1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
<?xml version="1.0" encoding="iso-8859-1" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>2011</year><year>2011</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>Using the public_key API</title>
<file>using_public_key.xml</file>
</header>
<section>
<title>General information</title>
<p> This chapter is dedicated to showing some
examples of how to use the public_key API. Keys and certificates
used in the following sections are generated only for the purpose
of testing the public key application.</p>
<p>Note that some shell printouts, in the following examples,
have been abbreviated for increased readability.</p>
</section>
<section>
<title>PEM files</title>
<p> Pulic key data (keys, certificates etc) may be stored in PEM format. PEM files
comes from the Private Enhanced Mail Internet standard and has a
structure that looks like this:</p>
<code><text>
-----BEGIN <SOMETHING>-----
<Attribute> : <Value>
<Base64 encoded DER data>
-----END <SOMETHING>-----
<text></code>
<p>A file can contain several BEGIN/END blocks. Text lines between
blocks are ignored. Attributes, if present, are currently ignored except
for <c>Proc-Type</c> and <c>DEK-Info</c> that are used when the DER data is
encrypted.</p>
<section>
<title>DSA private key</title>
<p>Note file handling is not done by the public_key application. </p>
<code>1> {ok, PemBin} = file:read_file("dsa.pem").
{ok,<<"-----BEGIN DSA PRIVATE KEY-----\nMIIBuw"...>>}</code>
<p>This PEM file only has one entry a private DSA key.</p>
<code>2> [DSAEntry] = public_key:pem_decode(PemBin).
[{'DSAPrivateKey',<<48,130,1,187,2,1,0,2,129,129,0,183,
179,230,217,37,99,144,157,21,228,204,
162,207,61,246,...>>,
not_encrypted}]</code>
<code>3> Key = public_key:pem_entry_decode(DSAEntry).
#'DSAPrivateKey'{version = 0,
p = 12900045185019966618...6593,
q = 1216700114794736143432235288305776850295620488937,
g = 10442040227452349332...47213,
y = 87256807980030509074...403143,
x = 510968529856012146351317363807366575075645839654}</code>
</section>
<section>
<title>RSA private key encrypted with a password.</title>
<code>1> {ok, PemBin} = file:read_file("rsa.pem").
{ok,<<"Bag Attribut"...>>}</code>
<p>This PEM file only has one entry a private RSA key.</p>
<code>2>[RSAEntry] = public_key:pem_decode(PemBin).
[{'RSAPrivateKey',<<224,108,117,203,152,40,15,77,128,126,
221,195,154,249,85,208,202,251,109,
119,120,57,29,89,19,9,...>>,
{"DES-EDE3-CBC",<<"k�e��p�L">>}}]
</code>
<p>In this example the password is "abcd1234".</p>
<code>3> Key = public_key:pem_entry_decode(RSAEntry, "abcd1234").
#'RSAPrivateKey'{version = 'two-prime',
modulus = 1112355156729921663373...2737107,
publicExponent = 65537,
privateExponent = 58064406231183...2239766033,
prime1 = 11034766614656598484098...7326883017,
prime2 = 10080459293561036618240...77738643771,
exponent1 = 77928819327425934607...22152984217,
exponent2 = 36287623121853605733...20588523793,
coefficient = 924840412626098444...41820968343,
otherPrimeInfos = asn1_NOVALUE}</code>
</section>
<section>
<title>X509 Certificates</title>
<code>1> {ok, PemBin} = file:read_file("cacerts.pem").
{ok,<<"-----BEGIN CERTIFICATE-----\nMIIC7jCCAl"...>>}</code>
<p>This file includes two certificates</p>
<code>2> [CertEntry1, CertEntry2] = public_key:pem_decode(PemBin).
[{'Certificate',<<48,130,2,238,48,130,2,87,160,3,2,1,2,2,
9,0,230,145,97,214,191,2,120,150,48,13,
...>>,
not_encrypted},
{'Certificate',<<48,130,3,200,48,130,3,49,160,3,2,1,2,2,1,
1,48,13,6,9,42,134,72,134,247,...>>>,
not_encrypted}]</code>
<p>Certificates may of course be decoded as usual ... </p>
<code>2> Cert = public_key:pem_entry_decode(CertEntry1).
#'Certificate'{
tbsCertificate =
#'TBSCertificate'{
version = v3,serialNumber = 16614168075301976214,
signature =
#'AlgorithmIdentifier'{
algorithm = {1,2,840,113549,1,1,5},
parameters = <<5,0>>},
issuer =
{rdnSequence,
[[#'AttributeTypeAndValue'{
type = {2,5,4,3},
value = <<19,8,101,114,108,97,110,103,67,65>>}],
[#'AttributeTypeAndValue'{
type = {2,5,4,11},
value = <<19,10,69,114,108,97,110,103,32,79,84,80>>}],
[#'AttributeTypeAndValue'{
type = {2,5,4,10},
value = <<19,11,69,114,105,99,115,115,111,110,32,65,66>>}],
[#'AttributeTypeAndValue'{
type = {2,5,4,7},
value = <<19,9,83,116,111,99,107,104,111,108,109>>}],
[#'AttributeTypeAndValue'{
type = {2,5,4,6},
value = <<19,2,83,69>>}],
[#'AttributeTypeAndValue'{
type = {1,2,840,113549,1,9,1},
value = <<22,22,112,101,116,101,114,64,101,114,...>>}]]},
validity =
#'Validity'{
notBefore = {utcTime,"080109082929Z"},
notAfter = {utcTime,"080208082929Z"}},
subject =
{rdnSequence,
[[#'AttributeTypeAndValue'{
type = {2,5,4,3},
value = <<19,8,101,114,108,97,110,103,67,65>>}],
[#'AttributeTypeAndValue'{
type = {2,5,4,11},
value = <<19,10,69,114,108,97,110,103,32,79,84,80>>}],
[#'AttributeTypeAndValue'{
type = {2,5,4,10},
value = <<19,11,69,114,105,99,115,115,111,110,32,...>>}],
[#'AttributeTypeAndValue'{
type = {2,5,4,7},
value = <<19,9,83,116,111,99,107,104,111,108,...>>}],
[#'AttributeTypeAndValue'{
type = {2,5,4,6},
value = <<19,2,83,69>>}],
[#'AttributeTypeAndValue'{
type = {1,2,840,113549,1,9,1},
value = <<22,22,112,101,116,101,114,64,...>>}]]},
subjectPublicKeyInfo =
#'SubjectPublicKeyInfo'{
algorithm =
#'AlgorithmIdentifier'{
algorithm = {1,2,840,113549,1,1,1},
parameters = <<5,0>>},
subjectPublicKey =
{0,<<48,129,137,2,129,129,0,203,209,187,77,73,231,90,...>>}},
issuerUniqueID = asn1_NOVALUE,
subjectUniqueID = asn1_NOVALUE,
extensions =
[#'Extension'{
extnID = {2,5,29,19},
critical = true,
extnValue = [48,3,1,1,255]},
#'Extension'{
extnID = {2,5,29,15},
critical = false,
extnValue = [3,2,1,6]},
#'Extension'{
extnID = {2,5,29,14},
critical = false,
extnValue = [4,20,27,217,65,152,6,30,142|...]},
#'Extension'{
extnID = {2,5,29,17},
critical = false,
extnValue = [48,24,129,22,112,101,116,101|...]}]},
signatureAlgorithm =
#'AlgorithmIdentifier'{
algorithm = {1,2,840,113549,1,1,5},
parameters = <<5,0>>},
signature =
{0,
<<163,186,7,163,216,152,63,47,154,234,139,73,154,96,120,
165,2,52,196,195,109,167,192,...>>}}
</code>
<p> Parts of certificates can be decoded with
public_key:der_decode/2 using that parts ASN.1 type.
Although application specific certificate
extension requires application specific ASN.1 decode/encode-functions.
Example, the first value of the rdnSequence above is of ASN.1 type
'X520CommonName'. ({2,5,4,3} = ?id-at-commonName)</p>
<code>public_key:der_decode('X520CommonName', <<19,8,101,114,108,97,110,103,67,65>>).
{printableString,"erlangCA"}</code>
<p>... but certificates can also be decode using the pkix_decode_cert/2 that
can customize and recursively decode standard parts of a certificate.</p>
<code>3>{_, DerCert, _} = CertEntry1.</code>
<code>4> public_key:pkix_decode_cert(DerCert, otp).
#'OTPCertificate'{
tbsCertificate =
#'OTPTBSCertificate'{
version = v3,serialNumber = 16614168075301976214,
signature =
#'SignatureAlgorithm'{
algorithm = {1,2,840,113549,1,1,5},
parameters = 'NULL'},
issuer =
{rdnSequence,
[[#'AttributeTypeAndValue'{
type = {2,5,4,3},
value = {printableString,"erlangCA"}}],
[#'AttributeTypeAndValue'{
type = {2,5,4,11},
value = {printableString,"Erlang OTP"}}],
[#'AttributeTypeAndValue'{
type = {2,5,4,10},
value = {printableString,"Ericsson AB"}}],
[#'AttributeTypeAndValue'{
type = {2,5,4,7},
value = {printableString,"Stockholm"}}],
[#'AttributeTypeAndValue'{type = {2,5,4,6},value = "SE"}],
[#'AttributeTypeAndValue'{
type = {1,2,840,113549,1,9,1},
value = "[email protected]"}]]},
validity =
#'Validity'{
notBefore = {utcTime,"080109082929Z"},
notAfter = {utcTime,"080208082929Z"}},
subject =
{rdnSequence,
[[#'AttributeTypeAndValue'{
type = {2,5,4,3},
value = {printableString,"erlangCA"}}],
[#'AttributeTypeAndValue'{
type = {2,5,4,11},
value = {printableString,"Erlang OTP"}}],
[#'AttributeTypeAndValue'{
type = {2,5,4,10},
value = {printableString,"Ericsson AB"}}],
[#'AttributeTypeAndValue'{
type = {2,5,4,7},
value = {printableString,"Stockholm"}}],
[#'AttributeTypeAndValue'{type = {2,5,4,6},value = "SE"}],
[#'AttributeTypeAndValue'{
type = {1,2,840,113549,1,9,1},
value = "[email protected]"}]]},
subjectPublicKeyInfo =
#'OTPSubjectPublicKeyInfo'{
algorithm =
#'PublicKeyAlgorithm'{
algorithm = {1,2,840,113549,1,1,1},
parameters = 'NULL'},
subjectPublicKey =
#'RSAPublicKey'{
modulus =
1431267547247997...37419,
publicExponent = 65537}},
issuerUniqueID = asn1_NOVALUE,
subjectUniqueID = asn1_NOVALUE,
extensions =
[#'Extension'{
extnID = {2,5,29,19},
critical = true,
extnValue =
#'BasicConstraints'{
cA = true,pathLenConstraint = asn1_NOVALUE}},
#'Extension'{
extnID = {2,5,29,15},
critical = false,
extnValue = [keyCertSign,cRLSign]},
#'Extension'{
extnID = {2,5,29,14},
critical = false,
extnValue = [27,217,65,152,6,30,142,132,245|...]},
#'Extension'{
extnID = {2,5,29,17},
critical = false,
extnValue = [{rfc822Name,"[email protected]"}]}]},
signatureAlgorithm =
#'SignatureAlgorithm'{
algorithm = {1,2,840,113549,1,1,5},
parameters = 'NULL'},
signature =
{0,
<<163,186,7,163,216,152,63,47,154,234,139,73,154,96,120,
165,2,52,196,195,109,167,192,...>>}}
</code>
<p>This call is equivalent to public_key:pem_entry_decode(CertEntry1)</p>
<code>5> public_key:pkix_decode_cert(DerCert, plain).
#'Certificate'{ ...}
</code>
</section>
<section>
<title>Encoding public key data to PEM format</title>
<p>If you have public key data and and want to create a PEM file
you can do that by calling the functions
public_key:pem_entry_encode/2 and pem_encode/1 and then saving the
result to a file. For example assume you have PubKey =
'RSAPublicKey'{} then you can create a PEM-"RSA PUBLIC KEY" file
(ASN.1 type 'RSAPublicKey') or a PEM-"PUBLIC KEY" file
('SubjectPublicKeyInfo' ASN.1 type).</p>
<p> The second element of the PEM-entry will be the ASN.1 DER encoded
key data.</p>
<code>1> PemEntry = public_key:pem_entry_encode('RSAPublicKey', RSAPubKey).
{'RSAPublicKey', <<48,72,...>>, not_encrypted}
2> PemBin = public_key:pem_encode([PemEntry]).
<<"-----BEGIN RSA PUBLIC KEY-----\nMEgC...>>
3> file:write_file("rsa_pub_key.pem", PemBin).
ok</code>
<p> or </p>
<code>1> PemBin = public_key:pem_entry_encode('SubjectPublicKeyInfo', RSAPubKey).
{'SubjectPublicKeyInfo', <<48,92...>>, not_encrypted}
2> PemBin = public_key:pem_encode([PemEntry]).
<<"-----BEGIN PUBLIC KEY-----\nMFw...>>
3> file:write_file("pub_key.pem", PemBin).
ok</code>
</section>
</section>
<section>
<title>RSA public key cryptography </title>
<p> Suppose you have PrivateKey = #'RSAPrivateKey{}' and the
plaintext Msg = binary() and the corresponding public key
PublicKey = #'RSAPublicKey'{} then you can do the following.
Note that you normally will only do one of the encrypt or
decrypt operations and the peer will do the other.
</p>
<p>Encrypt with the private key </p>
<code>RsaEncrypted = public_key:encrypt_private(Msg, PrivateKey),
Msg = public_key:decrypt_public(RsaEncrypted, PublicKey),</code>
<p>Encrypt with the public key </p>
<code>RsaEncrypted = public_key:encrypt_public(Msg, PublicKey),
Msg = public_key:decrypt_private(RsaEncrypted, PrivateKey),</code>
</section>
<section>
<title>Digital signatures</title>
<p> Suppose you have PrivateKey = #'RSAPrivateKey{}'or
#'DSAPrivateKey'{} and the plaintext Msg = binary() and the
corresponding public key PublicKey = #'RSAPublicKey'{} or
{integer(), #'DssParams'{}} then you can do the following. Note
that you normally will only do one of the sign or verify operations
and the peer will do the other. </p>
<code>Signature = public_key:sign(Msg, sha, PrivateKey),
true = public_key:verify(Msg, sha, Signature, PublicKey),</code>
<p>It might be appropriate to calculate the message digest before
calling sign or verify and then you can use the none as second
argument.</p>
<code>Digest = crypto:sha(Msg),
Signature = public_key:sign(Digest, none, PrivateKey),
true = public_key:verify(Digest, none, Signature, PublicKey),
</code>
</section>
<section>
<title>SSH files</title>
<p>SSH typically uses PEM files for private keys but has its
own file format for storing public keys. The erlang public_key
application can be used to parse the content of SSH public key files.</p>
<section>
<title> RFC 4716 SSH public key files </title>
<p>RFC 4716 SSH files looks confusingly like PEM files,
but there are some differences.</p>
<code>1> {ok, SshBin} = file:read_file("ssh2_rsa_pub").
{ok, <<"---- BEGIN SSH2 PUBLIC KEY ----\nAAAA"...>>}</code>
<p>This is equivalent to calling public_key:ssh_decode(SshBin, rfc4716_public_key).
</p>
<code>2> public_key:ssh_decode(SshBin, public_key).
[{#'RSAPublicKey'{modulus = 794430685...91663,
publicExponent = 35}, []}]
</code>
</section>
<section>
<title> Openssh public key format </title>
<code>1> {ok, SshBin} = file:read_file("openssh_dsa_pub").
{ok,<<"ssh-dss AAAAB3Nza"...>>}</code>
<p>This is equivalent to calling public_key:ssh_decode(SshBin, openssh_public_key).
</p>
<code>2> public_key:ssh_decode(SshBin, public_key).
[{{15642692...694280725,
#'Dss-Parms'{p = 17291273936...696123221,
q = 1255626590179665817295475654204371833735706001853,
g = 10454211196...480338645}},
[{comment,"dhopson@VMUbuntu-DSH"}]}]
</code>
</section>
<section>
<title> Known hosts - openssh format</title>
<code>1> {ok, SshBin} = file:read_file("known_hosts").
{ok,<<"hostname.domain.com,192.168.0.1 ssh-rsa AAAAB...>>}</code>
<p>Returns a list of public keys and their related attributes
each pair of key and attributes corresponds to one entry in
the known hosts file.</p>
<code>2> public_key:ssh_decode(SshBin, known_hosts).
[{#'RSAPublicKey'{modulus = 1498979460408...72721699,
publicExponent = 35},
[{hostnames,["hostname.domain.com","192.168.0.1"]}]},
{#'RSAPublicKey'{modulus = 14989794604088...2721699,
publicExponent = 35},
[{comment,"[email protected]"},
{hostnames,["|1|BWO5qDxk/cFH0wa05JLdHn+j6xQ=|rXQvIxh5cDD3C43k5DPDamawVNA="]}]}]
</code>
</section>
<section>
<title> Authorized keys - openssh format</title>
<code>1> {ok, SshBin} = file:read_file("auth_keys").
{ok, <<"command=\"dump /home\",no-pty,no-port-forwarding ssh-rsa AAA...>>}</code>
<p>Returns a list of public keys and their related attributes
each pair of key and attributes corresponds to one entry in
the authorized key file.</p>
<code>2> public_key:ssh_decode(SshBin, auth_keys).
[{#'RSAPublicKey'{modulus = 794430685...691663,
publicExponent = 35},
[{comment,"dhopson@VMUbuntu-DSH"},
{options,["command=\"dump/home\"","no-pty",
"no-port-forwarding"]}]},
{{1564269258491...607694280725,
#'Dss-Parms'{p = 17291273936185...763696123221,
q = 1255626590179665817295475654204371833735706001853,
g = 10454211195705...60511039590076780999046480338645}},
[{comment,"dhopson@VMUbuntu-DSH"}]}]
</code>
</section>
<section>
<title> Creating an SSH file from public key data </title>
<p>If you got a public key <c>PubKey</c> and a related list of
attributes <c>Attributes</c> as returned
by ssh_decode/2 you can create a new ssh file for example</p>
<code>N> SshBin = public_key:ssh_encode([{PubKey, Attributes}], openssh_public_key),
<<"ssh-rsa "...>>
N+1> file:write_file("id_rsa.pub", SshBin).
ok</code>
</section>
</section>
</chapter>
|