1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Transform Core Erlang to Kernel Erlang
%% Kernel erlang is like Core Erlang with a few significant
%% differences:
%%
%% 1. It is flat! There are no nested calls or sub-blocks.
%%
%% 2. All variables are unique in a function. There is no scoping, or
%% rather the scope is the whole function.
%%
%% 3. Pattern matching (in cases and receives) has been compiled.
%%
%% 4. The annotations contain variable usages. Seeing we have to work
%% this out anyway for funs we might as well pass it on for free to
%% later passes.
%%
%% 5. All remote-calls are to statically named m:f/a. Meta-calls are
%% passed via erlang:apply/3.
%%
%% The translation is done in two passes:
%%
%% 1. Basic translation, translate variable/function names, flatten
%% completely, pattern matching compilation.
%%
%% 2. Fun-lifting (lambda-lifting), variable usage annotation and
%% last-call handling.
%%
%% All new Kexprs are created in the first pass, they are just
%% annotated in the second.
%%
%% Functions and BIFs
%%
%% Functions are "call"ed or "enter"ed if it is a last call, their
%% return values may be ignored. BIFs are things which are known to
%% be internal by the compiler and can only be called, their return
%% values cannot be ignored.
%%
%% Letrec's are handled rather naively. All the functions in one
%% letrec are handled as one block to find the free variables. While
%% this is not optimal it reflects how letrec's often are used. We
%% don't have to worry about variable shadowing and nested letrec's as
%% this is handled in the variable/function name translation. There
%% is a little bit of trickery to ensure letrec transformations fit
%% into the scheme of things.
%%
%% To ensure unique variable names we use a variable substitution
%% table and keep the set of all defined variables. The nested
%% scoping of Core means that we must also nest the substitution
%% tables, but the defined set must be passed through to match the
%% flat structure of Kernel and to make sure variables with the same
%% name from different scopes get different substitutions.
%%
%% We also use these substitutions to handle the variable renaming
%% necessary in pattern matching compilation.
%%
%% The pattern matching compilation assumes that the values of
%% different types don't overlap. This means that as there is no
%% character type yet in the machine all characters must be converted
%% to integers!
-module(v3_kernel).
-export([module/2,format_error/1]).
-import(lists, [droplast/1,flatten/1,foldl/3,foldr/3,
map/2,mapfoldl/3,member/2,
keyfind/3,keyreplace/4,
last/1,partition/2,reverse/1,
splitwith/2,sort/1]).
-import(ordsets, [add_element/2,del_element/2,union/2,union/1,subtract/2]).
-import(cerl, [c_tuple/1]).
-include("core_parse.hrl").
-include("v3_kernel.hrl").
-define(EXPAND_MAX_SIZE_SEGMENT, 1024).
%% These are not defined in v3_kernel.hrl.
get_kanno(Kthing) -> element(2, Kthing).
set_kanno(Kthing, Anno) -> setelement(2, Kthing, Anno).
copy_anno(Kdst, Ksrc) ->
Anno = get_kanno(Ksrc),
set_kanno(Kdst, Anno).
%% Internal kernel expressions and help functions.
%% N.B. the annotation field is ALWAYS the first field!
-record(ivalues, {anno=[],args}).
-record(ifun, {anno=[],vars,body}).
-record(iset, {anno=[],vars,arg,body}).
-record(iletrec, {anno=[],defs}).
-record(ialias, {anno=[],vars,pat}).
-record(iclause, {anno=[],isub,osub,pats,guard,body}).
-record(ireceive_accept, {anno=[],arg}).
-record(ireceive_next, {anno=[],arg}).
-record(ignored, {anno=[]}).
-type warning() :: term(). % XXX: REFINE
%% State record for kernel translator.
-record(kern, {func, %Current host function
ff, %Current function
vcount=0, %Variable counter
fcount=0, %Fun counter
ds=cerl_sets:new() :: cerl_sets:set(), %Defined variables
funs=[], %Fun functions
free=#{}, %Free variables
ws=[] :: [warning()], %Warnings.
guard_refc=0, %> 0 means in guard
no_shared_fun_wrappers=false :: boolean()
}).
-spec module(cerl:c_module(), [compile:option()]) ->
{'ok', #k_mdef{}, [warning()]}.
module(#c_module{anno=A,name=M,exports=Es,attrs=As,defs=Fs}, Options) ->
Kas = attributes(As),
Kes = map(fun (#c_var{name={_,_}=Fname}) -> Fname end, Es),
NoSharedFunWrappers = proplists:get_bool(no_shared_fun_wrappers,
Options),
St0 = #kern{no_shared_fun_wrappers=NoSharedFunWrappers},
{Kfs,St} = mapfoldl(fun function/2, St0, Fs),
{ok,#k_mdef{anno=A,name=M#c_literal.val,exports=Kes,attributes=Kas,
body=Kfs ++ St#kern.funs},lists:sort(St#kern.ws)}.
attributes([{#c_literal{val=Name},#c_literal{val=Val}}|As]) ->
case include_attribute(Name) of
false ->
attributes(As);
true ->
[{Name,Val}|attributes(As)]
end;
attributes([]) -> [].
include_attribute(type) -> false;
include_attribute(spec) -> false;
include_attribute(callback) -> false;
include_attribute(opaque) -> false;
include_attribute(export_type) -> false;
include_attribute(record) -> false;
include_attribute(optional_callbacks) -> false;
include_attribute(file) -> false;
include_attribute(compile) -> false;
include_attribute(_) -> true.
function({#c_var{name={F,Arity}=FA},Body}, St0) ->
%%io:format("~w/~w~n", [F,Arity]),
try
%% Find a suitable starting value for the variable counter. Note
%% that this pass assumes that new_var_name/1 returns a variable
%% name distinct from any variable used in the entire body of
%% the function. We use integers as variable names to avoid
%% filling up the atom table when compiling huge functions.
Count = cerl_trees:next_free_variable_name(Body),
St1 = St0#kern{func=FA,ff=undefined,vcount=Count,fcount=0,ds=cerl_sets:new()},
{#ifun{anno=Ab,vars=Kvs,body=B0},[],St2} = expr(Body, new_sub(), St1),
{B1,_,St3} = ubody(B0, return, St2),
%%B1 = B0, St3 = St2, %Null second pass
{make_fdef(#k{us=[],ns=[],a=Ab}, F, Arity, Kvs, B1),St3}
catch
Class:Error:Stack ->
io:fwrite("Function: ~w/~w\n", [F,Arity]),
erlang:raise(Class, Error, Stack)
end.
%% body(Cexpr, Sub, State) -> {Kexpr,[PreKepxr],State}.
%% Do the main sequence of a body. A body ends in an atomic value or
%% values. Must check if vector first so do expr.
body(#c_values{anno=A,es=Ces}, Sub, St0) ->
%% Do this here even if only in bodies.
{Kes,Pe,St1} = atomic_list(Ces, Sub, St0),
%%{Kes,Pe,St1} = expr_list(Ces, Sub, St0),
{#ivalues{anno=A,args=Kes},Pe,St1};
body(#ireceive_next{anno=A}, _, St) ->
{#k_receive_next{anno=A},[],St};
body(Ce, Sub, St0) ->
expr(Ce, Sub, St0).
%% guard(Cexpr, Sub, State) -> {Kexpr,State}.
%% We handle guards almost as bodies. The only special thing we
%% must do is to make the final Kexpr a #k_test{}.
%% Also, we wrap the entire guard in a try/catch which is
%% not strictly needed, but makes sure that every 'bif' instruction
%% will get a proper failure label.
guard(G0, Sub, St0) ->
{G1,St1} = wrap_guard(G0, St0),
{Ge0,Pre,St2} = expr(G1, Sub, St1),
{Ge1,St3} = gexpr_test(Ge0, St2),
{Ge,St} = guard_opt(Ge1, St3),
{pre_seq(Pre, Ge),St}.
%% guard_opt(Kexpr, State) -> {Kexpr,State}.
%% Optimize the Kexpr for the guard. Instead of evaluating a boolean
%% expression comparing it to 'true' in a final #k_test{},
%% replace BIF calls with #k_test{} in the expression.
%%
%% As an example, take the guard:
%%
%% when is_integer(V0), is_atom(V1) ->
%%
%% The unoptimized Kexpr translated to pseudo BEAM assembly
%% code would look like:
%%
%% bif is_integer V0 => Bool0
%% bif is_atom V1 => Bool1
%% bif and Bool0 Bool1 => Bool
%% test Bool =:= true else goto Fail
%% ...
%% Fail:
%% ...
%%
%% The optimized code would look like:
%%
%% test is_integer V0 else goto Fail
%% test is_atom V1 else goto Fail
%% ...
%% Fail:
%% ...
%%
%% An 'or' operation is only slightly more complicated:
%%
%% test is_integer V0 else goto NotFailedYet
%% goto Success
%%
%% NotFailedYet:
%% test is_atom V1 else goto Fail
%%
%% Success:
%% ...
%% Fail:
%% ...
guard_opt(G, St0) ->
{Root,Forest0,St1} = make_forest(G, St0),
{Exprs,Forest,St} = rewrite_bool(Root, Forest0, false, St1),
E = forest_pre_seq(Exprs, Forest),
{G#k_try{arg=E},St}.
%% rewrite_bool(Kexpr, Forest, Inv, St) -> {[Kexpr],Forest,St}.
%% Rewrite Kexpr to use #k_test{} operations instead of comparison
%% and type test BIFs.
%%
%% If Kexpr is a #k_test{} operation, the call will always
%% succeed. Otherwise, a 'not_possible' exception will be
%% thrown if Kexpr cannot be rewritten.
rewrite_bool(#k_test{op=#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val='=:='}},
args=[#k_var{}=V,#k_atom{val=true}]}=Test, Forest0, Inv, St0) ->
try rewrite_bool_var(V, Forest0, Inv, St0) of
{_,_,_}=Res ->
Res
catch
throw:not_possible ->
{[Test],Forest0,St0}
end;
rewrite_bool(#k_test{op=#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val='=:='}},
args=[#k_var{}=V,#k_atom{val=false}]}=Test, Forest0, Inv, St0) ->
try rewrite_bool_var(V, Forest0, not Inv, St0) of
{_,_,_}=Res ->
Res
catch
throw:not_possible ->
{[Test],Forest0,St0}
end;
rewrite_bool(#k_test{op=#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val='=:='}},
args=[#k_atom{val=V1},#k_atom{val=V2}]}, Forest0, false, St0) ->
case V1 =:= V2 of
true ->
{[make_test(is_boolean, [#k_atom{val=true}])],Forest0,St0};
false ->
{[make_failing_test()],Forest0,St0}
end;
rewrite_bool(#k_test{}=Test, Forest, false, St) ->
{[Test],Forest,St};
rewrite_bool(#k_try{vars=[#k_var{name=X}],body=#k_var{name=X},
handler=#k_atom{val=false},ret=[]}=Prot,
Forest0, Inv, St0) ->
{Root,Forest1,St1} = make_forest(Prot, Forest0, St0),
{Exprs,Forest2,St} = rewrite_bool(Root, Forest1, Inv, St1),
InnerForest = maps:without(maps:keys(Forest0), Forest2),
Forest = maps:without(maps:keys(InnerForest), Forest2),
E = forest_pre_seq(Exprs, InnerForest),
{[Prot#k_try{arg=E}],Forest,St};
rewrite_bool(#k_match{body=Body,ret=[]}, Forest, Inv, St) ->
rewrite_match(Body, Forest, Inv, St);
rewrite_bool(Other, Forest, Inv, St) ->
case extract_bif(Other) of
{Name,Args} ->
rewrite_bif(Name, Args, Forest, Inv, St);
error ->
throw(not_possible)
end.
%% rewrite_bool_var(Var, Forest, Inv, St) -> {[Kexpr],Forest,St}.
%% Rewrite the boolean expression whose key in Forest is
%% given by Var. Throw a 'not_possible' expression if something
%% prevents the rewriting.
rewrite_bool_var(Arg, Forest0, Inv, St) ->
{Expr,Forest} = forest_take_expr(Arg, Forest0),
rewrite_bool(Expr, Forest, Inv, St).
%% rewrite_bool_args([Kexpr], Forest, Inv, St) -> {[[Kexpr]],Forest,St}.
%% Rewrite each Kexpr in the list. The input Kexpr should be variables
%% or boolean values. Throw a 'not_possible' expression if something
%% prevents the rewriting.
%%
%% This function is suitable for handling the arguments for both
%% 'and' and 'or'.
rewrite_bool_args([#k_atom{val=B}=A|Vs], Forest0, false=Inv, St0) when is_boolean(B) ->
{Tail,Forest1,St1} = rewrite_bool_args(Vs, Forest0, Inv, St0),
Bif = make_bif('=:=', [A,#k_atom{val=true}]),
{Exprs,Forest,St} = rewrite_bool(Bif, Forest1, Inv, St1),
{[Exprs|Tail],Forest,St};
rewrite_bool_args([#k_var{}=Var|Vs], Forest0, false=Inv, St0) ->
{Tail,Forest1,St1} = rewrite_bool_args(Vs, Forest0, Inv, St0),
{Exprs,Forest,St} =
case is_bool_expr(Var, Forest0) of
true ->
rewrite_bool_var(Var, Forest1, Inv, St1);
false ->
Bif = make_bif('=:=', [Var,#k_atom{val=true}]),
rewrite_bool(Bif, Forest1, Inv, St1)
end,
{[Exprs|Tail],Forest,St};
rewrite_bool_args([_|_], _Forest, _Inv, _St) ->
throw(not_possible);
rewrite_bool_args([], Forest, _Inv, St) ->
{[],Forest,St}.
%% rewrite_bif(Name, [Kexpr], Forest, Inv, St) -> {[Kexpr],Forest,St}.
%% Rewrite a BIF. Throw a 'not_possible' expression if something
%% prevents the rewriting.
rewrite_bif('or', Args, Forest, true, St) ->
rewrite_not_args('and', Args, Forest, St);
rewrite_bif('and', Args, Forest, true, St) ->
rewrite_not_args('or', Args, Forest, St);
rewrite_bif('and', [#k_atom{val=Val},Arg], Forest0, Inv, St0) ->
false = Inv, %Assertion.
case Val of
true ->
%% The result only depends on Arg.
rewrite_bool_var(Arg, Forest0, Inv, St0);
_ ->
%% Will fail. There is no need to evalute the expression
%% represented by Arg. Take it out from the forest and
%% discard the expression.
Failing = make_failing_test(),
try rewrite_bool_var(Arg, Forest0, Inv, St0) of
{_,Forest,St} ->
{[Failing],Forest,St}
catch
throw:not_possible ->
try forest_take_expr(Arg, Forest0) of
{_,Forest} ->
{[Failing],Forest,St0}
catch
throw:not_possible ->
%% Arg is probably a variable bound in an
%% outer scope.
{[Failing],Forest0,St0}
end
end
end;
rewrite_bif('and', [Arg,#k_atom{}=Atom], Forest, Inv, St) ->
false = Inv, %Assertion.
rewrite_bif('and', [Atom,Arg], Forest, Inv, St);
rewrite_bif('and', Args, Forest0, Inv, St0) ->
false = Inv, %Assertion.
{[Es1,Es2],Forest,St} = rewrite_bool_args(Args, Forest0, Inv, St0),
{Es1 ++ Es2,Forest,St};
rewrite_bif('or', Args, Forest0, Inv, St0) ->
false = Inv, %Assertion.
{[First,Then],Forest,St} = rewrite_bool_args(Args, Forest0, Inv, St0),
Alt = make_alt(First, Then),
{[Alt],Forest,St};
rewrite_bif('xor', [_,_], _Forest, _Inv, _St) ->
%% Rewriting 'xor' is not practical. Fortunately, 'xor' is
%% almost never used in practice.
throw(not_possible);
rewrite_bif('not', [Arg], Forest0, Inv, St) ->
{Expr,Forest} = forest_take_expr(Arg, Forest0),
rewrite_bool(Expr, Forest, not Inv, St);
rewrite_bif(Op, Args, Forest, Inv, St) ->
case is_test(Op, Args) of
true ->
rewrite_bool(make_test(Op, Args, Inv), Forest, false, St);
false ->
throw(not_possible)
end.
rewrite_not_args(Op, [A0,B0], Forest0, St0) ->
{A,Forest1,St1} = rewrite_not_args_1(A0, Forest0, St0),
{B,Forest2,St2} = rewrite_not_args_1(B0, Forest1, St1),
rewrite_bif(Op, [A,B], Forest2, false, St2).
rewrite_not_args_1(Arg, Forest, St) ->
Not = make_bif('not', [Arg]),
forest_add_expr(Not, Forest, St).
%% rewrite_match(Kvar, TypeClause, Forest, Inv, St) ->
%% {[Kexpr],Forest,St}.
%% Try to rewrite a #k_match{} originating from an 'andalso' or an 'orelse'.
rewrite_match(#k_alt{first=First,then=Then}, Forest, Inv, St) ->
case {First,Then} of
{#k_select{var=#k_var{name=V}=Var,types=[TypeClause]},#k_var{name=V}} ->
rewrite_match_1(Var, TypeClause, Forest, Inv, St);
{_,_} ->
throw(not_possible)
end.
rewrite_match_1(Var, #k_type_clause{values=Cs0}, Forest0, Inv, St0) ->
Cs = sort([{Val,B} || #k_val_clause{val=#k_atom{val=Val},body=B} <- Cs0]),
case Cs of
[{false,False},{true,True}] ->
rewrite_match_2(Var, False, True, Forest0, Inv, St0);
_ ->
throw(not_possible)
end.
rewrite_match_2(Var, False, #k_atom{val=true}, Forest0, Inv, St0) ->
%% Originates from an 'orelse'.
case False of
#k_atom{val=NotBool} when not is_boolean(NotBool) ->
rewrite_bool(Var, Forest0, Inv, St0);
_ ->
{CodeVar,Forest1,St1} = add_protected_expr(False, Forest0, St0),
rewrite_bif('or', [Var,CodeVar], Forest1, Inv, St1)
end;
rewrite_match_2(Var, #k_atom{val=false}, True, Forest0, Inv, St0) ->
%% Originates from an 'andalso'.
{CodeVar,Forest1,St1} = add_protected_expr(True, Forest0, St0),
rewrite_bif('and', [Var,CodeVar], Forest1, Inv, St1);
rewrite_match_2(_V, _, _, _Forest, _Inv, _St) ->
throw(not_possible).
%% is_bool_expr(#k_var{}, Forest) -> true|false.
%% Return true if the variable refers to a boolean expression
%% that does not need an explicit '=:= true' test.
is_bool_expr(V, Forest) ->
case forest_peek_expr(V, Forest) of
error ->
%% Defined outside of the guard. We can't know.
false;
Expr ->
case extract_bif(Expr) of
{Name,Args} ->
is_test(Name, Args) orelse
erl_internal:bool_op(Name, length(Args));
error ->
%% Not a BIF. Should be possible to rewrite
%% to a boolean. Definitely does not need
%% a '=:= true' test.
true
end
end.
make_bif(Op, Args) ->
#k_bif{op=#k_remote{mod=#k_atom{val=erlang},
name=#k_atom{val=Op},
arity=length(Args)},
args=Args}.
extract_bif(#k_bif{op=#k_remote{mod=#k_atom{val=erlang},
name=#k_atom{val=Name}},
args=Args}) ->
{Name,Args};
extract_bif(_) ->
error.
%% make_alt(First, Then) -> KMatch.
%% Make a #k_alt{} within a #k_match{} to implement
%% 'or' or 'orelse'.
make_alt(First0, Then0) ->
First1 = pre_seq(droplast(First0), last(First0)),
Then1 = pre_seq(droplast(Then0), last(Then0)),
First2 = make_protected(First1),
Then2 = make_protected(Then1),
Body = #ignored{},
First3 = #k_guard_clause{guard=First2,body=Body},
Then3 = #k_guard_clause{guard=Then2,body=Body},
First = #k_guard{clauses=[First3]},
Then = #k_guard{clauses=[Then3]},
Alt = #k_alt{first=First,then=Then},
#k_match{vars=[],body=Alt}.
add_protected_expr(#k_atom{}=Atom, Forest, St) ->
{Atom,Forest,St};
add_protected_expr(#k_var{}=Var, Forest, St) ->
{Var,Forest,St};
add_protected_expr(E0, Forest, St) ->
E = make_protected(E0),
forest_add_expr(E, Forest, St).
make_protected(#k_try{}=Try) ->
Try;
make_protected(B) ->
#k_try{arg=B,vars=[#k_var{name=''}],body=#k_var{name=''},
handler=#k_atom{val=false}}.
make_failing_test() ->
make_test(is_boolean, [#k_atom{val=fail}]).
make_test(Op, Args) ->
make_test(Op, Args, false).
make_test(Op, Args, Inv) ->
Remote = #k_remote{mod=#k_atom{val=erlang},
name=#k_atom{val=Op},
arity=length(Args)},
#k_test{op=Remote,args=Args,inverted=Inv}.
is_test(Op, Args) ->
A = length(Args),
erl_internal:new_type_test(Op, A) orelse erl_internal:comp_op(Op, A).
%% make_forest(Kexpr, St) -> {RootKexpr,Forest,St}.
%% Build a forest out of Kexpr. RootKexpr is the final expression
%% nested inside Kexpr.
make_forest(G, St) ->
make_forest_1(G, #{}, 0, St).
%% make_forest(Kexpr, St) -> {RootKexpr,Forest,St}.
%% Add to Forest from Kexpr. RootKexpr is the final expression
%% nested inside Kexpr.
make_forest(G, Forest0, St) ->
N = forest_next_index(Forest0),
make_forest_1(G, Forest0, N, St).
make_forest_1(#k_try{arg=B}, Forest, I, St) ->
make_forest_1(B, Forest, I, St);
make_forest_1(#iset{vars=[]}=Iset0, Forest, I, St0) ->
{UnrefVar,St} = new_var(St0),
Iset = Iset0#iset{vars=[UnrefVar]},
make_forest_1(Iset, Forest, I, St);
make_forest_1(#iset{vars=[#k_var{name=V}],arg=Arg,body=B}, Forest0, I, St) ->
Forest = Forest0#{V => {I,Arg}, {untaken,V} => true},
make_forest_1(B, Forest, I+1, St);
make_forest_1(Innermost, Forest, _I, St) ->
{Innermost,Forest,St}.
%% forest_take_expr(Kexpr, Forest) -> {Expr,Forest}.
%% If Kexpr is a variable, take out the expression corresponding
%% to variable in Forest. Expressions that have been taken out
%% of the forest will not be included the Kexpr returned
%% by forest_pre_seq/2.
%%
%% Throw a 'not_possible' exception if Kexpr is not a variable or
%% if the name of the variable is not a key in Forest.
forest_take_expr(#k_var{name=V}, Forest0) ->
%% v3_core currently always generates guard expressions that can
%% be represented as a tree. Other code generators (such as LFE)
%% could generate guard expressions that can only be represented
%% as a DAG (i.e. some nodes are referenced more than once). To
%% handle DAGs, we must never remove a node from the forest, but
%% just remove the {untaken,V} marker. That will effectively convert
%% the DAG to a tree by duplicating the shared nodes and their
%% descendants.
case maps:find(V, Forest0) of
{ok,{_,Expr}} ->
Forest = maps:remove({untaken,V}, Forest0),
{Expr,Forest};
error ->
throw(not_possible)
end;
forest_take_expr(_, _) ->
throw(not_possible).
%% forest_peek_expr(Kvar, Forest) -> Kexpr | error.
%% Return the expression corresponding to Kvar in Forest or
%% return 'error' if there is a corresponding expression.
forest_peek_expr(#k_var{name=V}, Forest0) ->
case maps:find(V, Forest0) of
{ok,{_,Expr}} -> Expr;
error -> error
end.
%% forest_add_expr(Kexpr, Forest, St) -> {Kvar,Forest,St}.
%% Add a new expression to Forest.
forest_add_expr(Expr, Forest0, St0) ->
{#k_var{name=V}=Var,St} = new_var(St0),
N = forest_next_index(Forest0),
Forest = Forest0#{V => {N,Expr}},
{Var,Forest,St}.
forest_next_index(Forest) ->
1 + lists:max([N || {N,_} <- maps:values(Forest),
is_integer(N)] ++ [0]).
%% forest_pre_seq([Kexpr], Forest) -> Kexpr.
%% Package the list of Kexprs into a nested Kexpr, prepending all
%% expressions in Forest that have not been taken out using
%% forest_take_expr/2.
forest_pre_seq(Exprs, Forest) ->
Es0 = [#k_var{name=V} || {untaken,V} <- maps:keys(Forest)],
Es = Es0 ++ Exprs,
Vs = extract_all_vars(Es, Forest, []),
Pre0 = sort([{maps:get(V, Forest),V} || V <- Vs]),
Pre = [#iset{vars=[#k_var{name=V}],arg=A} ||
{{_,A},V} <- Pre0],
pre_seq(Pre++droplast(Exprs), last(Exprs)).
extract_all_vars(Es, Forest, Acc0) ->
case extract_var_list(Es) of
[] ->
Acc0;
[_|_]=Vs0 ->
Vs = [V || V <- Vs0, maps:is_key(V, Forest)],
NewVs = ordsets:subtract(Vs, Acc0),
NewEs = [begin
{_,E} = maps:get(V, Forest),
E
end || V <- NewVs],
Acc = union(NewVs, Acc0),
extract_all_vars(NewEs, Forest, Acc)
end.
extract_vars(#iset{arg=A,body=B}) ->
union(extract_vars(A), extract_vars(B));
extract_vars(#k_bif{args=Args}) ->
ordsets:from_list(lit_list_vars(Args));
extract_vars(#k_call{}) ->
[];
extract_vars(#k_test{args=Args}) ->
ordsets:from_list(lit_list_vars(Args));
extract_vars(#k_match{body=Body}) ->
extract_vars(Body);
extract_vars(#k_alt{first=First,then=Then}) ->
union(extract_vars(First), extract_vars(Then));
extract_vars(#k_guard{clauses=Cs}) ->
extract_var_list(Cs);
extract_vars(#k_guard_clause{guard=G}) ->
extract_vars(G);
extract_vars(#k_select{var=Var,types=Types}) ->
union(ordsets:from_list(lit_vars(Var)),
extract_var_list(Types));
extract_vars(#k_type_clause{values=Values}) ->
extract_var_list(Values);
extract_vars(#k_val_clause{body=Body}) ->
extract_vars(Body);
extract_vars(#k_try{arg=Arg}) ->
extract_vars(Arg);
extract_vars(Lit) ->
ordsets:from_list(lit_vars(Lit)).
extract_var_list(L) ->
union([extract_vars(E) || E <- L]).
%% Wrap the entire guard in a try/catch if needed.
wrap_guard(#c_try{}=Try, St) -> {Try,St};
wrap_guard(Core, St0) ->
{VarName,St} = new_var_name(St0),
Var = #c_var{name=VarName},
Try = #c_try{arg=Core,vars=[Var],body=Var,evars=[],handler=#c_literal{val=false}},
{Try,St}.
%% gexpr_test(Kexpr, State) -> {Kexpr,State}.
%% Builds the final boolean test from the last Kexpr in a guard test.
%% Must enter try blocks and isets and find the last Kexpr in them.
%% This must end in a recognised BEAM test!
gexpr_test(#k_bif{anno=A,op=#k_remote{mod=#k_atom{val=erlang},
name=#k_atom{val=F},arity=Ar}=Op,
args=Kargs}=Ke, St) ->
%% Either convert to test if ok, or add test.
%% At this stage, erlang:float/1 is not a type test. (It should
%% have been converted to erlang:is_float/1.)
case erl_internal:new_type_test(F, Ar) orelse
erl_internal:comp_op(F, Ar) of
true -> {#k_test{anno=A,op=Op,args=Kargs},St};
false -> gexpr_test_add(Ke, St) %Add equality test
end;
gexpr_test(#k_try{arg=B0,vars=[#k_var{name=X}],body=#k_var{name=X},
handler=#k_atom{val=false}}=Try, St0) ->
{B,St} = gexpr_test(B0, St0),
%%ok = io:fwrite("~w: ~p~n", [?LINE,{B0,B}]),
{Try#k_try{arg=B},St};
gexpr_test(#iset{body=B0}=Iset, St0) ->
{B1,St1} = gexpr_test(B0, St0),
{Iset#iset{body=B1},St1};
gexpr_test(Ke, St) -> gexpr_test_add(Ke, St). %Add equality test
gexpr_test_add(Ke, St0) ->
Test = #k_remote{mod=#k_atom{val='erlang'},
name=#k_atom{val='=:='},
arity=2},
{Ae,Ap,St1} = force_atomic(Ke, St0),
{pre_seq(Ap, #k_test{anno=get_kanno(Ke),
op=Test,args=[Ae,#k_atom{val='true'}]}),St1}.
%% expr(Cexpr, Sub, State) -> {Kexpr,[PreKexpr],State}.
%% Convert a Core expression, flattening it at the same time.
expr(#c_var{anno=A0,name={Name,Arity}}=Fname, Sub, St) ->
Vs = [#c_var{name=list_to_atom("V" ++ integer_to_list(V))} ||
V <- integers(1, Arity)],
case St#kern.no_shared_fun_wrappers of
false ->
%% Generate a (possibly shared) wrapper function for calling
%% this function.
Wrapper0 = ["-fun.",atom_to_list(Name),"/",integer_to_list(Arity),"-"],
Wrapper = list_to_atom(flatten(Wrapper0)),
Id = {id,{0,0,Wrapper}},
A = keyreplace(id, 1, A0, Id),
Fun = #c_fun{anno=A,vars=Vs,body=#c_apply{anno=A,op=Fname,args=Vs}},
expr(Fun, Sub, St);
true ->
%% For backward compatibility with OTP 22 and earlier,
%% use the pre-generated name for the fun wrapper.
%% There will be one wrapper function for each occurrence
%% of `fun F/A`.
Fun = #c_fun{anno=A0,vars=Vs,body=#c_apply{anno=A0,op=Fname,args=Vs}},
expr(Fun, Sub, St)
end;
expr(#c_var{anno=A,name=V}, Sub, St) ->
{#k_var{anno=A,name=get_vsub(V, Sub)},[],St};
expr(#c_literal{anno=A,val=V}, _Sub, St) ->
Klit = case V of
[] ->
#k_nil{anno=A};
V when is_integer(V) ->
#k_int{anno=A,val=V};
V when is_float(V) ->
#k_float{anno=A,val=V};
V when is_atom(V) ->
#k_atom{anno=A,val=V};
_ ->
#k_literal{anno=A,val=V}
end,
{Klit,[],St};
expr(#c_cons{anno=A,hd=Ch,tl=Ct}, Sub, St0) ->
%% Do cons in two steps, first the expressions left to right, then
%% any remaining literals right to left.
{Kh0,Hp0,St1} = expr(Ch, Sub, St0),
{Kt0,Tp0,St2} = expr(Ct, Sub, St1),
{Kt1,Tp1,St3} = force_atomic(Kt0, St2),
{Kh1,Hp1,St4} = force_atomic(Kh0, St3),
{#k_cons{anno=A,hd=Kh1,tl=Kt1},Hp0 ++ Tp0 ++ Tp1 ++ Hp1,St4};
expr(#c_tuple{anno=A,es=Ces}, Sub, St0) ->
{Kes,Ep,St1} = atomic_list(Ces, Sub, St0),
{#k_tuple{anno=A,es=Kes},Ep,St1};
expr(#c_map{anno=A,arg=Var,es=Ces}, Sub, St0) ->
expr_map(A, Var, Ces, Sub, St0);
expr(#c_binary{anno=A,segments=Cv}, Sub, St0) ->
try atomic_bin(Cv, Sub, St0) of
{Kv,Ep,St1} ->
{#k_binary{anno=A,segs=Kv},Ep,St1}
catch
throw:bad_element_size ->
St1 = add_warning(get_line(A), bad_segment_size, A, St0),
Erl = #c_literal{val=erlang},
Name = #c_literal{val=error},
Args = [#c_literal{val=badarg}],
Error = #c_call{anno=A,module=Erl,name=Name,args=Args},
expr(Error, Sub, St1)
end;
expr(#c_fun{anno=A,vars=Cvs,body=Cb}, Sub0, #kern{ff=OldFF,func=Func}=St0) ->
FA = case OldFF of
undefined ->
Func;
_ ->
case lists:keyfind(id, 1, A) of
{id,{_,_,Name}} -> Name;
_ ->
case lists:keyfind(letrec_name, 1, A) of
{letrec_name,Name} -> Name;
_ -> unknown_fun
end
end
end,
{Kvs,Sub1,St1} = pattern_list(Cvs, Sub0, St0#kern{ff=FA}),
%%ok = io:fwrite("~w: ~p~n", [?LINE,{{Cvs,Sub0,St0},{Kvs,Sub1,St1}}]),
{Kb,Pb,St2} = body(Cb, Sub1, St1#kern{ff=FA}),
{#ifun{anno=A,vars=Kvs,body=pre_seq(Pb, Kb)},[],St2#kern{ff=OldFF}};
expr(#c_seq{arg=Ca,body=Cb}, Sub, St0) ->
{Ka,Pa,St1} = body(Ca, Sub, St0),
{Kb,Pb,St2} = body(Cb, Sub, St1),
{Kb,Pa ++ [Ka] ++ Pb,St2};
expr(#c_let{anno=A,vars=Cvs,arg=Ca,body=Cb}, Sub0, St0) ->
%%ok = io:fwrite("~w: ~p~n", [?LINE,{Cvs,Sub0,St0}]),
{Ka,Pa,St1} = body(Ca, Sub0, St0),
{Kps,Sub1,St2} = pattern_list(Cvs, Sub0, St1),
%%ok = io:fwrite("~w: ~p~n", [?LINE,{Kps,Sub1,St1,St2}]),
%% Break known multiple values into separate sets.
Sets = case Ka of
#ivalues{args=Kas} ->
foldr2(fun (V, Val, Sb) ->
[#iset{vars=[V],arg=Val}|Sb] end,
[], Kps, Kas);
_Other ->
[#iset{anno=A,vars=Kps,arg=Ka}]
end,
{Kb,Pb,St3} = body(Cb, Sub1, St2),
{Kb,Pa ++ Sets ++ Pb,St3};
expr(#c_letrec{anno=A,defs=Cfs,body=Cb}, Sub0, St0) ->
%% Make new function names and store substitution.
{Fs0,{Sub1,St1}} =
mapfoldl(fun ({#c_var{name={F,Ar}},B0}, {Sub,S0}) ->
{N,St1} = new_fun_name(atom_to_list(F)
++ "/" ++
integer_to_list(Ar),
S0),
B = set_kanno(B0, [{letrec_name,N}]),
{{N,B},{set_fsub(F, Ar, N, Sub),St1}}
end, {Sub0,St0}, Cfs),
%% Run translation on functions and body.
{Fs1,St2} = mapfoldl(fun ({N,Fd0}, S1) ->
{Fd1,[],St2} = expr(Fd0, Sub1, S1#kern{ff=N}),
Fd = set_kanno(Fd1, A),
{{N,Fd},St2}
end, St1, Fs0),
{Kb,Pb,St3} = body(Cb, Sub1, St2#kern{ff=St1#kern.ff}),
{Kb,[#iletrec{anno=A,defs=Fs1}|Pb],St3};
expr(#c_case{arg=Ca,clauses=Ccs}, Sub, St0) ->
{Ka,Pa,St1} = body(Ca, Sub, St0), %This is a body!
{Kvs,Pv,St2} = match_vars(Ka, St1), %Must have variables here!
{Km,St3} = kmatch(Kvs, Ccs, Sub, St2),
Match = flatten_seq(build_match(Kvs, Km)),
{last(Match),Pa ++ Pv ++ droplast(Match),St3};
expr(#c_receive{anno=A,clauses=Ccs0,timeout=Ce,action=Ca}, Sub, St0) ->
{Ke,Pe,St1} = atomic(Ce, Sub, St0), %Force this to be atomic!
{Rvar,St2} = new_var(St1),
%% Need to massage accept clauses and add reject clause before matching.
Ccs1 = map(fun (#c_clause{anno=Banno,body=B0}=C) ->
B1 = #c_seq{arg=#ireceive_accept{anno=A},body=B0},
C#c_clause{anno=Banno,body=B1}
end, Ccs0),
{Mpat,St3} = new_var_name(St2),
Rc = #c_clause{anno=[compiler_generated|A],
pats=[#c_var{name=Mpat}],guard=#c_literal{anno=A,val=true},
body=#ireceive_next{anno=A}},
{Km,St4} = kmatch([Rvar], Ccs1 ++ [Rc], Sub, add_var_def(Rvar, St3)),
{Ka,Pa,St5} = body(Ca, Sub, St4),
{#k_receive{anno=A,var=Rvar,body=Km,timeout=Ke,action=pre_seq(Pa, Ka)},
Pe,St5};
expr(#c_apply{anno=A,op=Cop,args=Cargs}, Sub, St) ->
c_apply(A, Cop, Cargs, Sub, St);
expr(#c_call{anno=A,module=#c_literal{val=erlang},name=#c_literal{val=is_record},
args=[_,Tag,Sz]=Args0}, Sub, St0) ->
{Args,Ap,St} = atomic_list(Args0, Sub, St0),
Remote = #k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=is_record},arity=3},
case {Tag,Sz} of
{#c_literal{val=Atom},#c_literal{val=Int}}
when is_atom(Atom), is_integer(Int) ->
%% Tag and size are literals. Make it a BIF, which will actually
%% be expanded out in a later pass.
{#k_bif{anno=A,op=Remote,args=Args},Ap,St};
{_,_} ->
%% (Only in bodies.) Make it into an actual call to the BIF.
{#k_call{anno=A,op=Remote,args=Args},Ap,St}
end;
expr(#c_call{anno=A,module=M0,name=F0,args=Cargs}, Sub, St0) ->
Ar = length(Cargs),
{Type,St1} = case call_type(M0, F0, Ar) of
error ->
%% Invalid call (e.g. M:42/3). Issue a warning,
%% and let the generated code use the old explict apply.
{old_apply,add_warning(get_line(A), bad_call, A, St0)};
Type0 ->
{Type0,St0}
end,
case Type of
old_apply ->
Call = #c_call{anno=A,
module=#c_literal{val=erlang},
name=#c_literal{val=apply},
args=[M0,F0,cerl:make_list(Cargs)]},
expr(Call, Sub, St1);
_ ->
{[M1,F1|Kargs],Ap,St} = atomic_list([M0,F0|Cargs], Sub, St1),
Call = case Type of
bif ->
#k_bif{anno=A,op=#k_remote{mod=M1,name=F1,arity=Ar},
args=Kargs};
call ->
#k_call{anno=A,op=#k_remote{mod=M1,name=F1,arity=Ar},
args=Kargs};
apply ->
#k_call{anno=A,op=#k_remote{mod=M1,name=F1,arity=Ar},
args=Kargs}
end,
{Call,Ap,St}
end;
expr(#c_primop{anno=A,name=#c_literal{val=match_fail},args=Cargs0}, Sub, St0) ->
Cargs = translate_match_fail(Cargs0, Sub, A, St0),
{Kargs,Ap,St} = atomic_list(Cargs, Sub, St0),
Ar = length(Cargs),
Call = #k_call{anno=A,op=#k_remote{mod=#k_atom{val=erlang},
name=#k_atom{val=error},
arity=Ar},args=Kargs},
{Call,Ap,St};
expr(#c_primop{anno=A,name=#c_literal{val=N},args=Cargs}, Sub, St0) ->
{Kargs,Ap,St1} = atomic_list(Cargs, Sub, St0),
Ar = length(Cargs),
{#k_bif{anno=A,op=#k_internal{name=N,arity=Ar},args=Kargs},Ap,St1};
expr(#c_try{anno=A,arg=Ca,vars=Cvs,body=Cb,evars=Evs,handler=Ch}, Sub0, St0) ->
%% The normal try expression. The body and exception handler
%% variables behave as let variables.
{Ka,Pa,St1} = body(Ca, Sub0, St0),
{Kcvs,Sub1,St2} = pattern_list(Cvs, Sub0, St1),
{Kb,Pb,St3} = body(Cb, Sub1, St2),
{Kevs,Sub2,St4} = pattern_list(Evs, Sub0, St3),
{Kh,Ph,St5} = body(Ch, Sub2, St4),
{#k_try{anno=A,arg=pre_seq(Pa, Ka),
vars=Kcvs,body=pre_seq(Pb, Kb),
evars=Kevs,handler=pre_seq(Ph, Kh)},[],St5};
expr(#c_catch{anno=A,body=Cb}, Sub, St0) ->
{Kb,Pb,St1} = body(Cb, Sub, St0),
{#k_catch{anno=A,body=pre_seq(Pb, Kb)},[],St1};
%% Handle internal expressions.
expr(#ireceive_accept{anno=A}, _Sub, St) -> {#k_receive_accept{anno=A},[],St}.
%% Translate a function_clause exception to a case_clause exception if
%% it has been moved into another function. (A function_clause exception
%% will not work correctly if it is moved into another function, or
%% even if it is invoked not from the top level in the correct function.)
translate_match_fail(Args, Sub, Anno, St) ->
case Args of
[#c_tuple{es=[#c_literal{val=function_clause}|As]}] ->
translate_match_fail_1(Anno, As, Sub, St);
[#c_literal{val=Tuple}] when is_tuple(Tuple) ->
%% The inliner may have created a literal out of
%% the original #c_tuple{}.
case tuple_to_list(Tuple) of
[function_clause|As0] ->
As = [#c_literal{val=E} || E <- As0],
translate_match_fail_1(Anno, As, Sub, St);
_ ->
Args
end;
_ ->
%% Not a function_clause exception.
Args
end.
translate_match_fail_1(Anno, As, Sub, #kern{ff=FF}) ->
AnnoFunc = case keyfind(function_name, 1, Anno) of
false ->
none; %Force rewrite.
{function_name,{Name,Arity}} ->
{get_fsub(Name, Arity, Sub),Arity}
end,
case {AnnoFunc,FF} of
{Same,Same} ->
%% Still in the correct function.
translate_fc(As);
{{F,_},F} ->
%% Still in the correct function.
translate_fc(As);
_ ->
%% Wrong function or no function_name annotation.
%%
%% The inliner has copied the match_fail(function_clause)
%% primop from another function (or from another instance of
%% the current function). match_fail(function_clause) will
%% only work at the top level of the function it was originally
%% defined in, so we will need to rewrite it to a case_clause.
[c_tuple([#c_literal{val=case_clause},c_tuple(As)])]
end.
translate_fc(Args) ->
[#c_literal{val=function_clause},cerl:make_list(Args)].
expr_map(A,Var0,Ces,Sub,St0) ->
{Var,Mps,St1} = expr(Var0, Sub, St0),
{Km,Eps,St2} = map_split_pairs(A, Var, Ces, Sub, St1),
{Km,Eps++Mps,St2}.
map_split_pairs(A, Var, Ces, Sub, St0) ->
%% 1. Force variables.
%% 2. Group adjacent pairs with literal keys.
%% 3. Within each such group, remove multiple assignments to the same key.
%% 4. Partition each group according to operator ('=>' and ':=').
Pairs0 = [{Op,K,V} ||
#c_map_pair{op=#c_literal{val=Op},key=K,val=V} <- Ces],
{Pairs,Esp,St1} = foldr(fun
({Op,K0,V0}, {Ops,Espi,Sti0}) when Op =:= assoc; Op =:= exact ->
{K,Eps1,Sti1} = atomic(K0, Sub, Sti0),
{V,Eps2,Sti2} = atomic(V0, Sub, Sti1),
{[{Op,K,V}|Ops],Eps1 ++ Eps2 ++ Espi,Sti2}
end, {[],[],St0}, Pairs0),
map_split_pairs_1(A, Var, Pairs, Esp, St1).
map_split_pairs_1(A, Map0, [{Op,Key,Val}|Pairs1]=Pairs0, Esp0, St0) ->
{Map1,Em,St1} = force_atomic(Map0, St0),
case Key of
#k_var{} ->
%% Don't combine variable keys with other keys.
Kes = [#k_map_pair{key=Key,val=Val}],
Map = #k_map{anno=A,op=Op,var=Map1,es=Kes},
map_split_pairs_1(A, Map, Pairs1, Esp0 ++ Em, St1);
_ ->
%% Literal key. Split off all literal keys.
{L,Pairs} = splitwith(fun({_,#k_var{},_}) -> false;
({_,_,_}) -> true
end, Pairs0),
{Map,Esp,St2} = map_group_pairs(A, Map1, L, Esp0 ++ Em, St1),
map_split_pairs_1(A, Map, Pairs, Esp, St2)
end;
map_split_pairs_1(_, Map, [], Esp, St0) ->
{Map,Esp,St0}.
map_group_pairs(A, Var, Pairs0, Esp, St0) ->
Pairs = map_remove_dup_keys(Pairs0),
Assoc = [#k_map_pair{key=K,val=V} || {_,{assoc,K,V}} <- Pairs],
Exact = [#k_map_pair{key=K,val=V} || {_,{exact,K,V}} <- Pairs],
case {Assoc,Exact} of
{[_|_],[]} ->
{#k_map{anno=A,op=assoc,var=Var,es=Assoc},Esp,St0};
{[],[_|_]} ->
{#k_map{anno=A,op=exact,var=Var,es=Exact},Esp,St0};
{[_|_],[_|_]} ->
Map = #k_map{anno=A,op=assoc,var=Var,es=Assoc},
{Mvar,Em,St1} = force_atomic(Map, St0),
{#k_map{anno=A,op=exact,var=Mvar,es=Exact},Esp ++ Em,St1}
end.
map_remove_dup_keys(Es) ->
dict:to_list(map_remove_dup_keys(Es, dict:new())).
map_remove_dup_keys([{assoc,K0,V}|Es0],Used0) ->
K = map_key_clean(K0),
Op = case dict:find(K, Used0) of
{ok,{exact,_,_}} -> exact;
_ -> assoc
end,
Used1 = dict:store(K, {Op,K0,V}, Used0),
map_remove_dup_keys(Es0, Used1);
map_remove_dup_keys([{exact,K0,V}|Es0],Used0) ->
K = map_key_clean(K0),
Op = case dict:find(K, Used0) of
{ok,{assoc,_,_}} -> assoc;
_ -> exact
end,
Used1 = dict:store(K, {Op,K0,V}, Used0),
map_remove_dup_keys(Es0, Used1);
map_remove_dup_keys([], Used) -> Used.
%% Be explicit instead of using set_kanno(K, []).
map_key_clean(#k_var{name=V}) -> {var,V};
map_key_clean(#k_literal{val=V}) -> {lit,V};
map_key_clean(#k_int{val=V}) -> {lit,V};
map_key_clean(#k_float{val=V}) -> {lit,V};
map_key_clean(#k_atom{val=V}) -> {lit,V};
map_key_clean(#k_nil{}) -> {lit,[]}.
%% call_type(Module, Function, Arity) -> call | bif | apply | error.
%% Classify the call.
call_type(#c_literal{val=M}, #c_literal{val=F}, Ar) when is_atom(M), is_atom(F) ->
case is_remote_bif(M, F, Ar) of
false -> call;
true -> bif
end;
call_type(#c_var{}, #c_literal{val=A}, _) when is_atom(A) -> apply;
call_type(#c_literal{val=A}, #c_var{}, _) when is_atom(A) -> apply;
call_type(#c_var{}, #c_var{}, _) -> apply;
call_type(_, _, _) -> error.
%% match_vars(Kexpr, State) -> {[Kvar],[PreKexpr],State}.
%% Force return from body into a list of variables.
match_vars(#ivalues{args=As}, St) ->
foldr(fun (Ka, {Vs,Vsp,St0}) ->
{V,Vp,St1} = force_variable(Ka, St0),
{[V|Vs],Vp ++ Vsp,St1}
end, {[],[],St}, As);
match_vars(Ka, St0) ->
{V,Vp,St1} = force_variable(Ka, St0),
{[V],Vp,St1}.
%% c_apply(A, Op, [Carg], Sub, State) -> {Kexpr,[PreKexpr],State}.
%% Transform application, detect which are guaranteed to be bifs.
c_apply(A, #c_var{anno=Ra,name={F0,Ar}}, Cargs, Sub, St0) ->
{Kargs,Ap,St1} = atomic_list(Cargs, Sub, St0),
F1 = get_fsub(F0, Ar, Sub), %Has it been rewritten
{#k_call{anno=A,op=#k_local{anno=Ra,name=F1,arity=Ar},args=Kargs},
Ap,St1};
c_apply(A, Cop, Cargs, Sub, St0) ->
{Kop,Op,St1} = variable(Cop, Sub, St0),
{Kargs,Ap,St2} = atomic_list(Cargs, Sub, St1),
{#k_call{anno=A,op=Kop,args=Kargs},Op ++ Ap,St2}.
flatten_seq(#iset{anno=A,vars=Vs,arg=Arg,body=B}) ->
[#iset{anno=A,vars=Vs,arg=Arg}|flatten_seq(B)];
flatten_seq(Ke) -> [Ke].
pre_seq([#iset{anno=A,vars=Vs,arg=Arg,body=B}|Ps], K) ->
B = undefined, %Assertion.
#iset{anno=A,vars=Vs,arg=Arg,body=pre_seq(Ps, K)};
pre_seq([P|Ps], K) ->
#iset{vars=[],arg=P,body=pre_seq(Ps, K)};
pre_seq([], K) -> K.
%% atomic(Cexpr, Sub, State) -> {Katomic,[PreKexpr],State}.
%% Convert a Core expression making sure the result is an atomic
%% literal.
atomic(Ce, Sub, St0) ->
{Ke,Kp,St1} = expr(Ce, Sub, St0),
{Ka,Ap,St2} = force_atomic(Ke, St1),
{Ka,Kp ++ Ap,St2}.
force_atomic(Ke, St0) ->
case is_atomic(Ke) of
true -> {Ke,[],St0};
false ->
{V,St1} = new_var(St0),
{V,[#iset{vars=[V],arg=Ke}],St1}
end.
% force_atomic_list(Kes, St) ->
% foldr(fun (Ka, {As,Asp,St0}) ->
% {A,Ap,St1} = force_atomic(Ka, St0),
% {[A|As],Ap ++ Asp,St1}
% end, {[],[],St}, Kes).
atomic_bin([#c_bitstr{anno=A,val=E0,size=S0,unit=U0,type=T,flags=Fs0}|Es0],
Sub, St0) ->
{E,Ap1,St1} = atomic(E0, Sub, St0),
{S1,Ap2,St2} = atomic(S0, Sub, St1),
validate_bin_element_size(S1),
U1 = cerl:concrete(U0),
Fs1 = cerl:concrete(Fs0),
{Es,Ap3,St3} = atomic_bin(Es0, Sub, St2),
{#k_bin_seg{anno=A,size=S1,
unit=U1,
type=cerl:concrete(T),
flags=Fs1,
seg=E,next=Es},
Ap1++Ap2++Ap3,St3};
atomic_bin([], _Sub, St) -> {#k_bin_end{},[],St}.
validate_bin_element_size(#k_var{}) -> ok;
validate_bin_element_size(#k_int{val=V}) when V >= 0 -> ok;
validate_bin_element_size(#k_atom{val=all}) -> ok;
validate_bin_element_size(#k_atom{val=undefined}) -> ok;
validate_bin_element_size(_) -> throw(bad_element_size).
%% atomic_list([Cexpr], Sub, State) -> {[Kexpr],[PreKexpr],State}.
atomic_list(Ces, Sub, St) ->
foldr(fun (Ce, {Kes,Esp,St0}) ->
{Ke,Ep,St1} = atomic(Ce, Sub, St0),
{[Ke|Kes],Ep ++ Esp,St1}
end, {[],[],St}, Ces).
%% is_atomic(Kexpr) -> boolean().
%% Is a Kexpr atomic? Strings are NOT considered atomic!
is_atomic(#k_literal{}) -> true;
is_atomic(#k_int{}) -> true;
is_atomic(#k_float{}) -> true;
is_atomic(#k_atom{}) -> true;
%%is_atomic(#k_char{}) -> true; %No characters
is_atomic(#k_nil{}) -> true;
is_atomic(#k_var{}) -> true;
is_atomic(_) -> false.
%% variable(Cexpr, Sub, State) -> {Kvar,[PreKexpr],State}.
%% Convert a Core expression making sure the result is a variable.
variable(Ce, Sub, St0) ->
{Ke,Kp,St1} = expr(Ce, Sub, St0),
{Kv,Vp,St2} = force_variable(Ke, St1),
{Kv,Kp ++ Vp,St2}.
force_variable(#k_var{}=Ke, St) -> {Ke,[],St};
force_variable(Ke, St0) ->
{V,St1} = new_var(St0),
{V,[#iset{vars=[V],arg=Ke}],St1}.
%% pattern(Cpat, Isub, Osub, State) -> {Kpat,Sub,State}.
%% Convert patterns. Variables shadow so rename variables that are
%% already defined.
%%
%% Patterns are complicated by sizes in binaries. These are pure
%% input variables which create no bindings. We, therefore, need to
%% carry around the original substitutions to get the correct
%% handling.
pattern(#c_var{anno=A,name=V}, _Isub, Osub, St0) ->
case cerl_sets:is_element(V, St0#kern.ds) of
true ->
{New,St1} = new_var_name(St0),
{#k_var{anno=A,name=New},
set_vsub(V, New, Osub),
St1#kern{ds=cerl_sets:add_element(New, St1#kern.ds)}};
false ->
{#k_var{anno=A,name=V},Osub,
St0#kern{ds=cerl_sets:add_element(V, St0#kern.ds)}}
end;
pattern(#c_literal{anno=A,val=Val}, _Isub, Osub, St) ->
{#k_literal{anno=A,val=Val},Osub,St};
pattern(#c_cons{anno=A,hd=Ch,tl=Ct}, Isub, Osub0, St0) ->
{Kh,Osub1,St1} = pattern(Ch, Isub, Osub0, St0),
{Kt,Osub2,St2} = pattern(Ct, Isub, Osub1, St1),
{#k_cons{anno=A,hd=Kh,tl=Kt},Osub2,St2};
pattern(#c_tuple{anno=A,es=Ces}, Isub, Osub0, St0) ->
{Kes,Osub1,St1} = pattern_list(Ces, Isub, Osub0, St0),
{#k_tuple{anno=A,es=Kes},Osub1,St1};
pattern(#c_map{anno=A,es=Ces}, Isub, Osub0, St0) ->
{Kes,Osub1,St1} = pattern_map_pairs(Ces, Isub, Osub0, St0),
{#k_map{anno=A,op=exact,es=Kes},Osub1,St1};
pattern(#c_binary{anno=A,segments=Cv}, Isub, Osub0, St0) ->
{Kv,Osub1,St1} = pattern_bin(Cv, Isub, Osub0, St0),
{#k_binary{anno=A,segs=Kv},Osub1,St1};
pattern(#c_alias{anno=A,var=Cv,pat=Cp}, Isub, Osub0, St0) ->
{Cvs,Cpat} = flatten_alias(Cp),
{Kvs,Osub1,St1} = pattern_list([Cv|Cvs], Isub, Osub0, St0),
{Kpat,Osub2,St2} = pattern(Cpat, Isub, Osub1, St1),
{#ialias{anno=A,vars=Kvs,pat=Kpat},Osub2,St2}.
flatten_alias(#c_alias{var=V,pat=P}) ->
{Vs,Pat} = flatten_alias(P),
{[V|Vs],Pat};
flatten_alias(Pat) -> {[],Pat}.
pattern_map_pairs(Ces0, Isub, Osub0, St0) ->
%% pattern the pair keys and values as normal
{Kes,{Osub1,St1}} = lists:mapfoldl(fun
(#c_map_pair{anno=A,key=Ck,val=Cv},{Osubi0,Sti0}) ->
{Kk,[],Sti1} = expr(Ck, Isub, Sti0),
{Kv,Osubi2,Sti2} = pattern(Cv, Isub, Osubi0, Sti1),
{#k_map_pair{anno=A,key=Kk,val=Kv},{Osubi2,Sti2}}
end, {Osub0, St0}, Ces0),
%% It is later assumed that these keys are term sorted
%% so we need to sort them here
Kes1 = lists:sort(fun
(#k_map_pair{key=KkA},#k_map_pair{key=KkB}) ->
A = map_key_clean(KkA),
B = map_key_clean(KkB),
erts_internal:cmp_term(A,B) < 0
end, Kes),
{Kes1,Osub1,St1}.
pattern_bin(Es, Isub, Osub0, St0) ->
{Kbin,{_,Osub},St} = pattern_bin_1(Es, Isub, Osub0, St0),
{Kbin,Osub,St}.
pattern_bin_1([#c_bitstr{anno=A,val=E0,size=S0,unit=U,type=T,flags=Fs}|Es0],
Isub0, Osub0, St0) ->
{S1,[],St1} = expr(S0, Isub0, St0),
S = case S1 of
#k_int{} -> S1;
#k_var{} -> S1;
#k_atom{} -> S1;
_ ->
%% Bad size (coming from an optimization or Core Erlang
%% source code) - replace it with a known atom because
%% a literal or bit syntax construction can cause further
%% problems.
#k_atom{val=bad_size}
end,
U0 = cerl:concrete(U),
Fs0 = cerl:concrete(Fs),
%%ok= io:fwrite("~w: ~p~n", [?LINE,{B0,S,U0,Fs0}]),
{E,Osub1,St2} = pattern(E0, Isub0, Osub0, St1),
Isub1 = case E0 of
#c_var{name=V} ->
set_vsub(V, E#k_var.name, Isub0);
_ -> Isub0
end,
{Es,{Isub,Osub},St3} = pattern_bin_1(Es0, Isub1, Osub1, St2),
{build_bin_seg(A, S, U0, cerl:concrete(T), Fs0, E, Es),{Isub,Osub},St3};
pattern_bin_1([], Isub, Osub, St) -> {#k_bin_end{},{Isub,Osub},St}.
%% build_bin_seg(Anno, Size, Unit, Type, Flags, Seg, Next) -> #k_bin_seg{}.
%% This function normalizes literal integers with size > 8 and literal
%% utf8 segments into integers with size = 8 (and potentially an integer
%% with size less than 8 at the end). This is so further optimizations
%% have a normalized view of literal integers, allowing us to generate
%% more literals and group more clauses. Those integers may be "squeezed"
%% later into the largest integer possible.
%%
build_bin_seg(A, #k_int{val=Bits} = Sz, U, integer=Type, [unsigned,big]=Flags, #k_literal{val=Int}=Seg, Next) ->
Size = Bits * U,
case integer_fits_and_is_expandable(Int, Size) of
true -> build_bin_seg_integer_recur(A, Size, Int, Next);
false -> #k_bin_seg{anno=A,size=Sz,unit=U,type=Type,flags=Flags,seg=Seg,next=Next}
end;
build_bin_seg(A, Sz, U, utf8=Type, [unsigned,big]=Flags, #k_literal{val=Utf8} = Seg, Next) ->
case utf8_fits(Utf8) of
{Int, Bits} -> build_bin_seg_integer_recur(A, Bits, Int, Next);
error -> #k_bin_seg{anno=A,size=Sz,unit=U,type=Type,flags=Flags,seg=Seg,next=Next}
end;
build_bin_seg(A, Sz, U, Type, Flags, Seg, Next) ->
#k_bin_seg{anno=A,size=Sz,unit=U,type=Type,flags=Flags,seg=Seg,next=Next}.
build_bin_seg_integer_recur(A, Bits, Val, Next) when Bits > 8 ->
NextBits = Bits - 8,
NextVal = Val band ((1 bsl NextBits) - 1),
Last = build_bin_seg_integer_recur(A, NextBits, NextVal, Next),
build_bin_seg_integer(A, 8, Val bsr NextBits, Last);
build_bin_seg_integer_recur(A, Bits, Val, Next) ->
build_bin_seg_integer(A, Bits, Val, Next).
build_bin_seg_integer(A, Bits, Val, Next) ->
Sz = #k_int{anno=A,val=Bits},
Seg = #k_literal{anno=A,val=Val},
#k_bin_seg{anno=A,size=Sz,unit=1,type=integer,flags=[unsigned,big],seg=Seg,next=Next}.
integer_fits_and_is_expandable(Int, Size) when 0 < Size, Size =< ?EXPAND_MAX_SIZE_SEGMENT ->
case <<Int:Size>> of
<<Int:Size>> -> true;
_ -> false
end;
integer_fits_and_is_expandable(_Int, _Size) ->
false.
utf8_fits(Utf8) ->
try
Bin = <<Utf8/utf8>>,
Bits = bit_size(Bin),
<<Int:Bits>> = Bin,
{Int, Bits}
catch
_:_ -> error
end.
%% pattern_list([Cexpr], Sub, State) -> {[Kexpr],Sub,State}.
pattern_list(Ces, Sub, St) ->
pattern_list(Ces, Sub, Sub, St).
pattern_list(Ces, Isub, Osub, St) ->
foldr(fun (Ce, {Kes,Osub0,St0}) ->
{Ke,Osub1,St1} = pattern(Ce, Isub, Osub0, St0),
{[Ke|Kes],Osub1,St1}
end, {[],Osub,St}, Ces).
%% new_sub() -> Subs.
%% set_vsub(Name, Sub, Subs) -> Subs.
%% subst_vsub(Name, Sub, Subs) -> Subs.
%% get_vsub(Name, Subs) -> SubName.
%% Add/get substitute Sub for Name to VarSub. Use orddict so we know
%% the format is a list {Name,Sub} pairs. When adding a new
%% substitute we fold substitute chains so we never have to search
%% more than once.
new_sub() -> orddict:new().
get_vsub(V, Vsub) ->
case orddict:find(V, Vsub) of
{ok,Val} -> Val;
error -> V
end.
set_vsub(V, S, Vsub) ->
orddict:store(V, S, Vsub).
subst_vsub(Key, New, Vsub) ->
orddict:from_list(subst_vsub_1(Key, New, Vsub)).
subst_vsub_1(Key, New, [{K,Key}|Dict]) ->
%% Fold chained substitution.
[{K,New}|subst_vsub_1(Key, New, Dict)];
subst_vsub_1(Key, New, [{K,_}|_]=Dict) when Key < K ->
%% Insert the new substitution here, and continue
%% look for chained substitutions.
[{Key,New}|subst_vsub_2(Key, New, Dict)];
subst_vsub_1(Key, New, [{K,_}=E|Dict]) when Key > K ->
[E|subst_vsub_1(Key, New, Dict)];
subst_vsub_1(Key, New, []) -> [{Key,New}].
subst_vsub_2(V, S, [{K,V}|Dict]) ->
%% Fold chained substitution.
[{K,S}|subst_vsub_2(V, S, Dict)];
subst_vsub_2(V, S, [E|Dict]) ->
[E|subst_vsub_2(V, S, Dict)];
subst_vsub_2(_, _, []) -> [].
get_fsub(F, A, Fsub) ->
case orddict:find({F,A}, Fsub) of
{ok,Val} -> Val;
error -> F
end.
set_fsub(F, A, S, Fsub) ->
orddict:store({F,A}, S, Fsub).
new_fun_name(St) ->
new_fun_name("anonymous", St).
%% new_fun_name(Type, State) -> {FunName,State}.
new_fun_name(Type, #kern{func={F,Arity},fcount=C}=St) ->
Name = "-" ++ atom_to_list(F) ++ "/" ++ integer_to_list(Arity) ++
"-" ++ Type ++ "-" ++ integer_to_list(C) ++ "-",
{list_to_atom(Name),St#kern{fcount=C+1}}.
%% new_var_name(State) -> {VarName,State}.
new_var_name(#kern{vcount=C}=St) ->
{C,St#kern{vcount=C+1}}.
%% new_var(State) -> {#k_var{},State}.
new_var(St0) ->
{New,St1} = new_var_name(St0),
{#k_var{name=New},St1}.
%% new_vars(Count, State) -> {[#k_var{}],State}.
%% Make Count new variables.
new_vars(N, St) -> new_vars(N, St, []).
new_vars(N, St0, Vs) when N > 0 ->
{V,St1} = new_var(St0),
new_vars(N-1, St1, [V|Vs]);
new_vars(0, St, Vs) -> {Vs,St}.
make_vars(Vs) -> [ #k_var{name=V} || V <- Vs ].
add_var_def(V, St) ->
St#kern{ds=cerl_sets:add_element(V#k_var.name, St#kern.ds)}.
%%add_vars_def(Vs, St) ->
%% Ds = foldl(fun (#k_var{name=V}, Ds) -> add_element(V, Ds) end,
%% St#kern.ds, Vs),
%% St#kern{ds=Ds}.
%% is_remote_bif(Mod, Name, Arity) -> true | false.
%% Test if function is really a BIF.
is_remote_bif(erlang, get, 1) -> true;
is_remote_bif(erlang, N, A) ->
case erl_internal:guard_bif(N, A) of
true -> true;
false ->
try erl_internal:op_type(N, A) of
arith -> true;
bool -> true;
comp -> true;
list -> false;
send -> false
catch
_:_ -> false % not an op
end
end;
is_remote_bif(_, _, _) -> false.
%% bif_vals(Name, Arity) -> integer().
%% bif_vals(Mod, Name, Arity) -> integer().
%% Determine how many return values a BIF has. Provision for BIFs to
%% return multiple values. Only used in bodies where a BIF may be
%% called for effect only.
bif_vals(_, _) -> 1.
bif_vals(_, _, _) -> 1.
%% foldr2(Fun, Acc, List1, List2) -> Acc.
%% Fold over two lists.
foldr2(Fun, Acc0, [E1|L1], [E2|L2]) ->
Acc1 = Fun(E1, E2, Acc0),
foldr2(Fun, Acc1, L1, L2);
foldr2(_, Acc, [], []) -> Acc.
%% This code implements the algorithm for an optimizing compiler for
%% pattern matching given "The Implementation of Functional
%% Programming Languages" by Simon Peyton Jones. The code is much
%% longer as the meaning of constructors is different from the book.
%%
%% In Erlang many constructors can have different values, e.g. 'atom'
%% or 'integer', whereas in the original algorithm thse would be
%% different constructors. Our view makes it easier in later passes to
%% handle indexing over each type.
%%
%% Patterns are complicated by having alias variables. The form of a
%% pattern is Pat | {alias,Pat,[AliasVar]}. This is hidden by access
%% functions to pattern arguments but the code must be aware of it.
%%
%% The compilation proceeds in two steps:
%%
%% 1. The patterns in the clauses to converted to lists of kernel
%% patterns. The Core clause is now hybrid, this is easier to work
%% with. Remove clauses with trivially false guards, this simplifies
%% later passes. Add locally defined vars and variable subs to each
%% clause for later use.
%%
%% 2. The pattern matching is optimised. Variable substitutions are
%% added to the VarSub structure and new variables are made visible.
%% The guard and body are then converted to Kernel form.
%% kmatch([Var], [Clause], Sub, State) -> {Kexpr,State}.
kmatch(Us, Ccs, Sub, St0) ->
{Cs,St1} = match_pre(Ccs, Sub, St0), %Convert clauses
Def = fail,
%% Def = #k_call{anno=[compiler_generated],
%% op=#k_remote{mod=#k_atom{val=erlang},
%% name=#k_atom{val=exit},
%% arity=1},
%% args=[#k_atom{val=kernel_match_error}]},
match(Us, Cs, Def, St1). %Do the match.
%% match_pre([Cclause], Sub, State) -> {[Clause],State}.
%% Must be careful not to generate new substitutions here now!
%% Remove clauses with trivially false guards which will never
%% succeed.
match_pre(Cs, Sub0, St) ->
foldr(fun (#c_clause{anno=A,pats=Ps,guard=G,body=B}, {Cs0,St0}) ->
{Kps,Osub1,St1} = pattern_list(Ps, Sub0, St0),
{[#iclause{anno=A,isub=Sub0,osub=Osub1,
pats=Kps,guard=G,body=B}|
Cs0],St1}
end, {[],St}, Cs).
%% match([Var], [Clause], Default, State) -> {MatchExpr,State}.
match([_U|_Us] = L, Cs, Def, St0) ->
%%ok = io:format("match ~p~n", [Cs]),
Pcss = partition(Cs),
foldr(fun (Pcs, {D,St}) -> match_varcon(L, Pcs, D, St) end,
{Def,St0}, Pcss);
match([], Cs, Def, St) ->
match_guard(Cs, Def, St).
%% match_guard([Clause], Default, State) -> {IfExpr,State}.
%% Build a guard to handle guards. A guard *ALWAYS* fails if no
%% clause matches, there will be a surrounding 'alt' to catch the
%% failure. Drop redundant cases, i.e. those after a true guard.
match_guard(Cs0, Def0, St0) ->
{Cs1,Def1,St1} = match_guard_1(Cs0, Def0, St0),
{build_alt(build_guard(Cs1), Def1),St1}.
match_guard_1([#iclause{anno=A,osub=Osub,guard=G,body=B}|Cs0], Def0, St0) ->
case is_true_guard(G) of
true ->
%% The true clause body becomes the default.
{Kb,Pb,St1} = body(B, Osub, St0),
St2 = maybe_add_warning(Cs0, A, St1),
St = maybe_add_warning(Def0, A, St2),
{[],pre_seq(Pb, Kb),St};
false ->
{Kg,St1} = guard(G, Osub, St0),
{Kb,Pb,St2} = body(B, Osub, St1),
{Cs1,Def1,St3} = match_guard_1(Cs0, Def0, St2),
{[#k_guard_clause{guard=Kg,body=pre_seq(Pb, Kb)}|Cs1],
Def1,St3}
end;
match_guard_1([], Def, St) -> {[],Def,St}.
maybe_add_warning([C|_], MatchAnno, St) ->
maybe_add_warning(C, MatchAnno, St);
maybe_add_warning([], _MatchAnno, St) -> St;
maybe_add_warning(fail, _MatchAnno, St) -> St;
maybe_add_warning(Ke, MatchAnno, St) ->
case is_compiler_generated(Ke) of
true ->
St;
false ->
Anno = get_kanno(Ke),
Line = get_line(Anno),
MatchLine = get_line(MatchAnno),
Warn = case MatchLine of
none -> nomatch_shadow;
_ -> {nomatch_shadow,MatchLine}
end,
add_warning(Line, Warn, Anno, St)
end.
get_line([Line|_]) when is_integer(Line) -> Line;
get_line([_|T]) -> get_line(T);
get_line([]) -> none.
get_file([{file,File}|_]) -> File;
get_file([_|T]) -> get_file(T);
get_file([]) -> "no_file". % should not happen
%% is_true_guard(Guard) -> boolean().
%% Test if a guard is trivially true.
is_true_guard(#c_literal{val=true}) -> true;
is_true_guard(_) -> false.
%% partition([Clause]) -> [[Clause]].
%% Partition a list of clauses into groups which either contain
%% clauses with a variable first argument, or with a "constructor".
partition([C1|Cs]) ->
V1 = is_var_clause(C1),
{More,Rest} = splitwith(fun (C) -> is_var_clause(C) =:= V1 end, Cs),
[[C1|More]|partition(Rest)];
partition([]) -> [].
%% match_varcon([Var], [Clause], Def, [Var], Sub, State) ->
%% {MatchExpr,State}.
match_varcon(Us, [C|_]=Cs, Def, St) ->
case is_var_clause(C) of
true -> match_var(Us, Cs, Def, St);
false -> match_con(Us, Cs, Def, St)
end.
%% match_var([Var], [Clause], Def, State) -> {MatchExpr,State}.
%% Build a call to "select" from a list of clauses all containing a
%% variable as the first argument. We must rename the variable in
%% each clause to be the match variable as these clause will share
%% this variable and may have different names for it. Rename aliases
%% as well.
match_var([U|Us], Cs0, Def, St) ->
Cs1 = map(fun (#iclause{isub=Isub0,osub=Osub0,pats=[Arg|As]}=C) ->
Vs = [arg_arg(Arg)|arg_alias(Arg)],
Osub1 = foldl(fun (#k_var{name=V}, Acc) ->
subst_vsub(V, U#k_var.name, Acc)
end, Osub0, Vs),
Isub1 = foldl(fun (#k_var{name=V}, Acc) ->
subst_vsub(V, U#k_var.name, Acc)
end, Isub0, Vs),
C#iclause{isub=Isub1,osub=Osub1,pats=As}
end, Cs0),
match(Us, Cs1, Def, St).
%% match_con(Variables, [Clause], Default, State) -> {SelectExpr,State}.
%% Build call to "select" from a list of clauses all containing a
%% constructor/constant as first argument. Group the constructors
%% according to type, the order is really irrelevant but tries to be
%% smart.
match_con([U|_Us] = L, Cs, Def, St0) ->
%% Extract clauses for different constructors (types).
%%ok = io:format("match_con ~p~n", [Cs]),
Ttcs0 = select_types(Cs, [], [], [], [], [], [], [], [], []),
Ttcs1 = [{T, Types} || {T, [_ | _] = Types} <- Ttcs0],
Ttcs = opt_single_valued(Ttcs1),
%%ok = io:format("ttcs = ~p~n", [Ttcs]),
{Scs,St1} =
mapfoldl(fun ({T,Tcs}, St) ->
{[S|_]=Sc,S1} = match_value(L, T, Tcs, fail, St),
%%ok = io:format("match_con type2 ~p~n", [T]),
Anno = get_kanno(S),
{#k_type_clause{anno=Anno,type=T,values=Sc},S1} end,
St0, Ttcs),
{build_alt_1st_no_fail(build_select(U, Scs), Def),St1}.
select_types([NoExpC | Cs], Bin, BinCon, Cons, Tuple, Map, Atom, Float, Int, Nil) ->
C = expand_pat_lit_clause(NoExpC),
case clause_con(C) of
k_binary ->
select_types(Cs, [C |Bin], BinCon, Cons, Tuple, Map, Atom, Float, Int, Nil);
k_bin_seg ->
select_types(Cs, Bin, [C | BinCon], Cons, Tuple, Map, Atom, Float, Int, Nil);
k_bin_end ->
select_types(Cs, Bin, [C | BinCon], Cons, Tuple, Map, Atom, Float, Int, Nil);
k_cons ->
select_types(Cs, Bin, BinCon, [C | Cons], Tuple, Map, Atom, Float, Int, Nil);
k_tuple ->
select_types(Cs, Bin, BinCon, Cons, [C | Tuple], Map, Atom, Float, Int, Nil);
k_map ->
select_types(Cs, Bin, BinCon, Cons, Tuple, [C | Map], Atom, Float, Int, Nil);
k_atom ->
select_types(Cs, Bin, BinCon, Cons, Tuple, Map, [C | Atom], Float, Int, Nil);
k_float ->
select_types(Cs, Bin, BinCon, Cons, Tuple, Map, Atom, [C | Float], Int, Nil);
k_int ->
select_types(Cs, Bin, BinCon, Cons, Tuple, Map, Atom, Float, [C | Int], Nil);
k_nil ->
select_types(Cs, Bin, BinCon, Cons, Tuple, Map, Atom, Float, Int, [C | Nil])
end;
select_types([], Bin, BinCon, Cons, Tuple, Map, Atom, Float, Int, Nil) ->
[{k_binary, reverse(Bin)}] ++ handle_bin_con(reverse(BinCon)) ++
[
{k_cons, reverse(Cons)},
{k_tuple, reverse(Tuple)},
{k_map, reverse(Map)},
{k_atom, reverse(Atom)},
{k_float, reverse(Float)},
{k_int, reverse(Int)},
{k_nil, reverse(Nil)}
].
expand_pat_lit_clause(#iclause{pats=[#ialias{pat=#k_literal{anno=A,val=Val}}=Alias|Ps]}=C) ->
P = expand_pat_lit(Val, A),
C#iclause{pats=[Alias#ialias{pat=P}|Ps]};
expand_pat_lit_clause(#iclause{pats=[#k_literal{anno=A,val=Val}|Ps]}=C) ->
P = expand_pat_lit(Val, A),
C#iclause{pats=[P|Ps]};
expand_pat_lit_clause(C) -> C.
expand_pat_lit([H|T], A) ->
#k_cons{anno=A,hd=literal(H, A),tl=literal(T, A)};
expand_pat_lit(Tuple, A) when is_tuple(Tuple) ->
#k_tuple{anno=A,es=[literal(E, A) || E <- tuple_to_list(Tuple)]};
expand_pat_lit(Lit, A) ->
literal(Lit, A).
literal([], A) ->
#k_nil{anno=A};
literal(Val, A) when is_integer(Val) ->
#k_int{anno=A,val=Val};
literal(Val, A) when is_float(Val) ->
#k_float{anno=A,val=Val};
literal(Val, A) when is_atom(Val) ->
#k_atom{anno=A,val=Val};
literal(Val, A) when is_list(Val); is_tuple(Val) ->
#k_literal{anno=A,val=Val}.
%% opt_singled_valued([{Type,Clauses}]) -> [{Type,Clauses}].
%% If a type only has one clause and if the pattern is literal,
%% the matching can be done more efficiently by directly comparing
%% with the literal (that is especially true for binaries).
opt_single_valued(Ttcs) ->
opt_single_valued(Ttcs, [], []).
opt_single_valued([{_,[#iclause{pats=[P0|Ps]}=Tc]}=Ttc|Ttcs], TtcAcc, LitAcc) ->
try combine_lit_pat(P0) of
P ->
LitTtc = Tc#iclause{pats=[P|Ps]},
opt_single_valued(Ttcs, TtcAcc, [LitTtc|LitAcc])
catch
not_possible ->
opt_single_valued(Ttcs, [Ttc|TtcAcc], LitAcc)
end;
opt_single_valued([Ttc|Ttcs], TtcAcc, LitAcc) ->
opt_single_valued(Ttcs, [Ttc|TtcAcc], LitAcc);
opt_single_valued([], TtcAcc, []) ->
reverse(TtcAcc);
opt_single_valued([], TtcAcc, LitAcc) ->
Literals = {k_literal,reverse(LitAcc)},
%% Test the literals as early as possible.
case reverse(TtcAcc) of
[{k_binary,_}=Bin|Ttcs] ->
%% The delayed creation of sub binaries requires
%% bs_start_match2 to be the first instruction in the
%% function.
[Bin,Literals|Ttcs];
Ttcs ->
[Literals|Ttcs]
end.
combine_lit_pat(#ialias{pat=Pat0}=Alias) ->
Pat = combine_lit_pat(Pat0),
Alias#ialias{pat=Pat};
combine_lit_pat(Pat) ->
case do_combine_lit_pat(Pat) of
#k_literal{val=Val} when is_atom(Val) ->
throw(not_possible);
#k_literal{val=Val} when is_number(Val) ->
throw(not_possible);
#k_literal{val=[]} ->
throw(not_possible);
#k_literal{}=Lit ->
Lit
end.
do_combine_lit_pat(#k_atom{anno=A,val=Val}) ->
#k_literal{anno=A,val=Val};
do_combine_lit_pat(#k_float{anno=A,val=Val}) ->
#k_literal{anno=A,val=Val};
do_combine_lit_pat(#k_int{anno=A,val=Val}) ->
#k_literal{anno=A,val=Val};
do_combine_lit_pat(#k_nil{anno=A}) ->
#k_literal{anno=A,val=[]};
do_combine_lit_pat(#k_binary{anno=A,segs=Segs}) ->
Bin = combine_bin_segs(Segs),
#k_literal{anno=A,val=Bin};
do_combine_lit_pat(#k_cons{anno=A,hd=Hd0,tl=Tl0}) ->
#k_literal{val=Hd} = do_combine_lit_pat(Hd0),
#k_literal{val=Tl} = do_combine_lit_pat(Tl0),
#k_literal{anno=A,val=[Hd|Tl]};
do_combine_lit_pat(#k_literal{}=Lit) ->
Lit;
do_combine_lit_pat(#k_tuple{anno=A,es=Es0}) ->
Es = [begin
#k_literal{val=Lit} = do_combine_lit_pat(El),
Lit
end || El <- Es0],
#k_literal{anno=A,val=list_to_tuple(Es)};
do_combine_lit_pat(_) ->
throw(not_possible).
combine_bin_segs(#k_bin_seg{size=#k_int{val=8},unit=1,type=integer,
flags=[unsigned,big],seg=#k_literal{val=Int},next=Next})
when is_integer(Int), 0 =< Int, Int =< 255 ->
<<Int,(combine_bin_segs(Next))/bits>>;
combine_bin_segs(#k_bin_end{}) ->
<<>>;
combine_bin_segs(_) ->
throw(not_possible).
%% handle_bin_con([Clause]) -> [{Type,[Clause]}].
%% Handle clauses for the k_bin_seg constructor. As k_bin_seg
%% matching can overlap, the k_bin_seg constructors cannot be
%% reordered, only grouped.
handle_bin_con(Cs) ->
try
%% The usual way to match literals is to first extract the
%% value to a register, and then compare the register to the
%% literal value. Extracting the value is good if we need
%% compare it more than once.
%%
%% But we would like to combine the extracting and the
%% comparing into a single instruction if we know that
%% a binary segment must contain specific integer value
%% or the matching will fail, like in this example:
%%
%% <<42:8,...>> ->
%% <<42:8,...>> ->
%% .
%% .
%% .
%% <<42:8,...>> ->
%% <<>> ->
%%
%% The first segment must either contain the integer 42
%% or the binary must end for the match to succeed.
%%
%% The way we do is to replace the generic #k_bin_seg{}
%% record with a #k_bin_int{} record if all clauses will
%% select the same literal integer (except for one or more
%% clauses that will end the binary).
{BinSegs0,BinEnd} =
partition(fun (C) ->
clause_con(C) =:= k_bin_seg
end, Cs),
BinSegs = select_bin_int(BinSegs0),
case BinEnd of
[] -> BinSegs;
[_|_] -> BinSegs ++ [{k_bin_end,BinEnd}]
end
catch
throw:not_possible ->
handle_bin_con_not_possible(Cs)
end.
handle_bin_con_not_possible([C1|Cs]) ->
Con = clause_con(C1),
{More,Rest} = splitwith(fun (C) -> clause_con(C) =:= Con end, Cs),
[{Con,[C1|More]}|handle_bin_con_not_possible(Rest)];
handle_bin_con_not_possible([]) -> [].
%% select_bin_int([Clause]) -> {k_bin_int,[Clause]}
%% If the first pattern in each clause selects the same integer,
%% rewrite all clauses to use #k_bin_int{} (which will later be
%% translated to a bs_match_string/4 instruction).
%%
%% If it is not possible to do this rewrite, a 'not_possible'
%% exception is thrown.
select_bin_int([#iclause{pats=[#k_bin_seg{anno=A,type=integer,
size=#k_int{val=Bits0}=Sz,unit=U,
flags=Fl,seg=#k_literal{val=Val},
next=N}|Ps]}=C|Cs0]) ->
Bits = U * Bits0,
if
Bits > ?EXPAND_MAX_SIZE_SEGMENT -> throw(not_possible); %Expands the code too much.
true -> ok
end,
select_assert_match_possible(Bits, Val, Fl),
P = #k_bin_int{anno=A,size=Sz,unit=U,flags=Fl,val=Val,next=N},
case member(native, Fl) of
true -> throw(not_possible);
false -> ok
end,
Cs = select_bin_int_1(Cs0, Bits, Fl, Val),
[{k_bin_int,[C#iclause{pats=[P|Ps]}|Cs]}];
select_bin_int(_) -> throw(not_possible).
select_bin_int_1([#iclause{pats=[#k_bin_seg{anno=A,type=integer,
size=#k_int{val=Bits0}=Sz,
unit=U,
flags=Fl,seg=#k_literal{val=Val},
next=N}|Ps]}=C|Cs],
Bits, Fl, Val) when is_integer(Val) ->
if
Bits0*U =:= Bits -> ok;
true -> throw(not_possible)
end,
P = #k_bin_int{anno=A,size=Sz,unit=U,flags=Fl,val=Val,next=N},
[C#iclause{pats=[P|Ps]}|select_bin_int_1(Cs, Bits, Fl, Val)];
select_bin_int_1([], _, _, _) -> [];
select_bin_int_1(_, _, _, _) -> throw(not_possible).
select_assert_match_possible(Sz, Val, Fs) ->
EmptyBindings = erl_eval:new_bindings(),
MatchFun = match_fun(Val),
EvalFun = fun({integer,_,S}, B) -> {value,S,B} end,
Expr = [{bin_element,0,{integer,0,Val},{integer,0,Sz},[{unit,1}|Fs]}],
{value,Bin,EmptyBindings} = eval_bits:expr_grp(Expr, EmptyBindings, EvalFun),
try
{match,_} = eval_bits:match_bits(Expr, Bin,
EmptyBindings,
EmptyBindings,
MatchFun, EvalFun),
ok % this is just an assertion (i.e., no return value)
catch
throw:nomatch ->
throw(not_possible)
end.
match_fun(Val) ->
fun(match, {{integer,_,_},NewV,Bs}) when NewV =:= Val ->
{match,Bs}
end.
%% match_value([Var], Con, [Clause], Default, State) -> {SelectExpr,State}.
%% At this point all the clauses have the same constructor, we must
%% now separate them according to value.
match_value(Us0, T, Cs0, Def, St0) ->
{Us1,Cs1,St1} = partition_intersection(T, Us0, Cs0, St0),
UCss = group_value(T, Us1, Cs1),
%%ok = io:format("match_value ~p ~p~n", [T, Css]),
mapfoldl(fun ({Us,Cs}, St) -> match_clause(Us, Cs, Def, St) end, St1, UCss).
%% partition_intersection
%% Partitions a map into two maps with the most common keys to the first map.
%% case <M> of
%% <#{a}>
%% <#{a,b}>
%% <#{a,c}>
%% <#{c}>
%% end
%% becomes
%% case <M,M> of
%% <#{a}, #{ }>
%% <#{a}, #{b}>
%% <#{ }, #{c}>
%% <#{a}, #{c}>
%% end
%% The intention is to group as many keys together as possible and thus
%% reduce the number of lookups to that key.
partition_intersection(k_map, [U|_]=Us0, [_,_|_]=Cs0,St0) ->
Ps = [clause_val(C) || C <- Cs0],
case find_key_partition(Ps) of
no_partition ->
{Us0,Cs0,St0};
Ks ->
{Cs1,St1} = mapfoldl(fun(#iclause{pats=[Arg|Args]}=C, Sti) ->
{{Arg1,Arg2},St} = partition_key_intersection(Arg, Ks, Sti),
{C#iclause{pats=[Arg1,Arg2|Args]}, St}
end, St0, Cs0),
{[U|Us0],Cs1,St1}
end;
partition_intersection(_, Us, Cs, St) ->
{Us,Cs,St}.
partition_key_intersection(#k_map{es=Pairs}=Map,Ks,St0) ->
F = fun(#k_map_pair{key=Key}) -> member(map_key_clean(Key), Ks) end,
{Ps1,Ps2} = partition(F, Pairs),
{{Map#k_map{es=Ps1},Map#k_map{es=Ps2}},St0};
partition_key_intersection(#ialias{pat=Map}=Alias,Ks,St0) ->
%% only alias one of them
{{Map1,Map2},St1} = partition_key_intersection(Map, Ks, St0),
{{Map1,Alias#ialias{pat=Map2}},St1}.
% Only check for the complete intersection of keys and not commonality
find_key_partition(Ps) ->
Sets = [sets:from_list(Ks)||Ks <- Ps],
Is = sets:intersection(Sets),
case sets:to_list(Is) of
[] -> no_partition;
KeyIntersection ->
%% Check if the intersection are all keys in all clauses.
%% Don't split if they are since this will only
%% infer extra is_map instructions with no gain.
All = foldl(fun (Kset, Bool) ->
Bool andalso sets:is_subset(Kset, Is)
end, true, Sets),
if All -> no_partition;
true -> KeyIntersection
end
end.
%% group_value([Clause]) -> [[Clause]].
%% Group clauses according to value. Here we know that
%% 1. Some types are singled valued
%% 2. The clauses in bin_segs cannot be reordered only grouped
%% 3. Other types are disjoint and can be reordered
group_value(k_cons, Us, Cs) -> [{Us,Cs}]; %These are single valued
group_value(k_nil, Us, Cs) -> [{Us,Cs}];
group_value(k_binary, Us, Cs) -> [{Us,Cs}];
group_value(k_bin_end, Us, Cs) -> [{Us,Cs}];
group_value(k_bin_seg, Us, Cs) -> group_bin_seg(Us,Cs);
group_value(k_bin_int, Us, Cs) -> [{Us,Cs}];
group_value(k_map, Us, Cs) -> group_map(Us,Cs);
group_value(_, Us, Cs) ->
%% group_value(Cs).
Cd = foldl(fun (C, Gcs0) -> dict:append(clause_val(C), C, Gcs0) end,
dict:new(), Cs),
dict:fold(fun (_, Vcs, Css) -> [{Us,Vcs}|Css] end, [], Cd).
group_bin_seg(Us, [C1|Cs]) ->
V1 = clause_val(C1),
{More,Rest} = splitwith(fun (C) -> clause_val(C) == V1 end, Cs),
[{Us,[C1|More]}|group_bin_seg(Us,Rest)];
group_bin_seg(_, []) -> [].
group_map(Us, [C1|Cs]) ->
V1 = clause_val(C1),
{More,Rest} = splitwith(fun (C) -> clause_val(C) =:= V1 end, Cs),
[{Us,[C1|More]}|group_map(Us,Rest)];
group_map(_, []) -> [].
%% Profiling shows that this quadratic implementation account for a big amount
%% of the execution time if there are many values.
% group_value([C|Cs]) ->
% V = clause_val(C),
% Same = [ Cv || Cv <- Cs, clause_val(Cv) == V ], %Same value
% Rest = [ Cv || Cv <- Cs, clause_val(Cv) /= V ], % and all the rest
% [[C|Same]|group_value(Rest)];
% group_value([]) -> [].
%% match_clause([Var], [Clause], Default, State) -> {Clause,State}.
%% At this point all the clauses have the same "value". Build one
%% select clause for this value and continue matching. Rename
%% aliases as well.
match_clause([U|Us], [C|_]=Cs0, Def, St0) ->
Anno = get_kanno(C),
{Match0,Vs,St1} = get_match(get_con(Cs0), St0),
Match = sub_size_var(Match0, Cs0),
{Cs1,St2} = new_clauses(Cs0, U, St1),
Cs2 = squeeze_clauses_by_bin_integer_count(Cs1, []),
{B,St3} = match(Vs ++ Us, Cs2, Def, St2),
{#k_val_clause{anno=Anno,val=Match,body=B},St3}.
sub_size_var(#k_bin_seg{size=#k_var{name=Name}=Kvar}=BinSeg, [#iclause{isub=Sub}|_]) ->
BinSeg#k_bin_seg{size=Kvar#k_var{name=get_vsub(Name, Sub)}};
sub_size_var(K, _) -> K.
get_con([C|_]) -> arg_arg(clause_arg(C)). %Get the constructor
get_match(#k_cons{}, St0) ->
{[H,T]=L,St1} = new_vars(2, St0),
{#k_cons{hd=H,tl=T},L,St1};
get_match(#k_binary{}, St0) ->
{[V]=Mes,St1} = new_vars(1, St0),
{#k_binary{segs=V},Mes,St1};
get_match(#k_bin_seg{size=#k_atom{val=all},next={k_bin_end,[]}}=Seg, St0) ->
{[S,N0],St1} = new_vars(2, St0),
N = set_kanno(N0, [no_usage]),
{Seg#k_bin_seg{seg=S,next=N},[S],St1};
get_match(#k_bin_seg{}=Seg, St0) ->
{[S,N0],St1} = new_vars(2, St0),
N = set_kanno(N0, [no_usage]),
{Seg#k_bin_seg{seg=S,next=N},[S,N],St1};
get_match(#k_bin_int{}=BinInt, St0) ->
{N0,St1} = new_var(St0),
N = set_kanno(N0, [no_usage]),
{BinInt#k_bin_int{next=N},[N],St1};
get_match(#k_tuple{es=Es}, St0) ->
{Mes,St1} = new_vars(length(Es), St0),
{#k_tuple{es=Mes},Mes,St1};
get_match(#k_map{op=exact,es=Es0}, St0) ->
{Mes,St1} = new_vars(length(Es0), St0),
{Es,_} = mapfoldl(fun
(#k_map_pair{}=Pair, [V|Vs]) ->
{Pair#k_map_pair{val=V},Vs}
end, Mes, Es0),
{#k_map{op=exact,es=Es},Mes,St1};
get_match(M, St) ->
{M,[],St}.
new_clauses(Cs0, U, St) ->
Cs1 = map(fun (#iclause{isub=Isub0,osub=Osub0,pats=[Arg|As]}=C) ->
Head = case arg_arg(Arg) of
#k_cons{hd=H,tl=T} -> [H,T|As];
#k_tuple{es=Es} -> Es ++ As;
#k_binary{segs=E} -> [E|As];
#k_bin_seg{size=#k_atom{val=all},
seg=S,next={k_bin_end,[]}} ->
[S|As];
#k_bin_seg{seg=S,next=N} ->
[S,N|As];
#k_bin_int{next=N} ->
[N|As];
#k_map{op=exact,es=Es} ->
Vals = [V || #k_map_pair{val=V} <- Es],
Vals ++ As;
_Other ->
As
end,
Vs = arg_alias(Arg),
Osub1 = foldl(fun (#k_var{name=V}, Acc) ->
subst_vsub(V, U#k_var.name, Acc)
end, Osub0, Vs),
Isub1 = foldl(fun (#k_var{name=V}, Acc) ->
subst_vsub(V, U#k_var.name, Acc)
end, Isub0, Vs),
C#iclause{isub=Isub1,osub=Osub1,pats=Head}
end, Cs0),
{Cs1,St}.
%% group and squeeze
%% The goal of those functions is to group subsequent integer k_bin_seg
%% literals by count so we can leverage bs_get_integer_16 whenever possible.
%%
%% The priority is to create large groups. So if we have three clauses matching
%% on 16-bits/16-bits/8-bits, we will first have a single 8-bits match for all
%% three clauses instead of clauses (one with 16 and another with 8). But note
%% the algorithm is recursive, so the remaining 8-bits for the first two clauses
%% will be grouped next.
%%
%% We also try to not create too large groups. If we have too many clauses,
%% it is preferrable to match on 8-bits, select a branch, then match on the
%% next 8-bits, rather than match on 16-bits which would force us to have
%% to select to many values at the same time, which would not be efficient.
%%
%% Another restriction is that we create groups only if the end of the
%% group is a variadic clause or the end of the binary. That's because
%% if we have 16-bits/16-bits/catch-all, breaking it into a 16-bits lookup
%% will make the catch-all more expensive.
%%
%% Clauses are grouped in reverse when squeezing and then flattened and
%% re-reversed at the end.
squeeze_clauses_by_bin_integer_count([Clause | Clauses], Acc) ->
case clause_count_bin_integer_segments(Clause) of
{literal, N} -> squeeze_clauses_by_bin_integer_count(Clauses, N, 1, [Clause], Acc);
_ -> squeeze_clauses_by_bin_integer_count(Clauses, [[Clause] | Acc])
end;
squeeze_clauses_by_bin_integer_count(_, Acc) ->
flat_reverse(Acc, []).
squeeze_clauses_by_bin_integer_count([], N, Count, GroupAcc, Acc) ->
Squeezed = squeeze_clauses(GroupAcc, fix_count_without_variadic_segment(N), Count),
flat_reverse([Squeezed | Acc], []);
squeeze_clauses_by_bin_integer_count([#iclause{pats=[#k_bin_end{} | _]} = Clause], N, Count, GroupAcc, Acc) ->
Squeezed = squeeze_clauses(GroupAcc, fix_count_without_variadic_segment(N), Count),
flat_reverse([[Clause | Squeezed] | Acc], []);
squeeze_clauses_by_bin_integer_count([Clause | Clauses], N, Count, GroupAcc, Acc) ->
case clause_count_bin_integer_segments(Clause) of
{literal, NewN} ->
squeeze_clauses_by_bin_integer_count(Clauses, min(N, NewN), Count + 1, [Clause | GroupAcc], Acc);
{variadic, NewN} when NewN =< N ->
Squeezed = squeeze_clauses(GroupAcc, NewN, Count),
squeeze_clauses_by_bin_integer_count(Clauses, [[Clause | Squeezed] | Acc]);
_ ->
squeeze_clauses_by_bin_integer_count(Clauses, [[Clause | GroupAcc] | Acc])
end.
clause_count_bin_integer_segments(#iclause{pats=[#k_bin_seg{seg=#k_literal{}} = BinSeg | _]}) ->
count_bin_integer_segments(BinSeg, 0);
clause_count_bin_integer_segments(#iclause{pats=[#k_bin_seg{size=#k_int{val=Size},unit=Unit,
type=integer,flags=[unsigned,big], seg=#k_var{}} | _]})
when ((Size * Unit) rem 8) =:= 0 ->
{variadic, (Size * Unit) div 8};
clause_count_bin_integer_segments(_) ->
error.
count_bin_integer_segments(#k_bin_seg{size=#k_int{val=8},unit=1,type=integer,flags=[unsigned,big],
seg=#k_literal{val=Int},next=Next}, Count) when is_integer(Int), 0 =< Int, Int =< 255 ->
count_bin_integer_segments(Next, Count + 1);
count_bin_integer_segments(_, Count) when Count > 0 ->
{literal, Count};
count_bin_integer_segments(_, _Count) ->
error.
%% Since 4 bytes in on 32-bits systems are bignums, we convert
%% anything more than 3 into 2 bytes lookup. The goal is to convert
%% any multi-clause segment into 2-byte lookups with a potential
%% 3 byte lookup at the end.
fix_count_without_variadic_segment(N) when N > 3 -> 2;
fix_count_without_variadic_segment(N) -> N.
%% If we have more than 16 clauses, then it is better
%% to branch multiple times than getting a large integer.
%% We also abort if we have nothing to squeeze.
squeeze_clauses(Clauses, Size, Count) when Count >= 16; Size == 1 -> Clauses;
squeeze_clauses(Clauses, Size, _Count) -> squeeze_clauses(Clauses, Size).
squeeze_clauses([#iclause{pats=[#k_bin_seg{seg=#k_literal{}} = BinSeg | Pats]} = Clause | Clauses], Size) ->
[Clause#iclause{pats=[squeeze_segments(BinSeg, 0, 0, Size) | Pats]} |
squeeze_clauses(Clauses, Size)];
squeeze_clauses([], _Size) ->
[].
squeeze_segments(#k_bin_seg{size=Sz, seg=#k_literal{val=Val}=Lit} = BinSeg, Acc, Size, 1) ->
BinSeg#k_bin_seg{size=Sz#k_int{val=Size + 8}, seg=Lit#k_literal{val=(Acc bsl 8) bor Val}};
squeeze_segments(#k_bin_seg{seg=#k_literal{val=Val},next=Next}, Acc, Size, Count) ->
squeeze_segments(Next, (Acc bsl 8) bor Val, Size + 8, Count - 1).
flat_reverse([Head | Tail], Acc) -> flat_reverse(Tail, flat_reverse_1(Head, Acc));
flat_reverse([], Acc) -> Acc.
flat_reverse_1([Head | Tail], Acc) -> flat_reverse_1(Tail, [Head | Acc]);
flat_reverse_1([], Acc) -> Acc.
%% build_guard([GuardClause]) -> GuardExpr.
build_guard([]) -> fail;
build_guard(Cs) -> #k_guard{clauses=Cs}.
%% build_select(Var, [ConClause]) -> SelectExpr.
build_select(V, [Tc|_]=Tcs) ->
copy_anno(#k_select{var=V,types=Tcs}, Tc).
%% build_alt(First, Then) -> AltExpr.
%% Build an alt, attempt some simple optimisation.
build_alt(fail, Then) -> Then;
build_alt(First,Then) -> build_alt_1st_no_fail(First, Then).
build_alt_1st_no_fail(First, fail) -> First;
build_alt_1st_no_fail(First, Then) ->
copy_anno(#k_alt{first=First,then=Then}, First).
%% build_match([MatchVar], MatchExpr) -> Kexpr.
%% Build a match expr if there is a match.
build_match(Us, #k_alt{}=Km) -> copy_anno(#k_match{vars=Us,body=Km}, Km);
build_match(Us, #k_select{}=Km) -> copy_anno(#k_match{vars=Us,body=Km}, Km);
build_match(Us, #k_guard{}=Km) -> copy_anno(#k_match{vars=Us,body=Km}, Km);
build_match(_, Km) -> Km.
%% clause_arg(Clause) -> FirstArg.
%% clause_con(Clause) -> Constructor.
%% clause_val(Clause) -> Value.
%% is_var_clause(Clause) -> boolean().
clause_arg(#iclause{pats=[Arg|_]}) -> Arg.
clause_con(C) -> arg_con(clause_arg(C)).
clause_val(C) -> arg_val(clause_arg(C), C).
is_var_clause(C) -> clause_con(C) =:= k_var.
%% arg_arg(Arg) -> Arg.
%% arg_alias(Arg) -> Aliases.
%% arg_con(Arg) -> Constructor.
%% arg_val(Arg) -> Value.
%% These are the basic functions for obtaining fields in an argument.
arg_arg(#ialias{pat=Con}) -> Con;
arg_arg(Con) -> Con.
arg_alias(#ialias{vars=As}) -> As;
arg_alias(_Con) -> [].
arg_con(Arg) ->
case arg_arg(Arg) of
#k_literal{} -> k_literal;
#k_int{} -> k_int;
#k_float{} -> k_float;
#k_atom{} -> k_atom;
#k_nil{} -> k_nil;
#k_cons{} -> k_cons;
#k_tuple{} -> k_tuple;
#k_map{} -> k_map;
#k_binary{} -> k_binary;
#k_bin_end{} -> k_bin_end;
#k_bin_seg{} -> k_bin_seg;
#k_var{} -> k_var
end.
arg_val(Arg, C) ->
case arg_arg(Arg) of
#k_literal{val=Lit} -> Lit;
#k_int{val=I} -> I;
#k_float{val=F} -> F;
#k_atom{val=A} -> A;
#k_tuple{es=Es} -> length(Es);
#k_bin_seg{size=S,unit=U,type=T,flags=Fs} ->
case S of
#k_var{name=V} ->
#iclause{isub=Isub} = C,
{#k_var{name=get_vsub(V, Isub)},U,T,Fs};
_ ->
{set_kanno(S, []),U,T,Fs}
end;
#k_map{op=exact,es=Es} ->
lists:sort(fun(A,B) ->
%% on the form K :: {'lit' | 'var', term()}
%% lit < var as intended
erts_internal:cmp_term(A,B) < 0
end, [map_key_clean(Key) || #k_map_pair{key=Key} <- Es])
end.
%% ubody_used_vars(Expr, State) -> [UsedVar]
%% Return all used variables for the body sequence. Much more
%% efficient than using ubody/3 if the body contains nested letrecs.
ubody_used_vars(Expr, St) ->
{_,Used,_} = ubody(Expr, return, St#kern{funs=ignore}),
Used.
%% ubody(Expr, Break, State) -> {Expr,[UsedVar],State}.
%% Tag the body sequence with its used variables. These bodies
%% either end with a #k_break{}, or with #k_return{} or an expression
%% which itself can return, #k_enter{}, #k_match{} ... .
ubody(#iset{vars=[],arg=#iletrec{}=Let,body=B0}, Br, St0) ->
%% An iletrec{} should never be last.
St = iletrec_funs(Let, St0),
ubody(B0, Br, St);
ubody(#iset{anno=A,vars=Vs,arg=E0,body=B0}, Br, St0) ->
{E1,Eu,St1} = uexpr(E0, {break,Vs}, St0),
{B1,Bu,St2} = ubody(B0, Br, St1),
Ns = lit_list_vars(Vs),
Used = union(Eu, subtract(Bu, Ns)), %Used external vars
{#k_seq{anno=#k{us=Used,ns=Ns,a=A},arg=E1,body=B1},Used,St2};
ubody(#ivalues{anno=A,args=As}, return, St) ->
Au = lit_list_vars(As),
{#k_return{anno=#k{us=Au,ns=[],a=A},args=As},Au,St};
ubody(#ivalues{anno=A,args=As}, {break,_Vbs}, St) ->
Au = lit_list_vars(As),
case is_in_guard(St) of
true ->
{#k_guard_break{anno=#k{us=Au,ns=[],a=A},args=As},Au,St};
false ->
{#k_break{anno=#k{us=Au,ns=[],a=A},args=As},Au,St}
end;
ubody(E, return, St0) ->
%% Enterable expressions need no trailing return.
case is_enter_expr(E) of
true -> uexpr(E, return, St0);
false ->
{Ea,Pa,St1} = force_atomic(E, St0),
ubody(pre_seq(Pa, #ivalues{args=[Ea]}), return, St1)
end;
ubody(#ignored{}, {break,_} = Break, St) ->
ubody(#ivalues{args=[]}, Break, St);
ubody(E, {break,[_]} = Break, St0) ->
%%ok = io:fwrite("ubody ~w:~p~n", [?LINE,{E,Br}]),
%% Exiting expressions need no trailing break.
case is_exit_expr(E) of
true -> uexpr(E, return, St0);
false ->
{Ea,Pa,St1} = force_atomic(E, St0),
ubody(pre_seq(Pa, #ivalues{args=[Ea]}), Break, St1)
end;
ubody(E, {break,Rs}=Break, St0) ->
case is_exit_expr(E) of
true ->
uexpr(E, return, St0);
false ->
{Vs,St1} = new_vars(length(Rs), St0),
Iset = #iset{vars=Vs,arg=E},
PreSeq = pre_seq([Iset], #ivalues{args=Vs}),
ubody(PreSeq, Break, St1)
end.
iletrec_funs(#iletrec{defs=Fs}, St0) ->
%% Use union of all free variables.
%% First just work out free variables for all functions.
Free = foldl(fun ({_,#ifun{vars=Vs,body=Fb0}}, Free0) ->
Fbu = ubody_used_vars(Fb0, St0),
Ns = lit_list_vars(Vs),
Free1 = subtract(Fbu, Ns),
union(Free1, Free0)
end, [], Fs),
FreeVs = make_vars(Free),
%% Add this free info to State.
St1 = foldl(fun ({N,#ifun{vars=Vs}}, Lst) ->
store_free(N, length(Vs), FreeVs, Lst)
end, St0, Fs),
iletrec_funs_gen(Fs, FreeVs, St1).
%% Now regenerate local functions to use free variable information.
iletrec_funs_gen(_, _, #kern{funs=ignore}=St) ->
%% Optimization: The ultimate caller is only interested in the used variables,
%% not the updated state. Makes a difference if there are nested letrecs.
St;
iletrec_funs_gen(Fs, FreeVs, St) ->
foldl(fun ({N,#ifun{anno=Fa,vars=Vs,body=Fb0}}, Lst0) ->
Arity0 = length(Vs),
{Fb1,_,Lst1} = ubody(Fb0, return, Lst0#kern{ff={N,Arity0}}),
Arity = Arity0 + length(FreeVs),
Fun = make_fdef(#k{us=[],ns=[],a=Fa}, N, Arity,
Vs++FreeVs, Fb1),
Lst1#kern{funs=[Fun|Lst1#kern.funs]}
end, St, Fs).
%% is_exit_expr(Kexpr) -> boolean().
%% Test whether Kexpr always exits and never returns.
is_exit_expr(#k_receive_next{}) -> true;
is_exit_expr(_) -> false.
%% is_enter_expr(Kexpr) -> boolean().
%% Test whether Kexpr is "enterable", i.e. can handle return from
%% within itself without extra #k_return{}.
is_enter_expr(#k_try{}) -> true;
is_enter_expr(#k_call{}) -> true;
is_enter_expr(#k_match{}) -> true;
is_enter_expr(#k_receive{}) -> true;
is_enter_expr(#k_receive_next{}) -> true;
is_enter_expr(_) -> false.
%% uexpr(Expr, Break, State) -> {Expr,[UsedVar],State}.
%% Tag an expression with its used variables.
%% Break = return | {break,[RetVar]}.
uexpr(#k_test{anno=A,op=Op,args=As}=Test, {break,Rs}, St) ->
[] = Rs, %Sanity check
Used = union(op_vars(Op), lit_list_vars(As)),
{Test#k_test{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A}},
Used,St};
uexpr(#iset{anno=A,vars=Vs,arg=E0,body=B0}, {break,_}=Br, St0) ->
Ns = lit_list_vars(Vs),
{E1,Eu,St1} = uexpr(E0, {break,Vs}, St0),
{B1,Bu,St2} = uexpr(B0, Br, St1),
Used = union(Eu, subtract(Bu, Ns)),
{#k_seq{anno=#k{us=Used,ns=Ns,a=A},arg=E1,body=B1},Used,St2};
uexpr(#k_call{anno=A,op=#k_local{name=F,arity=Ar}=Op,args=As0}=Call, Br, St) ->
Free = get_free(F, Ar, St),
As1 = As0 ++ Free, %Add free variables LAST!
Used = lit_list_vars(As1),
{case Br of
{break,Rs} ->
Call#k_call{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A},
op=Op#k_local{arity=Ar + length(Free)},
args=As1,ret=Rs};
return ->
#k_enter{anno=#k{us=Used,ns=[],a=A},
op=Op#k_local{arity=Ar + length(Free)},
args=As1}
end,Used,St};
uexpr(#k_call{anno=A,op=Op,args=As}=Call, {break,Rs}, St) ->
Used = union(op_vars(Op), lit_list_vars(As)),
{Call#k_call{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A},ret=Rs},
Used,St};
uexpr(#k_call{anno=A,op=Op,args=As}, return, St) ->
Used = union(op_vars(Op), lit_list_vars(As)),
{#k_enter{anno=#k{us=Used,ns=[],a=A},op=Op,args=As},
Used,St};
uexpr(#k_bif{anno=A,op=Op,args=As}=Bif, {break,Rs}, St0) ->
Used = union(op_vars(Op), lit_list_vars(As)),
{Brs,St1} = bif_returns(Op, Rs, St0),
{Bif#k_bif{anno=#k{us=Used,ns=lit_list_vars(Brs),a=A},ret=Brs},
Used,St1};
uexpr(#k_match{anno=A,vars=Vs,body=B0}, Br, St0) ->
Rs = break_rets(Br),
{B1,Bu,St1} = umatch(B0, Br, St0),
case is_in_guard(St1) of
true ->
{#k_guard_match{anno=#k{us=Bu,ns=lit_list_vars(Rs),a=A},
vars=Vs,body=B1,ret=Rs},Bu,St1};
false ->
{#k_match{anno=#k{us=Bu,ns=lit_list_vars(Rs),a=A},
vars=Vs,body=B1,ret=Rs},Bu,St1}
end;
uexpr(#k_receive{anno=A,var=V,body=B0,timeout=T,action=A0}, Br, St0) ->
Rs = break_rets(Br),
Tu = lit_vars(T), %Timeout is atomic
{B1,Bu,St1} = umatch(B0, Br, St0),
{A1,Au,St2} = ubody(A0, Br, St1),
Used = del_element(V#k_var.name, union(Bu, union(Tu, Au))),
{#k_receive{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A},
var=V,body=B1,timeout=T,action=A1,ret=Rs},
Used,St2};
uexpr(#k_receive_accept{anno=A}, _, St) ->
{#k_receive_accept{anno=#k{us=[],ns=[],a=A}},[],St};
uexpr(#k_receive_next{anno=A}, _, St) ->
{#k_receive_next{anno=#k{us=[],ns=[],a=A}},[],St};
uexpr(#k_try{anno=A,arg=A0,vars=Vs,body=B0,evars=Evs,handler=H0},
{break,Rs0}=Br, St0) ->
case is_in_guard(St0) of
true ->
{[#k_var{name=X}],#k_var{name=X}} = {Vs,B0}, %Assertion.
#k_atom{val=false} = H0, %Assertion.
{Avs,St1} = new_vars(length(Rs0), St0),
{A1,Bu,St} = uexpr(A0, {break,Avs}, St1),
{#k_protected{anno=#k{us=Bu,ns=lit_list_vars(Rs0),a=A},
arg=A1,ret=Rs0,inner=Avs},Bu,St};
false ->
{Avs,St1} = new_vars(length(Vs), St0),
{A1,Au,St2} = ubody(A0, {break,Avs}, St1),
{B1,Bu,St3} = ubody(B0, Br, St2),
{H1,Hu,St4} = ubody(H0, Br, St3),
Used = union([Au,subtract(Bu, lit_list_vars(Vs)),
subtract(Hu, lit_list_vars(Evs))]),
{#k_try{anno=#k{us=Used,ns=lit_list_vars(Rs0),a=A},
arg=A1,vars=Vs,body=B1,evars=Evs,handler=H1,ret=Rs0},
Used,St4}
end;
uexpr(#k_try{anno=A,arg=A0,vars=Vs,body=B0,evars=Evs,handler=H0},
return, St0) ->
{Avs,St1} = new_vars(length(Vs), St0), %Need dummy names here
{A1,Au,St2} = ubody(A0, {break,Avs}, St1), %Must break to clean up here!
{B1,Bu,St3} = ubody(B0, return, St2),
{H1,Hu,St4} = ubody(H0, return, St3),
Used = union([Au,subtract(Bu, lit_list_vars(Vs)),
subtract(Hu, lit_list_vars(Evs))]),
{#k_try_enter{anno=#k{us=Used,ns=[],a=A},
arg=A1,vars=Vs,body=B1,evars=Evs,handler=H1},
Used,St4};
uexpr(#k_catch{anno=A,body=B0}, {break,Rs0}, St0) ->
{Rb,St1} = new_var(St0),
{B1,Bu,St2} = ubody(B0, {break,[Rb]}, St1),
%% Guarantee ONE return variable.
{Ns,St3} = new_vars(1 - length(Rs0), St2),
Rs1 = Rs0 ++ Ns,
{#k_catch{anno=#k{us=Bu,ns=lit_list_vars(Rs1),a=A},body=B1,ret=Rs1},Bu,St3};
uexpr(#ifun{anno=A,vars=Vs,body=B0}, {break,Rs}, St0) ->
{B1,Bu,St1} = ubody(B0, return, St0), %Return out of new function
Ns = lit_list_vars(Vs),
Free = subtract(Bu, Ns), %Free variables in fun
Fvs = make_vars(Free),
Arity = length(Vs) + length(Free),
{Fname,St} =
case lists:keyfind(id, 1, A) of
{id,{_,_,Fname0}} ->
{Fname0,St1};
false ->
%% No id annotation. Must invent a fun name.
new_fun_name(St1)
end,
Fun = make_fdef(#k{us=[],ns=[],a=A}, Fname, Arity, Vs++Fvs, B1),
{#k_bif{anno=#k{us=Free,ns=lit_list_vars(Rs),a=A},
op=#k_internal{name=make_fun,arity=length(Free)+2},
args=[#k_atom{val=Fname},#k_int{val=Arity}|Fvs],
ret=Rs},
Free,add_local_function(Fun, St)};
uexpr(Lit, {break,Rs0}, St0) ->
%% Transform literals to puts here.
%%ok = io:fwrite("uexpr ~w:~p~n", [?LINE,Lit]),
Used = lit_vars(Lit),
{Rs,St1} = ensure_return_vars(Rs0, St0),
{#k_put{anno=#k{us=Used,ns=lit_list_vars(Rs),a=get_kanno(Lit)},
arg=Lit,ret=Rs},Used,St1}.
add_local_function(_, #kern{funs=ignore}=St) ->
St;
add_local_function(#k_fdef{func=Name,arity=Arity}=F, #kern{funs=Funs}=St) ->
case is_defined(Name, Arity, Funs) of
false ->
St#kern{funs=[F|Funs]};
true ->
St
end.
is_defined(Name, Arity, [#k_fdef{func=Name,arity=Arity}|_]) ->
true;
is_defined(Name, Arity, [#k_fdef{}|T]) ->
is_defined(Name, Arity, T);
is_defined(_, _, []) -> false.
%% Make a #k_fdef{}, making sure that the body is always a #k_match{}.
make_fdef(Anno, Name, Arity, Vs, #k_match{}=Body) ->
#k_fdef{anno=Anno,func=Name,arity=Arity,vars=Vs,body=Body};
make_fdef(Anno, Name, Arity, Vs, Body) ->
Ka = get_kanno(Body),
Match = #k_match{anno=#k{us=Ka#k.us,ns=[],a=Ka#k.a},
vars=Vs,body=Body,ret=[]},
#k_fdef{anno=Anno,func=Name,arity=Arity,vars=Vs,body=Match}.
%% get_free(Name, Arity, State) -> [Free].
%% store_free(Name, Arity, [Free], State) -> State.
get_free(F, A, #kern{free=FreeMap}) ->
Key = {F,A},
case FreeMap of
#{Key:=Val} -> Val;
_ -> []
end.
store_free(F, A, Free, #kern{free=FreeMap0}=St) ->
Key = {F,A},
FreeMap = FreeMap0#{Key=>Free},
St#kern{free=FreeMap}.
break_rets({break,Rs}) -> Rs;
break_rets(return) -> [].
%% bif_returns(Op, [Ret], State) -> {[Ret],State}.
bif_returns(#k_remote{mod=M,name=N,arity=Ar}, Rs, St0) ->
%%ok = io:fwrite("uexpr ~w:~p~n", [?LINE,{M,N,Ar,Rs}]),
{Ns,St1} = new_vars(bif_vals(M, N, Ar) - length(Rs), St0),
{Rs ++ Ns,St1};
bif_returns(#k_internal{name=N,arity=Ar}, Rs, St0) ->
%%ok = io:fwrite("uexpr ~w:~p~n", [?LINE,{N,Ar,Rs}]),
{Ns,St1} = new_vars(bif_vals(N, Ar) - length(Rs), St0),
{Rs ++ Ns,St1}.
%% ensure_return_vars([Ret], State) -> {[Ret],State}.
ensure_return_vars([], St) -> new_vars(1, St);
ensure_return_vars([_]=Rs, St) -> {Rs,St}.
%% umatch(Match, Break, State) -> {Match,[UsedVar],State}.
%% Tag a match expression with its used variables.
umatch(#k_alt{anno=A,first=F0,then=T0}, Br, St0) ->
{F1,Fu,St1} = umatch(F0, Br, St0),
{T1,Tu,St2} = umatch(T0, Br, St1),
Used = union(Fu, Tu),
{#k_alt{anno=#k{us=Used,ns=[],a=A},first=F1,then=T1},
Used,St2};
umatch(#k_select{anno=A,var=V,types=Ts0}, Br, St0) ->
{Ts1,Tus,St1} = umatch_list(Ts0, Br, St0),
Used = case member(no_usage, get_kanno(V)) of
true -> Tus;
false -> add_element(V#k_var.name, Tus)
end,
{#k_select{anno=#k{us=Used,ns=[],a=A},var=V,types=Ts1},Used,St1};
umatch(#k_type_clause{anno=A,type=T,values=Vs0}, Br, St0) ->
{Vs1,Vus,St1} = umatch_list(Vs0, Br, St0),
{#k_type_clause{anno=#k{us=Vus,ns=[],a=A},type=T,values=Vs1},Vus,St1};
umatch(#k_val_clause{anno=A,val=P0,body=B0}, Br, St0) ->
{U0,Ps} = pat_vars(P0),
P = set_kanno(P0, #k{us=U0,ns=Ps,a=get_kanno(P0)}),
{B1,Bu,St1} = umatch(B0, Br, St0),
Used = union(U0, subtract(Bu, Ps)),
{#k_val_clause{anno=#k{us=Used,ns=[],a=A},val=P,body=B1},
Used,St1};
umatch(#k_guard{anno=A,clauses=Gs0}, Br, St0) ->
{Gs1,Gus,St1} = umatch_list(Gs0, Br, St0),
{#k_guard{anno=#k{us=Gus,ns=[],a=A},clauses=Gs1},Gus,St1};
umatch(#k_guard_clause{anno=A,guard=G0,body=B0}, Br, St0) ->
%%ok = io:fwrite("~w: ~p~n", [?LINE,G0]),
{G1,Gu,St1} = uexpr(G0, {break,[]},
St0#kern{guard_refc=St0#kern.guard_refc+1}),
%%ok = io:fwrite("~w: ~p~n", [?LINE,G1]),
{B1,Bu,St2} = umatch(B0, Br, St1#kern{guard_refc=St1#kern.guard_refc-1}),
Used = union(Gu, Bu),
{#k_guard_clause{anno=#k{us=Used,ns=[],a=A},guard=G1,body=B1},Used,St2};
umatch(B0, Br, St0) -> ubody(B0, Br, St0).
umatch_list(Ms0, Br, St) ->
foldr(fun (M0, {Ms1,Us,Sta}) ->
{M1,Mu,Stb} = umatch(M0, Br, Sta),
{[M1|Ms1],union(Mu, Us),Stb}
end, {[],[],St}, Ms0).
%% op_vars(Op) -> [VarName].
op_vars(#k_remote{mod=Mod,name=Name}) ->
ordsets:from_list([V || #k_var{name=V} <- [Mod,Name]]);
op_vars(#k_internal{}) -> [];
op_vars(Atomic) -> lit_vars(Atomic).
%% lit_vars(Literal) -> [VarName].
%% Return the variables in a literal.
lit_vars(#k_var{name=N}) -> [N];
lit_vars(#k_int{}) -> [];
lit_vars(#k_float{}) -> [];
lit_vars(#k_atom{}) -> [];
%%lit_vars(#k_char{}) -> [];
lit_vars(#k_nil{}) -> [];
lit_vars(#k_cons{hd=H,tl=T}) ->
union(lit_vars(H), lit_vars(T));
lit_vars(#k_map{var=Var,es=Es}) ->
lit_list_vars([Var|Es]);
lit_vars(#k_map_pair{key=K,val=V}) ->
union(lit_vars(K), lit_vars(V));
lit_vars(#k_binary{segs=V}) -> lit_vars(V);
lit_vars(#k_bin_end{}) -> [];
lit_vars(#k_bin_seg{size=Size,seg=S,next=N}) ->
union(lit_vars(Size), union(lit_vars(S), lit_vars(N)));
lit_vars(#k_tuple{es=Es}) ->
lit_list_vars(Es);
lit_vars(#k_literal{}) -> [].
lit_list_vars(Ps) ->
foldl(fun (P, Vs) -> union(lit_vars(P), Vs) end, [], Ps).
%% pat_vars(Pattern) -> {[UsedVarName],[NewVarName]}.
%% Return variables in a pattern. All variables are new variables
%% except those in the size field of binary segments.
%% and map_pair keys
pat_vars(#k_var{name=N}) -> {[],[N]};
%%pat_vars(#k_char{}) -> {[],[]};
pat_vars(#k_literal{}) -> {[],[]};
pat_vars(#k_int{}) -> {[],[]};
pat_vars(#k_float{}) -> {[],[]};
pat_vars(#k_atom{}) -> {[],[]};
pat_vars(#k_nil{}) -> {[],[]};
pat_vars(#k_cons{hd=H,tl=T}) ->
pat_list_vars([H,T]);
pat_vars(#k_binary{segs=V}) ->
pat_vars(V);
pat_vars(#k_bin_seg{size=Size,seg=S}) ->
{U1,New} = pat_list_vars([S]),
{[],U2} = pat_vars(Size),
{union(U1, U2),New};
pat_vars(#k_bin_int{size=Size}) ->
{[],U} = pat_vars(Size),
{U,[]};
pat_vars(#k_bin_end{}) -> {[],[]};
pat_vars(#k_tuple{es=Es}) ->
pat_list_vars(Es);
pat_vars(#k_map{es=Es}) ->
pat_list_vars(Es);
pat_vars(#k_map_pair{key=K,val=V}) ->
{U1,New} = pat_vars(V),
{[], U2} = pat_vars(K),
{union(U1,U2),New}.
pat_list_vars(Ps) ->
foldl(fun (P, {Used0,New0}) ->
{Used,New} = pat_vars(P),
{union(Used0, Used),union(New0, New)} end,
{[],[]}, Ps).
%% List of integers in interval [N,M]. Empty list if N > M.
integers(N, M) when N =< M ->
[N|integers(N + 1, M)];
integers(_, _) -> [].
%% is_in_guard(State) -> true|false.
is_in_guard(#kern{guard_refc=Refc}) ->
Refc > 0.
%%%
%%% Handling of errors and warnings.
%%%
-type error() :: 'bad_call' | 'nomatch_shadow' | {'nomatch_shadow', integer()}.
-spec format_error(error()) -> string().
format_error({nomatch_shadow,Line}) ->
M = io_lib:format("this clause cannot match because a previous clause at line ~p "
"always matches", [Line]),
lists:flatten(M);
format_error(nomatch_shadow) ->
"this clause cannot match because a previous clause always matches";
format_error(bad_call) ->
"invalid module and/or function name; this call will always fail";
format_error(bad_segment_size) ->
"binary construction will fail because of a type mismatch".
add_warning(none, Term, Anno, #kern{ws=Ws}=St) ->
File = get_file(Anno),
St#kern{ws=[{File,[{none,?MODULE,Term}]}|Ws]};
add_warning(Line, Term, Anno, #kern{ws=Ws}=St) ->
File = get_file(Anno),
St#kern{ws=[{File,[{Line,?MODULE,Term}]}|Ws]}.
is_compiler_generated(Ke) ->
Anno = get_kanno(Ke),
member(compiler_generated, Anno).
|