1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>1997</year><year>2016</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>OMG IDL to Erlang Mapping</title>
<prepared></prepared>
<docno></docno>
<date>1998-10-10</date>
<rev></rev>
<file>ch_idl_to_erlang_mapping.xml</file>
</header>
<section>
<title>OMG IDL to Erlang Mapping - Overview</title>
<p>The purpose of OMG IDL, <em>Interface Definition Language</em>, mapping
is to act as translator between platforms and languages. An IDL
specification is supposed to describe data types, object types etc.</p>
<p>CORBA is independent of the programming language used to construct
clients or implementations. In order to use the ORB, it is
necessary for programmers to know how to access ORB functionality
from their programming languages. It translates different IDL constructs
to a specific programming language. This chapter
describes the mapping of OMG IDL constructs to the Erlang programming
language.</p>
</section>
<section>
<title>OMG IDL Mapping Elements</title>
<p>A complete language mapping will allow the programmer to have
access to all ORB functionality in a way that is convenient for
a specified programming language.
</p>
<p>All mapping must define the following elements:
</p>
<list type="bulleted">
<item>All OMG IDL basic and constructed types</item>
<item>References to constants defined in OMG IDL</item>
<item>References to objects defined in OMG IDL</item>
<item>Invocations of operations, including passing of
parameters and receiving of results</item>
<item>Exceptions, including what happens when an operation
raises an exception and how the exception parameters are
accessed</item>
<item>Access to attributes</item>
<item>Signatures for operations defined by the ORB, such as
dynamic invocation interface, the object adapters etc.</item>
<item>Scopes;
OMG IDL has several levels of scopes, which are mapped to Erlang's
two scopes.</item>
</list>
</section>
<section>
<title>Getting Started</title>
<p>To begin with, we should decide which type of objects (i.e. servers) we
need and if two, or more, should export the same functionality. Let us
assume that we want to create a system for DB (database) access for different
kind of users. For example, anyone with a valid password may extract
data, but only a few may update the DB. Usually, an application
is defined within a <c>module</c>, and all global datatypes are defined
on the top-level. To begin with we create a module and the interfaces we
need:</p>
<code type="none">
// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
// A module is simply a container
module DB {
// An interface maps to a CORBA::Object.
interface CommonUser {
};
// Inherit the Consumer interface
interface Administrator : CommonUser {
};
interface Access {
};
};
#endif </code>
<p>Since the <c>Administrator</c> should be able to do the same things as the
<c>CommonUser</c>, the previous inherits from the latter. The <c>Access</c>
interface will grant access to the DB.
Now we are ready to define the functionality and data types we need. But, this
requires that we know a little bit more about the OMG IDL.</p>
<note>
<p>The OMG defines a set of reserved case insensitive key-words, which may
<em>NOT</em> be used as identifiers (e.g. module name). For more
information, see
<seealso marker="#key_words">Reserved Compiler Names and Keywords</seealso></p>
</note>
</section>
<section>
<title>Basic OMG IDL Types</title>
<p>The OMG IDL mapping is strongly typed and, even if you have a good knowledge
of CORBA types, it is essential to read carefully the following mapping to
Erlang types.</p>
<p>The mapping of basic types is straightforward. Note that the
OMG IDL double type is mapped to an Erlang float which does not
support the full double value range.</p>
<table>
<row>
<cell align="left" valign="middle">OMG IDL type</cell>
<cell align="left" valign="middle">Erlang type</cell>
<cell align="left" valign="middle">Note</cell>
</row>
<row>
<cell align="left" valign="middle">float</cell>
<cell align="left" valign="middle">Erlang float</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">double</cell>
<cell align="left" valign="middle">Erlang float</cell>
<cell align="left" valign="middle">value range not supported</cell>
</row>
<row>
<cell align="left" valign="middle">short</cell>
<cell align="left" valign="middle">Erlang integer</cell>
<cell align="left" valign="middle">-2^15 .. 2^15-1</cell>
</row>
<row>
<cell align="left" valign="middle">unsigned short</cell>
<cell align="left" valign="middle">Erlang integer</cell>
<cell align="left" valign="middle">0 .. 2^16-1</cell>
</row>
<row>
<cell align="left" valign="middle">long</cell>
<cell align="left" valign="middle">Erlang integer</cell>
<cell align="left" valign="middle">-2^31 .. 2^31-1</cell>
</row>
<row>
<cell align="left" valign="middle">unsigned long</cell>
<cell align="left" valign="middle">Erlang integer</cell>
<cell align="left" valign="middle">0 .. 2^32-1</cell>
</row>
<row>
<cell align="left" valign="middle">long long</cell>
<cell align="left" valign="middle">Erlang integer</cell>
<cell align="left" valign="middle">-2^63 .. 2^63-1</cell>
</row>
<row>
<cell align="left" valign="middle">unsigned long long</cell>
<cell align="left" valign="middle">Erlang integer</cell>
<cell align="left" valign="middle">0 .. 2^64-1</cell>
</row>
<row>
<cell align="left" valign="middle">char</cell>
<cell align="left" valign="middle">Erlang integer</cell>
<cell align="left" valign="middle">ISO-8859-1</cell>
</row>
<row>
<cell align="left" valign="middle">wchar</cell>
<cell align="left" valign="middle">Erlang integer</cell>
<cell align="left" valign="middle">UTF-16 (ISO-10646-1:1993)</cell>
</row>
<row>
<cell align="left" valign="middle">boolean</cell>
<cell align="left" valign="middle">Erlang atom</cell>
<cell align="left" valign="middle">true/false</cell>
</row>
<row>
<cell align="left" valign="middle">octet</cell>
<cell align="left" valign="middle">Erlang integer</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">any</cell>
<cell align="left" valign="middle">Erlang record</cell>
<cell align="left" valign="middle">#any{typecode, value}</cell>
</row>
<row>
<cell align="left" valign="middle">long double</cell>
<cell align="left" valign="middle">Not supported</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">Object</cell>
<cell align="left" valign="middle">Orber object reference</cell>
<cell align="left" valign="middle">Internal Representation</cell>
</row>
<row>
<cell align="left" valign="middle">void</cell>
<cell align="left" valign="middle">Erlang atom</cell>
<cell align="left" valign="middle">ok</cell>
</row>
<tcaption>OMG IDL basic types</tcaption>
</table>
<p>The <c>any</c> value is written as a record with the field typecode which
contains the <term id="Type Code"><termdef>Type Code is a full definition of a type </termdef></term>representation,
<seealso marker="#tk_values">see also the Type Code table</seealso>,
and the value field itself.</p>
<p>Functions with return type <c>void</c> will return the atom <c>ok</c>.</p>
</section>
<section>
<title>Template OMG IDL Types and Complex Declarators</title>
<p>Constructed types all have native mappings as shown in the table
below.</p>
<table>
<row>
<cell align="left" valign="middle"><em>Type</em></cell>
<cell align="left" valign="middle"><em>IDL code</em></cell>
<cell align="left" valign="middle"><em>Maps to</em></cell>
<cell align="left" valign="middle"><em>Erlang code</em></cell>
</row>
<row>
<cell align="left" valign="middle"><em>string</em></cell>
<cell align="left" valign="middle">typedef string S; <br></br>
void op(in S a);</cell>
<cell align="left" valign="middle">Erlang string</cell>
<cell align="left" valign="middle">ok = op(Obj, "Hello World"),</cell>
</row>
<row>
<cell align="left" valign="middle"><em>wstring</em></cell>
<cell align="left" valign="middle">typedef wstring S; <br></br>
void op(in S a);</cell>
<cell align="left" valign="middle">Erlang list of Integers</cell>
<cell align="left" valign="middle">ok = op(Obj, "Hello World"),</cell>
</row>
<row>
<cell align="left" valign="middle"><em>sequence</em></cell>
<cell align="left" valign="middle">typedef sequence <long, 3> S; <br></br>
void op(in S a);</cell>
<cell align="left" valign="middle">Erlang list</cell>
<cell align="left" valign="middle">ok = op(Obj, [1, 2, 3]),</cell>
</row>
<row>
<cell align="left" valign="middle"><em>array</em></cell>
<cell align="left" valign="middle">typedef string S[2]; <br></br>
void op(in S a);</cell>
<cell align="left" valign="middle">Erlang tuple</cell>
<cell align="left" valign="middle">ok = op(Obj, {"one", "two"}),</cell>
</row>
<row>
<cell align="left" valign="middle"><em>fixed</em></cell>
<cell align="left" valign="middle">typedef fixed<3,2> myFixed; <br></br>
void op(in myFixed a);</cell>
<cell align="left" valign="middle">Erlang tuple</cell>
<cell align="left" valign="middle">MF = fixed:create(3, 2, 314), <br></br>
ok = op(Obj, MF),</cell>
</row>
<tcaption>OMG IDL Template and Complex Declarators</tcaption>
</table>
<section>
<title>String/WString Data Types</title>
<p>A <c>string</c> consists of all possible 8-bit quantities except null.
Most ORB:s uses, including Orber, the character set Latin-1 (ISO-8859-1).
The <c>wstring</c> type is represented as a list of integers, where
each integer represents a wide character. In this case Orber uses, as
most other ORB:s, the UTF-16 (ISO-10646-1:1993) character set.</p>
<p>When defining a a string or wstring they can be of limited length or
null terminated:</p>
<code type="none"><![CDATA[
// Null terminated
typedef string myString;
typedef wstring myWString;
// Maximum length 10
typedef string<10> myString10;
typedef wstring<10> myWString10;
]]></code>
<p>If we want to define a char/string or wchar/wstring constant, we can
use octal (\OOO - one, two or three octal digits),
hexadecimal (\xHH - one or two hexadecimal digits) and unicode (\uHHHH -
one, two, three or four hexadecimal digits.) representation as well.
For example:</p>
<code type="none">
const string SwedensBestSoccerTeam = "\101" "\x49" "\u004B";
const wstring SwedensBestHockeyTeam = L"\101\x49\u004B";
const char aChar = '\u004B';
const wchar aWchar = L'\u004C';
</code>
<p>Naturally, we can use <c>"Erlang"</c>, <c>L"Rocks"</c>, <c>'A'</c>
and <c>L'A'</c> as well.</p>
</section>
<section>
<title>Sequence Data Type</title>
<p>A sequence can be defined to be of a maximum length or unbounded, and may
contain Basic and Template types and scoped names:</p>
<code type="none"><![CDATA[
typedef sequence <short, 1> aShortSequence;
typedef sequence <long> aLongSequence;
typedef sequence <aLongSequence> anEvenLongerSequence;
]]></code>
</section>
<section>
<title>Array Data Type</title>
<p>Arrays are multidimensional, fixed-size arrays. The indices is language
mapping specific, which is why one should not pass them as arguments
to another ORB.</p>
<code type="none">
typedef long myMatrix[2][3];
</code>
</section>
<section>
<title>Fixed Data Type</title>
<p>A Fixed Point literal consists of an integer part (decimal digits),
decimal point and a fraction part (decimal digits),
followed by a <c>D</c> or <c>d</c>. Either the integer part or the
fraction part may be missing; the decimal point may be missing,
but not d/D. The integer part must be a positive integer less than 32.
The Fraction part must be a positive integer less than or equal to
the Integer part.</p>
<code type="none">
const fixed myFixed1 = 3.14D;
const fixed myFixed2 = .14D;
const fixed myFixed3 = 0.14D;
const fixed myFixed4 = 3.D;
const fixed myFixed5 = 3D;
</code>
<p>It is also possible to use unary (+-) and binary (+-*/) operators:</p>
<code type="none">
const fixed myFixed6 = 3D + 0.14D;
const fixed myFixed7 = -3.14D;
</code>
<p>The Fixed Point examples above are, so called, <em>anonymous</em>
definitions. In later CORBA specifications these have been deprecated
as function parameters or return values. Hence, we strongly recommend that
you do not use them. Instead, you should use:</p>
<code type="none"><![CDATA[
typedef fixed<5,3> myFixed53;
const myFixed53 myFixed53constant = 03.140d;
typedef fixed<3,2> myFixed32;
const myFixed32 myFixed32constant = 3.14d;
myFixed53 foo(in myFixed32 MF); // OK
void bar(in fixed<5,3> MF); // Illegal
]]></code>
</section>
<p>For more information, see <seealso marker="fixed">Fixed</seealso> in
Orber's Reference Manual.</p>
<p>Now we continue to work on our IDL specification. To begin with, we want
to limit the size of the logon parameters (Id and password). Since the
<c>UserID</c> and <c>Password</c> parameters, only will be used when
invoking operations on the <c>Access</c> interface, we may choose to define
them within the scope that interface. To keep it simple our DB will contain
employee information. Hence, as the DB key we choose an integer
(<c>EmployeeNo</c>).</p>
<code type="none"><![CDATA[
// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
module DB {
typedef unsigned long EmployeeNo;
interface CommonUser {
any lookup(in EmployeeNo ENo);
};
interface Administrator : CommonUser {
void delete(in EmployeeNo ENo);
};
interface Access {
typedef string<10> UserID;
typedef string<10> Password;
CommonUser logon(in UserID ID, in Password PW);
};
};
#endif ]]></code>
<p>But what should, for example, the <c>lookup</c> operation return? One option
is to use the <c>any</c> data type. But, depending on what kind of data it
encapsulates, this datatype can be rather expensive to use. We might find a
solution to our problems among the <c>Constructed</c> IDL types.</p>
</section>
<section>
<title>Constructed OMG IDL Types</title>
<p>Constructed types all have native mappings as shown in the table
below.</p>
<table>
<row>
<cell align="left" valign="middle"><em>Type</em></cell>
<cell align="left" valign="middle"><em>IDL code</em></cell>
<cell align="left" valign="middle"><em>Maps to</em></cell>
<cell align="left" valign="middle"><em>Erlang code</em></cell>
</row>
<row>
<cell align="left" valign="middle"><em>struct</em></cell>
<cell align="left" valign="middle">struct myStruct { <br></br>
long a; <br></br>
short b; <br></br>
}; <br></br>
void op(in myStruct a);</cell>
<cell align="left" valign="middle">Erlang record</cell>
<cell align="left" valign="middle">ok = op(Obj, #'myStruct'{a=300, b=127}),</cell>
</row>
<row>
<cell align="left" valign="middle"><em>union</em></cell>
<cell align="left" valign="middle">union myUnion switch(long) { <br></br>
case 1: long a; <br></br>
}; <br></br>
void op(in myUnion a);</cell>
<cell align="left" valign="middle">Erlang record</cell>
<cell align="left" valign="middle">ok = op(Obj, #'myUnion'{label=1, value=66}),</cell>
</row>
<row>
<cell align="left" valign="middle"><em>enum</em></cell>
<cell align="left" valign="middle">enum myEnum {one, two}; <br></br>
void op(in myEnum a);</cell>
<cell align="left" valign="middle">Erlang atom</cell>
<cell align="left" valign="middle">ok = op(Obj, one),</cell>
</row>
<tcaption>OMG IDL constructed types</tcaption>
</table>
<section>
<title>Struct Data Type</title>
<p>A <c>struct</c> may have Basic, Template, Scoped Names and Constructed
types as members. By using forward declaration we can define a recursive struct:</p>
<code type="none"><![CDATA[
struct myStruct; // Forward declaration
typedef sequence<myStruct> myStructSeq;
struct myStruct {
myStructSeq chain;
};
// Deprecated definition (anonymous) not supported by IC
struct myStruct {
sequence<myStruct> chain;
};
]]></code>
</section>
<section>
<title>Enum Data Type</title>
<p>The maximum number of identifiers which may defined in an enumeration
is 2³². The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the
identifiers.</p>
</section>
<section>
<title>Union Data Type</title>
<p>A <c>union</c> may consist of:</p>
<list type="bulleted">
<item>Identifier</item>
<item>Switch - may be an integer, char, boolean, enum or scoped name.</item>
<item>Body - with or without a <c>default</c> case; may appear at
most once.</item>
</list>
<p>A case label must match the defined type of the discriminator, and may only
contain a default case if the values given in the non-default labels do
not cover the entire range of the union's discriminant type. For example:</p>
<code type="none">
// Illegal default; all cases covered by
// non-default cases.
union BooleanUnion switch(boolean) {
case TRUE: long TrueValue;
case FALSE: long FalseValue;
default: long DefaultValue;
};
// OK
union BooleanUnion2 switch(boolean) {
case TRUE: long TrueValue;
default: long DefaultValue;
};
</code>
<p>It is not necessary to list all possible values of the union discriminator
in the body. Hence, the value of a union is the value of the discriminator
and, in given order, one of the following:</p>
<list type="ordered">
<item>If the discriminator match a label, explicitly listed in a
case statement, the value must be of the same type.</item>
<item>If the union contains a default label, the value must match the
type of the default label.</item>
<item>No value. Orber then inserts the Erlang atom <c>undefined</c>
in the value field when receiving a union from an external
ORB.</item>
</list>
<p>The above can be summed up to:</p>
<code type="none">
// If the discriminator equals 1 or 2 the value
// is a long. Otherwise, the atom undefined.
union LongUnion switch(long) {
case 1:
case 2: long TrueValue;
};
// If the discriminator equals 1 or 2 the value
// is a long. Otherwise, a boolean.
union LongUnion2 switch(long) {
case 1:
case 2: long TrueValue;
default: boolean DefaultValue;
};
</code>
<p>In the same way as structs, unions can be recursive if forward
declaration is used (anonymous types is deprecated and not supported):</p>
<code type="none"><![CDATA[
// Forward declaration
union myUnion;
typedef sequence<myUnion>myUnionSeq;
union myUnion switch (long) {
case 1 : myUnionSeq chain;
default: boolean DefaultValue;
};
]]></code>
<note>
<p>Recursive types (union and struct) require Light IFR. I.e. the
IC option {light_ifr, true} is used and that Orber is configured in such a way that
Light IFR is activated. Recursive TypeCode is currently not supported, which is
why these cannot be encapsulated in an any data type.</p>
</note>
</section>
<warning>
<p>Every field in, for example, a struct must be initiated. Otherwise
it will be set to the atom <c>undefined</c>, which Orber cannot
encode when communicating via IIOP. In the example above, invoking
the operation with #'myStruct'{a=300} will fail (equal to
#'myStruct'{a=300, b=undefined})</p>
</warning>
<p>Now we can continue to work on our IDL specification. To begin with, we should
determine the return value of the <c>lookup</c> operation. Since the <c>any</c>
type can be rather expensive we can use a <c>struct</c> or a <c>union</c> instead.
If we intend to return the same information about a employee every time we can
use a struct. Let us assume that the DB contains the name, address, employee
number and department.</p>
<code type="none"><![CDATA[
// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
module DB {
typedef unsigned long EmployeeNo;
enum Department {Department1, Department2};
struct employee {
EmployeeNo No;
string Name;
string Address;
Department Dpt;
};
typedef employee EmployeeData;
interface CommonUser {
EmployeeData lookup(in EmployeeNo ENo);
};
interface Administrator : CommonUser {
void delete(in EmployeeNo ENo);
};
interface Access {
typedef string<10> UserID;
typedef string<10> Password;
// Since Administrator inherits from CommonUser
// the returned Object can be of either type.
CommonUser logon(in UserID ID, in Password PW);
};
};
#endif ]]></code>
<p>We can also define exceptions (i.e. not system exception) thrown by
each interface. Since exceptions are thoroughly described in the chapter
<seealso marker="ch_exceptions">System and User Defined Exceptions</seealso>,
we choose not to. Hence, we are now ready to compile our IDL-file by
invoking:</p>
<pre>
$ <input>erlc DB.idl</input>
</pre>
<p>or:</p>
<pre>
$ <input>erl</input>
Erlang (BEAM) emulator version 5.1.1 [threads:0]
Eshell V5.1.1 (abort with ^G)
1> <input>ic:gen('DB').</input>
ok
2> <input>halt().</input>
</pre>
<p>The next step is to implement our servers. But, to be able to do that,
we need to know how we can access data type definitions. For example,
since a struct is mapped to an Erlang record we must include an hrl-file
in our callback module.</p>
</section>
<section>
<title>Scoped Names and Generated Files</title>
<section>
<title>Scoped Names</title>
<p>Within a scope all identifiers must be unique. The following kinds of
definitions form scopes in the OMG IDL:</p>
<list type="bulleted">
<item><em>module</em></item>
<item><em>interface</em></item>
<item><em>operation</em></item>
<item><em>valuetype</em></item>
<item><em>struct</em></item>
<item><em>union</em></item>
<item><em>exception</em></item>
</list>
<p>For example, since enumerants do not form a scope, the following IDL code
is not valid:</p>
<code type="none">
module MyModule {
// 'two' is not unique
enum MyEnum {one, two};
enum MyOtherEnum {two, three};
};
</code>
<p>But, since Erlang only has two levels of scope, <em>module</em> and
<em>function</em>, the OMG IDL scope is mapped as follows:</p>
<list type="bulleted">
<item><em>Function Scope</em> - used for constants, operations and attributes.</item>
<item><em>Erlang Module Scope</em> - the Erlang module scope
handles the remaining OMG IDL scopes.</item>
</list>
<p>An Erlang module, corresponding to an IDL global name, is derived by
converting occurrences of "::" to underscore, and eliminating
the leading "::". Hence, accessing <c>MyEnum</c> from another module, one
use <c>MyModule::MyEnum</c></p>
<p>For example, an operation <c>foo</c> defined in interface <c>I</c>, which
is defined in module <c>M</c>, would be written in IDL as <c>M::I::foo</c>
and as <c>'M_I':foo</c> in Erlang - <c>foo</c> is the function
name and <c>'M_I'</c> is the name of the Erlang module. Applying this
knowledge to a stripped version of the DB.idl gives:</p>
<code type="none"><![CDATA[
// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
// ++ topmost scope ++
// IC generates oe_XX.erl and oe_XX.hrl.
// XX is equal to the name of the IDL-file.
// Tips: create one IDL-file for each top module
// and give the file the same name (DB.idl).
// The oe_XX.erl module is used to register data
// in the IFR.
module DB {
// ++ Module scope ++
// To access 'EmployeeNo' from another scope, use:
// DB::EmployeeNo, DB::Access etc.
typedef unsigned long EmployeeNo;
enum Department {Department1, Department2};
// Definitions of this struct is contained in:
// DB.hrl
// Access functions exported by:
// DB_employee.erl
struct employee {
... CUT ...
};
typedef employee EmployeeData;
... CUT ...
// If this interface should inherit an interface
// in another module (e.g. OtherModule) use:
// interface Access : OtherModule::OtherInterface
interface Access {
// ++ interface scope ++
// Types within this scope is accessible via:
// DB::Access::UserID
// The Stub/Skeleton for this interface is
// placed in the module:
// DB_Access.erl
typedef string<10> UserID;
typedef string<10> Password;
// Since Administrator inherits from CommonUser
// the returned Object can be of either type.
// This operation is exported from:
// DB_Access.erl
CommonUser logon(in UserID ID, in Password PW);
};
};
#endif ]]></code>
<p>Using underscores in IDL names can lead to ambiguities
due to the name mapping described above. It is advisable to
avoid the use of underscores in identifiers. For example, the following
definition would generate two structures named <c>x_y_z</c>.</p>
<code type="none">
module x {
struct y_z {
...
};
interface y {
struct z {
...
};
};
};
</code>
</section>
<section>
<title>Generated Files</title>
<p>Several files can be generated for each scope.</p>
<list type="bulleted">
<item>An Erlang source code file (<c>.erl</c>) is generated
for top level scope as well as the Erlang header file.</item>
<item>An Erlang header file (<c>.hrl</c>) will be generated for
each scope. The header file will contain record definitions
for all <c>struct</c>, <c>union</c> and <c>exception</c>
types in that scope.</item>
<item>Modules that contain at least one constant definition,
will produce Erlang source code files (<c>.erl</c>).
That Erlang file will contain constant functions for
that scope.
Modules that contain no constant definitions are considered
empty and no code will be produced for them, but only for
their included modules/interfaces.</item>
<item>Interfaces will produce Erlang source code files (<c>.erl</c>),
this code will contain all operation stub code and implementation
functions.</item>
<item>In addition to the scope-related files, an Erlang source file will
be generated for each definition of the types <c>struct</c>,
<c>union</c> and <c>exception</c> (these are the types that
will be represented in Erlang as records).
This file will contain special access functions for that record.</item>
<item>The top level scope will produce two files, one header file
(<c>.hrl</c>) and one Erlang source file (<c>.erl</c>).
These files are named as the IDL file, prefixed with <c>oe_</c>.</item>
</list>
<p>After compiling DB.idl, the following files have been generated:</p>
<list type="bulleted">
<item><c>oe_DB.hrl</c> and <c>oe_DB.erl</c> for the top scope level.</item>
<item><c>DB.hrl</c> for the module <c>DB</c>.</item>
<item><c>DB_Access.hrl</c> and <c>DB_Access.erl</c> for the interface
<c>DB_Access</c>.</item>
<item><c>DB_CommonUser.hrl</c> and <c>DB_CommonUser.erl</c> for the interface
<c>DB_CommonUser</c>.</item>
<item><c>DB_Administrator.hrl</c> and <c>DB_Administrator.erl</c> for the interface
<c>DB_Administrator</c>.</item>
<item><c>DB_employee.erl</c> for the structure <c>employee</c> in module
<c>DB</c>.</item>
</list>
<p>Since the <c>employee</c> struct is defined in the top level scope,
the Erlang record definition is found in <c>DB.hrl</c>. IC also generates
stubs/skeletons (e.g. <c>DB_CommonUser.erl</c>) and access functions for
some datatypes (e.g. <c>DB_employee.erl</c>). How the stubs/skeletons are
used is thoroughly described in
<seealso marker="ch_stubs">Stubs/Skeletons</seealso> and
<seealso marker="Module_Interface">Module_Interface</seealso>.</p>
</section>
</section>
<section>
<title>Typecode, Identity and Name Access Functions</title>
<p>As mentioned in a previous section, <c>struct</c>, <c>union</c> and
<c>exception</c> types yield record definitions and access code
for that record.
For <c>struct</c>, <c>union</c>, <c>exception</c>, <c>array</c> and
<c>sequence</c> types, a special file is generated that holds access
functions for <c>TypeCode</c>, <c>Identity</c> and <c>Name</c>.
These functions are put in the file corresponding to the scope where
they are defined. For example, the module <c>DB_employee.erl</c>,
representing the <c>employee</c> struct, exports the following functions:</p>
<list type="bulleted">
<item>tc/0 - returns the type code for the struct.</item>
<item>id/0 - returns the IFR identity of the struct. In this case
the returned value is <c>"IDL:DB/employee:1.0"</c>, but
if the struct was defined in the scope of <c>CommonUser</c>,
the result would be <c>"IDL:DB/CommonUser/employee:1.0"</c>.
However, the user usually do not need to know the Id, just
which Erlang module contains the correct Id.</item>
<item>name/0 - returns the scoped name of the struct. The <c>employee</c>
struct name is <c>"DB_employee"</c>.</item>
</list>
<p><term id="Type Codes"><termdef>Type codes give a complete description of the type including all its components and structure.</termdef></term>are, for example, used in <seealso marker="any">Any</seealso> values.
Hence, we can encapsulate the <c>employee</c> struct in an <c>any</c>
type by:</p>
<code type="none">
%% Erlang code
....
AnEmployee = #'DB_employee'{'No' = 1,
'Name' = "Adam Ivan Kendall",
'Address' = "Rasunda, Solna",
'Dpt' = 'Department1'},
EmployeeTC = 'DB_employee':tc(),
EmployeeAny = any:create(EmployeeTC, AnEmployee),
....
</code>
<p>For more information, see the
<seealso marker="#tk_values">Type Code listing</seealso>.</p>
</section>
<section>
<title>References to Constants</title>
<p>Constants are generated as Erlang functions, and are accessed by a
single function call. The functions are put in the file
corresponding to the scope where they are defined. There is no
need for an object to be started to access a constant.</p>
<p>Example:</p>
<code type="none">
// m.idl
module m {
const float pi = 3.14;
interface i {
const float pi = 3.1415;
};
};
</code>
<p>Since the two constants are defined in different scopes, the IDL code
above is valid, but not necessarily a good approach. After compiling
<c>m.idl</c>, the constant definitions can be extracted by invoking:</p>
<pre>
$ <input>erlc m.idl</input>
$ <input>erlc m.erl</input>
$ <input>erl</input>
Erlang (BEAM) emulator version 5.1.1 [threads:0]
Eshell V5.1.1 (abort with ^G)
1> <input>m:pi().</input>
3.14
2> <input>m_i:pi().</input>
3.1415
3> <input>halt().</input>
</pre>
</section>
<section>
<title>References to Objects Defined in OMG IDL</title>
<p>Objects are accessed by object references. An object reference
is an opaque Erlang term created and maintained by the ORB.</p>
<p>Objects are implemented by providing implementations for all
operations and attributes of the Object, <seealso marker="#op_impl">see operation implementation</seealso>.</p>
</section>
<section>
<title>Exceptions</title>
<p>Exceptions are handled as Erlang catch and throws. Exceptions
are translated to messages over an IIOP bridge but converted
back to a throw on the receiving side. Object implementations
that invoke operations on other objects must be aware of the
possibility of a non-local return. This includes invocation of
ORB and IFR services. See also the
<seealso marker="ch_exceptions">Exceptions</seealso> section.</p>
<p>Exception parameters are mapped as an Erlang record and accessed
as such.</p>
<p>An object implementation that raises an exception will use the
<c>corba:raise/1</c> function, passing the exception record as
parameter.</p>
</section>
<section>
<title>Access to Attributes</title>
<p>Attributes are accessed through their access functions. An
attribute implicitly defines the <c>_get</c> and <c>_set</c>
operations. These operations are handled in the same way as
normal operations. The <c>_get</c> operation is defined as a <c>readonly</c>
attribute.</p>
<code type="none">
readonly attribute long RAttribute;
attribute long RWAttribute;
</code>
<p>The <c>RAttribute</c> requires that you implement, in your call-back module,
<c>_get_RAttribute</c>. For the <c>RWAttribute</c> it is necessary to implement
<c>_get_RWAttribute</c> and <c>_set_RWAttribute</c>.</p>
</section>
<section>
<title>Invocations of Operations</title>
<marker id="op_impl"></marker>
<p>A standard Erlang <c>gen_server</c> behavior is used for
object implementation. The <c>gen_server</c> state is then
used as the object internal state. Implementation of the object
function is achieved by implementing its methods and attribute operations.
These functions will usually have the internal state as their first parameter,
followed by any <c>in</c> and <c>inout</c> parameters. </p>
<p>Do not confuse the
object internal state with its object reference. The object internal state is
an Erlang term which has a format defined by the user.</p>
<note>
<p>It is not always the case that the internal state will be the first parameter, as stubs can use their own object reference as the first parameter (see the IC documentation).</p>
</note>
<p>A function call will invoke an operation. The first
parameter of the function should be the object reference and then
all <c>in</c> and <c>inout</c> parameters follow in the same
order as specified in the IDL specification. The result will be a return value
unless the function has <c>inout</c> or <c>out</c> parameters specified;
in which case, a tuple of the return value, followed by the parameters will
be returned.</p>
<p>Example:</p>
<code type="none">
// IDL
module m {
interface i {
readonly attribute long RAttribute;
attribute long RWAttribute;
long foo(in short a);
long bar(in char c, inout string s, out long count);
void baz(out long Id);
};
};
</code>
<p>Is used in Erlang as :</p>
<code type="none">
%% Erlang code
....
Obj = ... %% get object reference
RAttr = m_i:'_get_RAttribute'(Obj),
RWAttr = m_i:'_get_RWAttribute'(Obj),
ok = m_i:'_set_RWAttribute'(Obj, Long),
R1 = m_i:foo(Obj, 55),
{R2, S, Count} = m_i:bar(Obj, $a, "hello"),
....
</code>
<p>Note how the <c>inout</c> parameter is passed <em>and</em>
returned. There is no way to use a single occurrence of a
variable for this in Erlang. Also note, that <c>ok</c>, Orber's
representation of the IDL-type <c>void</c>, must be returned by
<c>baz</c> and <c>'_set_RWAttribute'</c>.
These operations can be implemented in the call-back module as:</p>
<code type="none">
'_set_RWAttribute'(State, Long) ->
{reply, ok, State}.
'_get_RWAttribute'(State) ->
{reply, Long, State}.
'_get_RAttribute'(State) ->
{reply, Long, State}.
foo(State, AShort) ->
{reply, ALong, State}.
bar(State, AShort, AString) ->
{reply, {ALong, "MyString", ALong}, State}.
baz(State) ->
{reply, {ok, AId}, State}.
</code>
<p>The operations may require more arguments (depends on IC options used). For
more information, see <seealso marker="ch_stubs">Stubs/Skeletons</seealso>
and <seealso marker="Module_Interface">Module_Interface</seealso>.</p>
<warning>
<p>A function can also be defined to be <c>oneway</c>, i.e.
asynchronous. But, since the behavior of a oneway operation is not
defined in the OMG specifications (i.e. the behavior can differ depending on
which other ORB Orber is communicating with), one should avoid using it.</p>
</warning>
</section>
<section>
<title>Implementing the DB Application</title>
<p>Now we are ready to implement the call-back modules. There are three modules
we must create:</p>
<list type="bulleted">
<item>DB_Access_impl.erl</item>
<item>DB_CommonUser_impl.erl</item>
<item>DB_Administrator_impl.erl</item>
</list>
<p>An easy way to accomplish that, is to use the IC backend <c>erl_template</c>,
which will generate a complete call-back module. One should also add
the same compile options, for example <c>this</c> or <c>from</c>,
used when generating the stub/skeleton modules:</p>
<code type="none">
$> erlc +"{be,erl_template}" DB.idl
</code>
<p>We begin with implementing the <c>DB_Access_impl.erl</c> module, which,
if we used <c>erl_template</c>, will look like the following. All we need
to do is to add the logic to the <c>logon</c> operation.</p>
<code type="none"><![CDATA[
%%----------------------------------------------------------------------
%% <LICENSE>
%%
%% $Id$
%%
%%----------------------------------------------------------------------
%% Module : DB_Access_impl.erl
%%
%% Source : /home/user/example/DB.idl
%%
%% Description :
%%
%% Creation date: 2005-05-20
%%
%%----------------------------------------------------------------------
-module('DB_Access_impl').
-export([logon/3]).
%%----------------------------------------------------------------------
%% Internal Exports
%%----------------------------------------------------------------------
-export([init/1,
terminate/2,
code_change/3,
handle_info/2]).
%%----------------------------------------------------------------------
%% Include Files
%%----------------------------------------------------------------------
%%----------------------------------------------------------------------
%% Macros
%%----------------------------------------------------------------------
%%----------------------------------------------------------------------
%% Records
%%----------------------------------------------------------------------
-record(state, {}).
%%======================================================================
%% API Functions
%%======================================================================
%%----------------------------------------------------------------------
%% Function : logon/3
%% Arguments : State - term()
%% ID = String()
%% PW = String()
%% Returns : ReturnValue = OE_Reply
%% OE_Reply = Object_Ref()
%% Raises :
%% Description:
%%----------------------------------------------------------------------
logon(State, ID, PW) ->
%% Check if the ID/PW is valid and what
%% type of user it is (Common or Administrator).
OE_Reply
= case check_user(ID, PW) of
{ok, administrator} ->
'DB_Administrator':oe_create();
{ok, common} ->
'DB_CommonUser':oe_create();
error ->
%% Here we should throw an exception
corba:raise(....)
end,
{reply, OE_Reply, State}.
%%======================================================================
%% Internal Functions
%%======================================================================
%%----------------------------------------------------------------------
%% Function : init/1
%% Arguments : Env = term()
%% Returns : {ok, State} |
%% {ok, State, Timeout} |
%% ignore |
%% {stop, Reason}
%% Raises : -
%% Description: Initiates the server
%%----------------------------------------------------------------------
init(_Env) ->
{ok, #state{}}.
%%----------------------------------------------------------------------
%% Function : terminate/2
%% Arguments : Reason = normal | shutdown | term()
%% State = term()
%% Returns : ok
%% Raises : -
%% Description: Invoked when the object is terminating.
%%----------------------------------------------------------------------
terminate(_Reason, _State) ->
ok.
%%----------------------------------------------------------------------
%% Function : code_change/3
%% Arguments : OldVsn = undefined | term()
%% State = NewState = term()
%% Extra = term()
%% Returns : {ok, NewState}
%% Raises : -
%% Description: Invoked when the object should update its internal state
%% due to code replacement.
%%----------------------------------------------------------------------
code_change(_OldVsn, State, _Extra) ->
{ok, State}.
%%----------------------------------------------------------------------
%% Function : handle_info/2
%% Arguments : Info = normal | shutdown | term()
%% State = NewState = term()
%% Returns : {noreply, NewState} |
%% {noreply, NewState, Timeout} |
%% {stop, Reason, NewState}
%% Raises : -
%% Description: Invoked when, for example, the server traps exits.
%%----------------------------------------------------------------------
handle_info(_Info, State) ->
{noreply, State}.
]]></code>
<p>Since <c>DB_Administrator</c> inherits from <c>DB_CommonUser</c>,
we must implement <c>delete</c> in the <c>DB_Administrator_impl.erl</c>
module, and <c>lookup</c> in <c>DB_Administrator_impl.erl</c><em>and</em><c>DB_CommonUser_impl.erl</c>. But wait, is that really necessary? Actually,
it is not. We simple use the IC compile option <em>impl</em>:</p>
<pre>
$ <input>erlc +'{{impl, "DB::CommonUser"}, "DBUser_impl"}'\
+'{{impl, "DB::Administrator"}, "DBUser_impl"}' DB.idl</input>
$ <input>erlc *.erl</input>
</pre>
<p>Instead of creating, and not the least, maintaining two call-back modules,
we only have to deal with <c>DBUser_impl.erl</c>. If we generated the
templates, we simply rename <c>DB_Administrator_impl.erl</c> to
<c>DBUser_impl.erl</c>. See also the
<seealso marker="ch_exceptions">Exceptions</seealso> chapter.
In the following example, only the implementation of the API functions
are shown:</p>
<code type="none">
%%======================================================================
%% API Functions
%%======================================================================
%%----------------------------------------------------------------------
%% Function : delete/2
%% Arguments : State - term()
%% ENo = unsigned_Long()
%% Returns : ReturnValue = ok
%% Raises :
%% Description:
%%----------------------------------------------------------------------
delete(State, ENo) ->
%% How we access the DB, for example mnesia, is not shown here.
case delete_employee(No) of
ok ->
{reply, ok, State};
error ->
%% Here we should throw an exception if
%% there is no match.
corba:raise(....)
end.
%%----------------------------------------------------------------------
%% Function : lookup/2
%% Arguments : State - term()
%% ENo = unsigned_Long()
%% Returns : ReturnValue = OE_Reply
%% OE_Reply = #'DB_employee'{No,Name,Address,Dpt}
%% No = unsigned_Long()
%% Name = String()
%% Address = String()
%% Dpt = Department
%% Department = 'Department1' | 'Department2'
%% Raises :
%% Description:
%%----------------------------------------------------------------------
lookup(State, ENo) ->
%% How we access the DB, for example mnesia, is not shown here.
case lookup_employee(ENo) of
%% We assume that we receive a 'DB_employee' struct
{ok, Employee} ->
OE_Reply = Employee,
{reply, OE_Reply, State};
error ->
%% Here we should throw an exception if
%% there is no match.
corba:raise(....)
end.
</code>
<p>After you have compiled both call-back modules, and implemented the missing
functionality (e.g. lookup_employee/1), we can test our application:</p>
<code type="none">
%% Erlang code
....
%% Create an Access object
Acc = 'DB_Access':oe_create(),
%% Login is Common user and Administrator
Adm = 'DB_Access':logon(A, "admin", "pw"),
Com = 'DB_Access':logon(A, "comm", "pw"),
%% Lookup existing employee
Employee = 'DB_Administrator':lookup(Adm, 1),
Employee = 'DB_CommonUser':lookup(Adm, 1),
%% If we try the same using the DB_CommonUser interface
%% it result in an exit since that operation is not exported.
{'EXIT', _} = (catch 'DB_CommonUser':delete(Adm, 1)),
%% Try to delete the employee via the CommonUser Object
{'EXCEPTION', _} = (catch 'DB_Administrator':delete(Com, 1)),
%% Invoke delete operation on the Administrator object
ok = 'DB_Administrator':delete(Adm, 1),
....
</code>
</section>
<section>
<title>Reserved Compiler Names and Keywords</title>
<marker id="key_words"></marker>
<p>The use of some names is strongly discouraged due to
ambiguities. However, the use of some names is prohibited
when using the Erlang mapping , as they are strictly reserved for IC.</p>
<p>IC reserves all identifiers starting with <c>OE_</c> and <c>oe_</c>
for internal use.</p>
<p>Note also, that an identifier in IDL can contain alphabetic,
digits and underscore characters, but the first character
<em>must</em> be alphabetic.
</p>
<p>The OMG defines a set of reserved words, shown below, for use as keywords.
These may <em>not</em> be used as, for example, identifiers. The keywords
which are not in bold face was introduced in the OMG CORBA-3.0
specification.</p>
<table>
<row>
<cell align="left" valign="middle"><em>abstract</em></cell>
<cell align="left" valign="middle"><em>exception</em></cell>
<cell align="left" valign="middle"><em>inout</em></cell>
<cell align="left" valign="middle">provides</cell>
<cell align="left" valign="middle"><em>truncatable</em></cell>
</row>
<row>
<cell align="left" valign="middle"><em>any</em></cell>
<cell align="left" valign="middle">emits</cell>
<cell align="left" valign="middle"><em>interface</em></cell>
<cell align="left" valign="middle"><em>public</em></cell>
<cell align="left" valign="middle"><em>typedef</em></cell>
</row>
<row>
<cell align="left" valign="middle"><em>attribute</em></cell>
<cell align="left" valign="middle"><em>enum</em></cell>
<cell align="left" valign="middle"><em>local</em></cell>
<cell align="left" valign="middle">publishes</cell>
<cell align="left" valign="middle">typeid</cell>
</row>
<row>
<cell align="left" valign="middle"><em>boolean</em></cell>
<cell align="left" valign="middle">eventtype</cell>
<cell align="left" valign="middle"><em>long</em></cell>
<cell align="left" valign="middle"><em>raises</em></cell>
<cell align="left" valign="middle">typeprefix</cell>
</row>
<row>
<cell align="left" valign="middle"><em>case</em></cell>
<cell align="left" valign="middle"><em>factory</em></cell>
<cell align="left" valign="middle"><em>module</em></cell>
<cell align="left" valign="middle"><em>readonly</em></cell>
<cell align="left" valign="middle"><em>unsigned</em></cell>
</row>
<row>
<cell align="left" valign="middle"><em>char</em></cell>
<cell align="left" valign="middle"><em>FALSE</em></cell>
<cell align="left" valign="middle">multiple</cell>
<cell align="left" valign="middle">setraises</cell>
<cell align="left" valign="middle"><em>union</em></cell>
</row>
<row>
<cell align="left" valign="middle">component</cell>
<cell align="left" valign="middle">finder</cell>
<cell align="left" valign="middle"><em>native</em></cell>
<cell align="left" valign="middle"><em>sequence</em></cell>
<cell align="left" valign="middle">uses</cell>
</row>
<row>
<cell align="left" valign="middle"><em>const</em></cell>
<cell align="left" valign="middle"><em>fixed</em></cell>
<cell align="left" valign="middle"><em>Object</em></cell>
<cell align="left" valign="middle"><em>short</em></cell>
<cell align="left" valign="middle"><em>ValueBase</em></cell>
</row>
<row>
<cell align="left" valign="middle">consumes</cell>
<cell align="left" valign="middle"><em>float</em></cell>
<cell align="left" valign="middle"><em>octet</em></cell>
<cell align="left" valign="middle"><em>string</em></cell>
<cell align="left" valign="middle"><em>valuetype</em></cell>
</row>
<row>
<cell align="left" valign="middle"><em>context</em></cell>
<cell align="left" valign="middle">getraises</cell>
<cell align="left" valign="middle"><em>oneway</em></cell>
<cell align="left" valign="middle"><em>struct</em></cell>
<cell align="left" valign="middle"><em>void</em></cell>
</row>
<row>
<cell align="left" valign="middle"><em>custom</em></cell>
<cell align="left" valign="middle">home</cell>
<cell align="left" valign="middle"><em>out</em></cell>
<cell align="left" valign="middle"><em>supports</em></cell>
<cell align="left" valign="middle"><em>wchar</em></cell>
</row>
<row>
<cell align="left" valign="middle"><em>default</em></cell>
<cell align="left" valign="middle">import</cell>
<cell align="left" valign="middle">primarykey</cell>
<cell align="left" valign="middle"><em>switch</em></cell>
<cell align="left" valign="middle"><em>wstring</em></cell>
</row>
<row>
<cell align="left" valign="middle"><em>double</em></cell>
<cell align="left" valign="middle"><em>in</em></cell>
<cell align="left" valign="middle"><em>private</em></cell>
<cell align="left" valign="middle"><em>TRUE</em></cell>
<cell align="left" valign="middle"></cell>
</row>
<tcaption>OMG IDL keywords</tcaption>
</table>
<p>The keywords listed above must be written exactly as shown. Any usage
of identifiers that collide with a keyword is illegal. For example,
<em>long</em> is a valid keyword; <em>Long</em> and <em>LONG</em> are
illegal as keywords and identifiers. But, since the OMG must be able
to expand the IDL grammar, it is possible to use <em>Escaped Identifiers</em>. For example, it is not unlikely that <c>native</c>
have been used in IDL-specifications as identifiers. One option is to
change all occurrences to <c>myNative</c>. Usually, it is necessary
to change programming language code that depends upon that IDL as well.
Since Escaped Identifiers just disable type checking (i.e. if it is a reserved
word or not) and leaves everything else unchanged, it is only necessary to
update the IDL-specification. To escape an identifier, simply prefix it
with <em>_</em>. The following IDL-code is illegal:</p>
<code type="none">
typedef string native;
interface i {
void foo(in native Arg);
};
};
</code>
<p>With Escaped Identifiers the code will look like:</p>
<code type="none">
typedef string _native;
interface i {
void foo(in _native Arg);
};
};
</code>
</section>
<section>
<title>Type Code Representation</title>
<marker id="tk_values"></marker>
<p>Type Codes are used in <c>any</c> values. To avoid mistakes, you should
use access functions exported by the Data Types modules
(e.g. struct, union etc) or the <seealso marker="orber_tc">orber_tc</seealso>
module.</p>
<table>
<row>
<cell align="left" valign="middle"><em>Type Code</em></cell>
<cell align="left" valign="middle"><em>Example</em></cell>
</row>
<row>
<cell align="left" valign="middle">tk_null</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_void</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_short</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_long</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_longlong</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_ushort</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_ulong</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_ulonglong</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_float</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_double</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_boolean</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_char</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_wchar</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_octet</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_any</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_TypeCode</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">tk_Principal</cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle">{tk_objref, IFRId, Name}</cell>
<cell align="left" valign="middle">{tk_objref, "IDL:M1\I1:1.0", "I1"}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_struct, IFRId, Name, [{ElemName, ElemTC}]}</cell>
<cell align="left" valign="middle">{tk_struct, "IDL:M1\S1:1.0", "S1", [{"a", tk_long}, {"b", tk_char}]}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_union, IFRId, Name, DiscrTC, DefaultNr, [{Label, ElemName, ElemTC}]} <br></br>
Note: DefaultNr tells which of tuples in the case list that is default, or -1 if no default</cell>
<cell align="left" valign="middle">{tk_union, "IDL:U1:1.0", "U1", tk_long, 1, [{1, "a", tk_long}, {default, "b", tk_char}]}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_enum, IFRId, Name, [ElemName]}</cell>
<cell align="left" valign="middle">{tk_enum, "IDL:E1:1.0", "E1", ["a1", "a2"]}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_string, Length}</cell>
<cell align="left" valign="middle">{tk_string, 5}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_wstring, Length}</cell>
<cell align="left" valign="middle">{tk_wstring, 7}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_fixed, Digits, Scale}</cell>
<cell align="left" valign="middle">{tk_fixed, 3, 2}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_sequence, ElemTC, Length}</cell>
<cell align="left" valign="middle">{tk_sequence, tk_long, 4}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_array, ElemTC, Length}</cell>
<cell align="left" valign="middle">{tk_array, tk_char, 9}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_alias, IFRId, Name, TC}</cell>
<cell align="left" valign="middle">{tk_alias, "IDL:T1:1.0", "T1", tk_short}</cell>
</row>
<row>
<cell align="left" valign="middle">{tk_except, IFRId, Name, [{ElemName, ElemTC}]}</cell>
<cell align="left" valign="middle">{tk_except, "IDL:Exc1:1.0", "Exc1", [{"a", tk_long}, {"b", {tk_string, 0}}]}</cell>
</row>
<tcaption>Type Code tuples</tcaption>
</table>
</section>
</chapter>
|