Val}, _Sub, _) ->
    is_boolean(Val);
is_safe_bool_expr_1(#c_var{name=V}, _Sub, BoolVars) ->
    cerl_sets:is_element(V, BoolVars);
is_safe_bool_expr_1(_, _, _) -> false.

is_safe_bool_expr_list([C|Cs], Sub, BoolVars) ->
    case is_safe_bool_expr_1(C, Sub, BoolVars) of
	true -> is_safe_bool_expr_list(Cs, Sub, BoolVars);
	false -> false
    end;
is_safe_bool_expr_list([], _, _) -> true.

%% simplify_let(Let, Sub) -> Expr | impossible
%%  If the argument part of an let contains a complex expression, such
%%  as a let or a sequence, move the original let body into the complex
%%  expression.

simplify_let(#c_let{arg=Arg}=Let, Sub) ->
    move_let_into_expr(Let, Arg, Sub).

move_let_into_expr(#c_let{vars=InnerVs0,body=InnerBody0}=Inner,
		   #c_let{vars=OuterVs0,arg=Arg0,body=OuterBody0}=Outer, Sub0) ->
    %%
    %% let <InnerVars> = let <OuterVars> = <Arg>
    %%                   in <OuterBody>
    %% in <InnerBody>
    %%
    %%       ==>
    %%
    %% let <OuterVars> = <Arg>
    %% in let <InnerVars> = <OuterBody>
    %%    in <InnerBody>
    %%
    Arg = body(Arg0, Sub0),
    ScopeSub0 = sub_subst_scope(Sub0#sub{t=#{}}),
    {OuterVs,ScopeSub} = var_list(OuterVs0, ScopeSub0),

    OuterBody = body(OuterBody0, ScopeSub),

    {InnerVs,Sub} = var_list(InnerVs0, Sub0),
    InnerBody = body(InnerBody0, Sub),
    Outer#c_let{vars=OuterVs,arg=Arg,
		body=Inner#c_let{vars=InnerVs,arg=OuterBody,body=InnerBody}};
move_let_into_expr(#c_let{vars=Lvs0,body=Lbody0}=Let,
		   #c_case{arg=Cexpr0,clauses=[Ca0|Cs0]}=Case, Sub0) ->
    case not is_failing_clause(Ca0) andalso
        are_all_failing_clauses(Cs0) of
	true ->
	    %% let <Lvars> = case <Case-expr> of
	    %%                  <Cpats> -> <Clause-body>;
	    %%                  <OtherCpats> -> erlang:error(...)
	    %%               end
	    %% in <Let-body>
	    %%
	    %%     ==>
	    %%
	    %% case <Case-expr> of
	    %%   <Cpats> ->
	    %%       let <Lvars> = <Clause-body>
	    %%       in <Let-body>;
	    %%   <OtherCpats> -> erlang:error(...)
	    %% end

	    Cexpr = body(Cexpr0, Sub0),
	    CaPats0 = Ca0#c_clause.pats,
	    G0 = Ca0#c_clause.guard,
	    B0 = Ca0#c_clause.body,
	    ScopeSub0 = sub_subst_scope(Sub0#sub{t=#{}}),
	    try pattern_list(CaPats0, ScopeSub0) of
		{CaPats,ScopeSub} ->
		    G = guard(G0, ScopeSub),

		    B1 = body(B0, ScopeSub),

		    {Lvs,B2,Sub1} = let_substs(Lvs0, B1, Sub0),
		    Sub2 = Sub1#sub{s=cerl_sets:union(ScopeSub#sub.s,
						      Sub1#sub.s)},
		    Lbody = body(Lbody0, Sub2),
		    B = Let#c_let{vars=Lvs,
				  arg=core_lib:make_values(B2),
				  body=Lbody},

		    Ca = Ca0#c_clause{pats=CaPats,guard=G,body=B},
		    Cs = [clause(C, Cexpr, value, Sub0) || C <- Cs0],
		    Case#c_case{arg=Cexpr,clauses=[Ca|Cs]}
	    catch
		nomatch ->
		    %% This is not a defeat. The code will eventually
		    %% be optimized to erlang:error(...) by the other
		    %% optimizations done in this module.
		    impossible
	    end;
	false -> impossible
    end;
move_let_into_expr(#c_let{vars=Lvs0,body=Lbody0}=Let,
		   #c_seq{arg=Sarg0,body=Sbody0}=Seq, Sub0) ->
    %%
    %% let <Lvars> = do <Seq-arg>
    %%                  <Seq-body>
    %% in <Let-body>
    %%
    %%       ==>
    %%
    %% do <Seq-arg>
    %%    let <Lvars> = <Seq-body>
    %%    in <Let-body>
    %%
    Sarg = body(Sarg0, Sub0),
    Sbody1 = body(Sbody0, Sub0),
    {Lvs,Sbody,Sub} = let_substs(Lvs0, Sbody1, Sub0),
    Lbody = body(Lbody0, Sub),
    Seq#c_seq{arg=Sarg,body=Let#c_let{vars=Lvs,arg=core_lib:make_values(Sbody),
				      body=Lbody}};
move_let_into_expr(_Let, _Expr, _Sub) -> impossible.

are_all_failing_clauses(Cs) ->
    all(fun is_failing_clause/1, Cs).

is_failing_clause(#c_clause{body=B}) ->
    will_fail(B).

%% opt_build_stacktrace(Let) -> Core.
%%  If the stacktrace is *only* used in a call to erlang:raise/3,
%%  there is no need to build a cooked stackframe using build_stacktrace/1.

opt_build_stacktrace(#c_let{vars=[#c_var{name=Cooked}],
                            arg=#c_primop{name=#c_literal{val=build_stacktrace},
                                          args=[RawStk]},
                            body=Body}=Let) ->
    case Body of
        #c_call{module=#c_literal{val=erlang},
                name=#c_literal{val=raise},
                args=[Class,Exp,#c_var{name=Cooked}]} ->
            %% The stacktrace is only used in a call to erlang:raise/3.
            %% There is no need to build the stacktrace. Replace the
            %% call to erlang:raise/3 with the the raw_raise/3 instruction,
            %% which will use a raw stacktrace.
            #c_primop{name=#c_literal{val=raw_raise},
                      args=[Class,Exp,RawStk]};
        #c_let{vars=[#c_var{name=V}],arg=Arg,body=B0} when V =/= Cooked ->
            case core_lib:is_var_used(Cooked, Arg) of
                false ->
                    %% The built stacktrace is not used in the argument,
                    %% so we can sink the building of the stacktrace into
                    %% the body of the let.
                    B = opt_build_stacktrace(Let#c_let{body=B0}),
                    Body#c_let{body=B};
                true ->
                    Let
            end;
        #c_seq{arg=Arg,body=B0} ->
            case core_lib:is_var_used(Cooked, Arg) of
                false ->
                    %% The built stacktrace is not used in the argument,
                    %% so we can sink the building of the stacktrace into
                    %% the body of the sequence.
                    B = opt_build_stacktrace(Let#c_let{body=B0}),
                    Body#c_seq{body=B};
                true ->
                    Let
            end;
        #c_case{arg=Arg,clauses=Cs0} ->
            case core_lib:is_var_used(Cooked, Arg) orelse
                is_used_in_any_guard(Cooked, Cs0) of
                false ->
                    %% The built stacktrace is not used in the argument,
                    %% so we can sink the building of the stacktrace into
                    %% each arm of the case.
                    Cs = [begin
                              B = opt_build_stacktrace(Let#c_let{body=B0}),
                              C#c_clause{body=B}
                          end || #c_clause{body=B0}=C <- Cs0],
                    Body#c_case{clauses=Cs};
                true ->
                    Let
            end;
        _ ->
            Let
    end;
opt_build_stacktrace(Expr) ->
    Expr.

is_used_in_any_guard(V, Cs) ->
    any(fun(#c_clause{guard=G}) ->
                core_lib:is_var_used(V, G)
        end, Cs).

%% opt_case_in_let(Let) -> Let'
%%  Try to avoid building tuples that are immediately matched.
%%  A common pattern is:
%%
%%      {V1,V2,...} = case E of P -> ... {Val1,Val2,...}; ... end
%%
%%  In Core Erlang the pattern would look like this:
%%
%%   let <V> = case E of
%%             	 ... -> ... {Val1,Val2}
%%   	         ...
%%   	       end,
%%   in case V of
%%   	{A,B} -> ... <use A and B> ...
%%   end
%%
%%  Rewrite this to:
%%
%%   let <V1,V2> = case E of
%%             	 ... -> ... <Val1,Val2>
%%   	         ...
%%   	       end,
%%   in
%%      let <V> = {V1,V2}
%%      in case V of
%%   	    {A,B} -> ... <use A and B> ...
%%        end
%%
%%  Note that the second 'case' is unchanged. The other optimizations
%%  in this module will eliminate the building of the tuple and
%%  rewrite the second case to:
%%
%%   case <V1,V2> of
%%    <A,B> -> ... <use A and B> ...
%%   end
%%

opt_case_in_let(#c_let{vars=Vs,arg=Arg0,body=B}=Let0) ->
    case matches_data(Vs, B) of
	{yes,TypeSig} ->
	    case delay_build(Arg0, TypeSig) of
		no ->
		    Let0;
		{yes,Vars,Arg,Data} ->
		    InnerLet = Let0#c_let{arg=Data},
		    Let0#c_let{vars=Vars,arg=Arg,body=InnerLet}
	    end;
	no ->
	    Let0
    end.

matches_data([#c_var{name=V}], #c_case{arg=#c_var{name=V},
				       clauses=[#c_clause{pats=[P]}|_]}) ->
    case cerl:is_data(P) of
	false ->
	    no;
	true ->
	    case cerl:data_type(P) of
		{atomic,_} ->
		    no;
		Type ->
		    {yes,{Type,cerl:data_arity(P)}}
	    end
    end;
matches_data(_, _) -> no.

delay_build(Core, TypeSig) ->
    case cerl:is_data(Core) of
	true -> no;
	false -> delay_build_1(Core, TypeSig)
    end.

delay_build_1(Core0, TypeSig) ->
    try delay_build_expr(Core0, TypeSig) of
	Core ->
	    {Type,Arity} = TypeSig,
	    Ann = [compiler_generated],
	    Vars = make_vars(Ann, Arity),
	    Data = cerl:ann_make_data(Ann, Type, Vars),
	    {yes,Vars,Core,Data}
    catch
	throw:impossible ->
	    no
    end.

delay_build_cs([#c_clause{body=B0}=C0|Cs], TypeSig) ->
    B = delay_build_expr(B0, TypeSig),
    C = C0#c_clause{body=B},
    [C|delay_build_cs(Cs, TypeSig)];
delay_build_cs([], _) -> [].

delay_build_expr(Core, {Type,Arity}=TypeSig) ->
    case cerl:is_data(Core) of
	false ->
	    delay_build_expr_1(Core, TypeSig);
	true ->
	    case {cerl:data_type(Core),cerl:data_arity(Core)} of
		{Type,Arity} ->
		    core_lib:make_values(cerl:data_es(Core));
		{_,_} ->
		    throw(impossible)
	    end
    end.

delay_build_expr_1(#c_case{clauses=Cs0}=Case, TypeSig) ->
    Cs = delay_build_cs(Cs0, TypeSig),
    Case#c_case{clauses=Cs};
delay_build_expr_1(#c_let{body=B0}=Let, TypeSig) ->
    B = delay_build_expr(B0, TypeSig),
    Let#c_let{body=B};
delay_build_expr_1(#c_receive{clauses=Cs0,
			      timeout=Timeout,
			      action=A0}=Rec, TypeSig) ->
    Cs = delay_build_cs(Cs0, TypeSig),
    A = case {Timeout,A0} of
	    {#c_literal{val=infinity},#c_literal{}} ->
                {_Type,Arity} = TypeSig,
                Es = lists:duplicate(Arity, A0),
                core_lib:make_values(Es);
	    _ ->
                delay_build_expr(A0, TypeSig)
	end,
    Rec#c_receive{clauses=Cs,action=A};
delay_build_expr_1(#c_seq{body=B0}=Seq, TypeSig) ->
    B = delay_build_expr(B0, TypeSig),
    Seq#c_seq{body=B};
delay_build_expr_1(Core, _TypeSig) ->
    case will_fail(Core) of
	true -> Core;
	false -> throw(impossible)
    end.

%% opt_simple_let(#c_let{}, Context, Sub) -> CoreTerm
%%  Optimize a let construct that does not contain any lets in
%%  in its argument.

opt_simple_let(Let0, Ctxt, Sub) ->
    case opt_not_in_let(Let0) of
	#c_let{}=Let ->
	    opt_simple_let_0(Let, Ctxt, Sub);
	Expr ->
	    expr(Expr, Ctxt, Sub)
    end.

opt_simple_let_0(#c_let{arg=Arg0}=Let, Ctxt, Sub) ->
    Arg = body(Arg0, value, Sub),		%This is a body
    case will_fail(Arg) of
	true -> Arg;
	false -> opt_simple_let_1(Let, Arg, Ctxt, Sub)
    end.

opt_simple_let_1(#c_let{vars=Vs0,body=B0}=Let, Arg0, Ctxt, Sub0) ->
    %% Optimise let and add new substitutions.
    {Vs,Args,Sub1} = let_substs(Vs0, Arg0, Sub0),
    BodySub = update_let_types(Vs, Args, Sub1),
    Sub = Sub1#sub{v=[],s=cerl_sets:new()},
    B = body(B0, Ctxt, BodySub),
    Arg = core_lib:make_values(Args),
    opt_simple_let_2(Let, Vs, Arg, B, B0, Sub).


%% opt_simple_let_2(Let0, Vs0, Arg0, Body, PrevBody, Ctxt, Sub) -> Core.
%%  Do final simplifications of the let.
%%
%%  Note that the substitutions and scope in Sub have been cleared
%%  and should not be used.

opt_simple_let_2(Let0, Vs0, Arg0, Body, PrevBody, Sub) ->
    case {Vs0,Arg0,Body} of
	{[#c_var{name=V}],Arg1,#c_var{name=V}} ->
            %% let <Var> = Arg in <Var>  ==>  Arg
            Arg1;
	{[],#c_values{es=[]},_} ->
	    %% No variables left.
	    Body;
	{[#c_var{name=V}=Var|Vars]=Vars0,Arg1,Body} ->
            case core_lib:is_var_used(V, Body) of
                false when Vars =:= [] ->
                    %% If the variable is not used in the body, we can
                    %% rewrite the let to a sequence:
                    %%    let <Var> = Arg in BodyWithoutVar ==>
                    %%        seq Arg BodyWithoutVar
                    Arg = maybe_suppress_warnings(Arg1, Var, PrevBody),
                    #c_seq{arg=Arg,body=Body};
                false ->
                    %% There are multiple values returned by the argument
                    %% and the first value is not used (this is a 'case'
                    %% with exported variables, but the return value is
                    %% ignored). We can remove the first variable and the
                    %% the first value returned from the 'let' argument.
                    Arg2 = remove_first_value(Arg1, Sub),
                    Let1 = Let0#c_let{vars=Vars,arg=Arg2,body=Body},
                    post_opt_let(Let1, Sub);
                true ->
                    Let1 = Let0#c_let{vars=Vars0,arg=Arg1,body=Body},
                    post_opt_let(Let1, Sub)
	    end
    end.

%% post_opt_let(Let, Sub)
%%  Final optimizations of the let.
%%
%%  Note that the substitutions and scope in Sub have been cleared
%%  and should not be used.

post_opt_let(Let0, Sub) ->
    Let1 = opt_bool_case_in_let(Let0, Sub),
    opt_build_stacktrace(Let1).


%% remove_first_value(Core0, Sub) -> Core.
%%  Core0 is an expression that returns at least two values.
%%  Remove the first value returned from Core0.

remove_first_value(#c_values{es=[V|Vs]}, Sub) ->
    Values = core_lib:make_values(Vs),
    case is_safe_simple(V, Sub) of
        false ->
            #c_seq{arg=V,body=Values};
        true ->
            Values
    end;
remove_first_value(#c_case{clauses=Cs0}=Core, Sub) ->
    Cs = remove_first_value_cs(Cs0, Sub),
    Core#c_case{clauses=Cs};
remove_first_value(#c_receive{clauses=Cs0,action=Act0}=Core, Sub) ->
    Cs = remove_first_value_cs(Cs0, Sub),
    Act = remove_first_value(Act0, Sub),
    Core#c_receive{clauses=Cs,action=Act};
remove_first_value(#c_let{body=B}=Core, Sub) ->
    Core#c_let{body=remove_first_value(B, Sub)};
remove_first_value(#c_seq{body=B}=Core, Sub) ->
    Core#c_seq{body=remove_first_value(B, Sub)};
remove_first_value(#c_primop{}=Core, _Sub) ->
    Core;
remove_first_value(#c_call{}=Core, _Sub) ->
    Core.

remove_first_value_cs(Cs, Sub) ->
    [C#c_clause{body=remove_first_value(B, Sub)} ||
        #c_clause{body=B}=C <- Cs].

%% maybe_suppress_warnings(Arg, #c_var{}, PreviousBody) -> Arg'
%%  Try to suppress false warnings when a variable is not used.
%%  For instance, we don't expect a warning for useless building in:
%%
%%    R = #r{},  %No warning expected.
%%    R#r.f      %Optimization would remove the reference to R.
%%
%%  To avoid false warnings, we will check whether the variables were
%%  referenced in the original unoptimized code. If they were, we will
%%  consider the warning false and suppress it.

maybe_suppress_warnings(Arg, #c_var{name=V}, PrevBody) ->
    case should_suppress_warning(Arg) of
	true ->
	    Arg;				%Already suppressed.
	false ->
	    case core_lib:is_var_used(V, PrevBody) of
		true ->
		    suppress_warning([Arg]);
		false ->
		    Arg
	    end
    end.

%% Suppress warnings for a Core Erlang expression whose value will
%% be ignored.
suppress_warning([H|T]) ->
    case cerl:is_literal(H) of
	true ->
	    suppress_warning(T);
	false ->
	    case cerl:is_data(H) of
		true ->
		    suppress_warning(cerl:data_es(H) ++ T);
		false ->
		    %% Some other thing, such as a function call.
		    %% This cannot be the compiler's fault, so the
		    %% warning should not be suppressed. We must
		    %% be careful not to destroy tail-recursion.
		    case T of
			[] ->
			    H;
			[_|_] ->
			    cerl:c_seq(H, suppress_warning(T))
		    end
	    end
    end;
suppress_warning([]) -> void().

move_case_into_arg(#c_case{arg=#c_let{vars=OuterVars0,arg=OuterArg,
                                      body=InnerArg0}=Outer,
                           clauses=InnerClauses}=Inner, Sub) ->
    %%
    %% case let <OuterVars> = <OuterArg> in <InnerArg> of
    %%     <InnerClauses>
    %% end
    %%
    %%       ==>
    %%
    %% let <OuterVars> = <OuterArg>
    %% in case <InnerArg> of <InnerClauses> end
    %%
    ScopeSub0 = sub_subst_scope(Sub#sub{t=#{}}),
    {OuterVars,ScopeSub} = var_list(OuterVars0, ScopeSub0),
    InnerArg = body(InnerArg0, ScopeSub),
    Outer#c_let{vars=OuterVars,arg=OuterArg,
                body=Inner#c_case{arg=InnerArg,clauses=InnerClauses}};
move_case_into_arg(#c_case{arg=#c_case{arg=OuterArg,
                                       clauses=[OuterCa0,OuterCb]}=Outer,
                           clauses=InnerClauses}=Inner0, Sub) ->
    case is_failing_clause(OuterCb) of
        true ->
            #c_clause{pats=OuterPats0,guard=OuterGuard0,
                      body=InnerArg0} = OuterCa0,
            %%
            %% case case <OuterArg> of
            %%          <OuterPats> when <OuterGuard> -> <InnerArg>
            %%          <OuterCb>
            %%          ...
            %%      end of
            %%     <InnerClauses>
            %% end
            %%
            %%       ==>
            %%
            %% case <OuterArg> of
            %%     <OuterPats> when <OuterGuard> ->
            %%         case <InnerArg> of <InnerClauses> end
            %%     <OuterCb>
            %% end
            %%
            ScopeSub0 = sub_subst_scope(Sub#sub{t=#{}}),

	    %% We KNOW that pattern_list/2 has already been called for OuterPats0;
	    %% therefore, it cannot throw an exception.
	    {OuterPats,ScopeSub} = pattern_list(OuterPats0, ScopeSub0),
	    OuterGuard = guard(OuterGuard0, ScopeSub),
	    InnerArg = body(InnerArg0, ScopeSub),
	    Inner = Inner0#c_case{arg=InnerArg,clauses=InnerClauses},
	    OuterCa = OuterCa0#c_clause{pats=OuterPats,
					guard=OuterGuard,
					body=Inner},
	    Outer#c_case{arg=OuterArg,
			 clauses=[OuterCa,OuterCb]};
        false ->
            Inner0
    end;
move_case_into_arg(#c_case{arg=#c_seq{arg=OuterArg,body=InnerArg}=Outer,
                           clauses=InnerClauses}=Inner, _Sub) ->
    %%
    %% case do <OuterArg> <InnerArg> of
    %%     <InnerClauses>
    %% end
    %%
    %%       ==>
    %%
    %% do <OuterArg>
    %%    case <InnerArg> of <InerClauses> end
    %%
    Outer#c_seq{arg=OuterArg,
                body=Inner#c_case{arg=InnerArg,clauses=InnerClauses}};
move_case_into_arg(Expr, _) ->
    Expr.

%%%
%%% Retrieving information about types.
%%%

-spec get_type(cerl:cerl(), #sub{}) -> type_info() | 'none'.

get_type(#c_var{name=V}, #sub{t=Tdb}) ->
    case Tdb of
        #{V:=Type} -> Type;
        _ -> none
    end;
get_type(C, _) ->
    case cerl:type(C) of
	binary -> C;
	map -> C;
	_ ->
	    case cerl:is_data(C) of
		true -> C;
		false -> none
	    end
    end.

-spec is_boolean_type(cerl:cerl(), sub()) -> yes_no_maybe().

is_boolean_type(Var, Sub) ->
    case get_type(Var, Sub) of
	none ->
	    maybe;
	bool ->
	    yes;
	C ->
	    B = cerl:is_c_atom(C) andalso
		is_boolean(cerl:atom_val(C)),
	    yes_no(B)
    end.

-spec is_int_type(cerl:cerl(), sub()) -> yes_no_maybe().

is_int_type(Var, Sub) ->
    case get_type(Var, Sub) of
	none -> maybe;
	integer -> yes;
	C -> yes_no(cerl:is_c_int(C))
    end.

-spec is_tuple_type(cerl:cerl(), sub()) -> yes_no_maybe().

is_tuple_type(Var, Sub) ->
    case get_type(Var, Sub) of
	none -> maybe;
	C -> yes_no(cerl:is_c_tuple(C))
    end.

yes_no(true) -> yes;
yes_no(false) -> no.

%%%
%%% Update type information.
%%%

update_let_types(Vs, Args, Sub) when is_list(Args) ->
    update_let_types_1(Vs, Args, Sub);
update_let_types(_Vs, _Arg, Sub) ->
    %% The argument is a complex expression (such as a 'case')
    %% that returns multiple values.
    Sub.

update_let_types_1([#c_var{}=V|Vs], [A|As], Sub0) ->
    Sub = update_types_from_expr(V, A, Sub0),
    update_let_types_1(Vs, As, Sub);
update_let_types_1([], [], Sub) -> Sub.

update_types_from_expr(V, Expr, Sub) ->
    Type = extract_type(Expr, Sub),
    update_types(V, [Type], Sub).

extract_type(#c_call{module=#c_literal{val=erlang},
		     name=#c_literal{val=Name},
		     args=Args}=Call, Sub) ->
    case returns_integer(Name, Args) of
	true -> integer;
	false -> extract_type_1(Call, Sub)
    end;
extract_type(Expr, Sub) ->
    extract_type_1(Expr, Sub).

extract_type_1(Expr, Sub) ->
    case is_bool_expr(Expr, Sub) of
	false -> Expr;
	true -> bool
    end.

returns_integer('band', [_,_]) -> true;
returns_integer('bnot', [_]) -> true;
returns_integer('bor', [_,_]) -> true;
returns_integer('bxor', [_,_]) -> true;
returns_integer(bit_size, [_]) -> true;
returns_integer('bsl', [_,_]) -> true;
returns_integer('bsr', [_,_]) -> true;
returns_integer(byte_size, [_]) -> true;
returns_integer(ceil, [_]) -> true;
returns_integer('div', [_,_]) -> true;
returns_integer(floor, [_]) -> true;
returns_integer(length, [_]) -> true;
returns_integer('rem', [_,_]) -> true;
returns_integer('round', [_]) -> true;
returns_integer(size, [_]) -> true;
returns_integer(tuple_size, [_]) -> true;
returns_integer(trunc, [_]) -> true;
returns_integer(_, _) -> false.

%% update_types(Expr, Pattern, Sub) -> Sub'
%%  Update the type database.

-spec update_types(cerl:cerl(), [type_info()], sub()) -> sub().

update_types(Expr, Pat, #sub{t=Tdb0}=Sub) ->
    Tdb = update_types_1(Expr, Pat, Tdb0),
    Sub#sub{t=Tdb}.

update_types_1(#c_var{name=V}, Pat, Types) ->
    update_types_2(V, Pat, Types);
update_types_1(_, _, Types) -> Types.

update_types_2(V, [#c_tuple{}=P], Types) ->
    Types#{V=>P};
update_types_2(V, [#c_literal{val=Bool}], Types) when is_boolean(Bool) ->
    Types#{V=>bool};
update_types_2(V, [Type], Types) when is_atom(Type) ->
    Types#{V=>Type};
update_types_2(_, _, Types) -> Types.

%% kill_types(V, Tdb) -> Tdb'
%%  Kill any entries that references the variable,
%%  either in the key or in the value.

kill_types(V, Tdb) ->
    maps:from_list(kill_types2(V,maps:to_list(Tdb))).

kill_types2(V, [{V,_}|Tdb]) ->
    kill_types2(V, Tdb);
kill_types2(V, [{_,#c_tuple{}=Tuple}=Entry|Tdb]) ->
    case core_lib:is_var_used(V, Tuple) of
	false -> [Entry|kill_types2(V, Tdb)];
	true -> kill_types2(V, Tdb)
    end;
kill_types2(V, [{_,Atom}=Entry|Tdb]) when is_atom(Atom) ->
    [Entry|kill_types2(V, Tdb)];
kill_types2(_, []) -> [].

%% copy_type(DestVar, SrcVar, Tdb) -> Tdb'
%%  If the SrcVar has a type, assign it to DestVar.
%%
copy_type(V, #c_var{name=Src}, Tdb) ->
    case Tdb of
        #{Src:=Type} -> Tdb#{V=>Type};
        _ -> Tdb
    end;
copy_type(_, _, Tdb) -> Tdb.

%% The atom `ok', is widely used in Erlang for "void" values.

void() -> #c_literal{val=ok}.


%%%
%%% Handling of warnings.
%%%

init_warnings() ->
    put({?MODULE,warnings}, []).

add_warning(Core, Term) ->
    case should_suppress_warning(Core) of
	true ->
	    ok;
	false ->
	    Anno = cerl:get_ann(Core),
	    Line = get_line(Anno),
	    File = get_file(Anno),
	    Key = {?MODULE,warnings},
	    case get(Key) of
		[{File,[{Line,?MODULE,Term}]}|_] ->
		    ok;				%We already have
						%an identical warning.
		Ws ->
		    put(Key, [{File,[{Line,?MODULE,Term}]}|Ws])
	    end
    end.

get_line([Line|_]) when is_integer(Line) -> Line;
get_line([_|T]) -> get_line(T);
get_line([]) -> none.

get_file([{file,File}|_]) -> File;
get_file([_|T]) -> get_file(T);
get_file([]) -> "no_file". % should not happen

should_suppress_warning(Core) ->
    is_compiler_generated(Core) orelse
	is_result_unwanted(Core).

is_compiler_generated(Core) ->
    Ann = cerl:get_ann(Core),
    member(compiler_generated, Ann).

is_result_unwanted(Core) ->
    Ann = cerl:get_ann(Core),
    member(result_not_wanted, Ann).

get_warnings() ->
    ordsets:from_list((erase({?MODULE,warnings}))).

-type error() :: 'bad_unicode' | 'bin_argument_order'
	       | 'bin_left_var_used_in_guard' | 'bin_opt_alias'
	       | 'bin_partition' | 'bin_var_used' | 'bin_var_used_in_guard'
	       | 'embedded_binary_size' | 'nomatch_clause_type'
	       | 'nomatch_guard' | 'nomatch_shadow' | 'no_clause_match'
	       | 'orig_bin_var_used_in_guard' | 'result_ignored'
	       | 'useless_building'
	       | {'eval_failure', term()}
	       | {'no_effect', {'erlang',atom(),arity()}}
	       | {'nomatch_shadow', integer()}
	       | {'embedded_unit', _, _}.

-spec format_error(error()) -> nonempty_string().

format_error({eval_failure,Reason}) ->
    flatten(io_lib:format("this expression will fail with a '~p' exception", [Reason]));
format_error(embedded_binary_size) ->
    "binary construction will fail with a 'badarg' exception "
	"(field size for binary/bitstring greater than actual size)";
format_error({embedded_unit,Unit,Size}) ->
    M = io_lib:format("binary construction will fail with a 'badarg' exception "
		      "(size ~p cannot be evenly divided by unit ~p)", [Size,Unit]),
    flatten(M);
format_error(bad_unicode) ->
    "binary construction will fail with a 'badarg' exception "
	"(invalid Unicode code point in a utf8/utf16/utf32 segment)";
format_error({nomatch_shadow,Line}) ->
    M = io_lib:format("this clause cannot match because a previous clause at line ~p "
		      "always matches", [Line]),
    flatten(M);
format_error(nomatch_shadow) ->
    "this clause cannot match because a previous clause always matches";
format_error(nomatch_guard) ->
    "the guard for this clause evaluates to 'false'";
format_error({nomatch_bit_syntax_truncated,Signess,Val,Sz}) ->
    S = case Signess of
	    signed -> "a 'signed'";
	    unsigned -> "an 'unsigned'"
	end,
    F = "this clause cannot match because the value ~P"
	" will not fit in ~s binary segment of size ~p",
    flatten(io_lib:format(F, [Val,10,S,Sz]));
format_error({nomatch_bit_syntax_unsigned,Val}) ->
    F = "this clause cannot match because the negative value ~P"
	" will never match the value of an 'unsigned' binary segment",
    flatten(io_lib:format(F, [Val,10]));
format_error({nomatch_bit_syntax_size,Sz}) ->
    F = "this clause cannot match because '~P' is not a valid size for a binary segment",
    flatten(io_lib:format(F, [Sz,10]));
format_error({nomatch_bit_syntax_type,Val,Type}) ->
    F = "this clause cannot match because '~P' is not of the"
	" expected type '~p'",
    flatten(io_lib:format(F, [Val,10,Type]));
format_error({nomatch_bit_syntax_unicode,Val}) ->
    F = "this clause cannot match because the value ~p"
	" is not a valid Unicode code point",
    flatten(io_lib:format(F, [Val]));
format_error(no_clause_match) ->
    "no clause will ever match";
format_error(nomatch_clause_type) ->
    "this clause cannot match because of different types/sizes";
format_error({no_effect,{erlang,F,A}}) ->
    {Fmt,Args} = case erl_internal:comp_op(F, A) of
		     true ->
			 {"use of operator ~p has no effect",[F]};
		     false ->
			 case erl_internal:bif(F, A) of
			     false ->
				 {"the call to erlang:~p/~p has no effect",[F,A]};
			     true ->
				 {"the call to ~p/~p has no effect",[F,A]}
			 end
		 end,
    flatten(io_lib:format(Fmt, Args));
format_error(result_ignored) ->
    "the result of the expression is ignored "
	"(suppress the warning by assigning the expression to the _ variable)";
format_error(invalid_call) ->
    "invalid function call";
format_error(useless_building) ->
    "a term is constructed, but never used".

-ifdef(DEBUG).
%% In order for simplify_let/2 to work correctly, the list of
%% in-scope variables must always be a superset of the free variables
%% in the current expression (otherwise we might fail to rename a variable
%% when needed and get a name capture bug).

verify_scope(E, #sub{s=Scope}) ->
    Free0 = cerl_trees:free_variables(E),
    Free = [V || V <- Free0, not is_tuple(V)],	%Ignore function names.
    case is_subset_of_scope(Free, Scope) of
	true ->
	    true;
	false ->
	    io:format("~p\n", [E]),
	    io:format("~p\n", [Free]),
	    io:format("~p\n", [ordsets:from_list(cerl_sets:to_list(Scope))]),
	    false
    end.

is_subset_of_scope([V|Vs], Scope) ->
    cerl_sets:is_element(V, Scope) andalso is_subset_of_scope(Vs, Scope);
is_subset_of_scope([], _) -> true.

-endif.