1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
|
RMON-MIB DEFINITIONS ::= BEGIN
IMPORTS
Counter FROM RFC1155-SMI
mib-2,DisplayString FROM RFC1213-MIB
OBJECT-TYPE FROM RFC-1212
TRAP-TYPE FROM RFC-1215;
-- Remote Network Monitoring MIB
rmon OBJECT IDENTIFIER ::= { mib-2 16 }
-- textual conventions
OwnerString ::= DisplayString
-- This data type is used to model an administratively
-- assigned name of the owner of a resource. This
-- information is taken from the NVT ASCII character
-- set. It is suggested that this name contain one or
-- more of the following: IP address, management station
-- name, network manager's name, location, or phone
-- number.
-- In some cases the agent itself will be the owner of
-- an entry. In these cases, this string shall be set
-- to a string starting with 'monitor'.
--
-- SNMP access control is articulated entirely in terms
-- of the contents of MIB views; access to a particular
-- SNMP object instance depends only upon its presence
-- or absence in a particular MIB view and never upon
-- its value or the value of related object instances.
-- Thus, objects of this type afford resolution of
-- resource contention only among cooperating managers;
-- they realize no access control function with respect
-- to uncooperative parties.
--
-- By convention, objects with this syntax are declared as
-- having
--
-- SIZE (0..127)
EntryStatus ::= INTEGER
{ valid(1),
createRequest(2),
underCreation(3),
invalid(4)
}
-- The status of a table entry.
--
-- Setting this object to the value invalid(4) has the
-- effect of invalidating the corresponding entry.
-- That is, it effectively disassociates the mapping
-- identified with said entry.
-- It is an implementation-specific matter as to whether
-- the agent removes an invalidated entry from the table.
-- Accordingly, management stations must be prepared to
-- receive tabular information from agents that
-- corresponds to entries currently not in use. Proper
-- interpretation of such entries requires examination
-- of the relevant EntryStatus object.
--
-- An existing instance of this object cannot be set to
-- createRequest(2). This object may only be set to
-- createRequest(2) when this instance is created. When
-- this object is created, the agent may wish to create
-- supplemental object instances with default values
-- to complete a conceptual row in this table. Because
-- the creation of these default objects is entirely at
-- the option of the agent, the manager must not assume
-- that any will be created, but may make use of any that
-- are created. Immediately after completing the create
-- operation, the agent must set this object to
-- underCreation(3).
--
-- When in the underCreation(3) state, an entry is
-- allowed to exist in a possibly incomplete, possibly
-- inconsistent state, usually to allow it to be
-- modified in mutiple PDUs. When in this state, an
-- entry is not fully active. Entries shall exist in
-- the underCreation(3) state until the management
-- station is finished configuring the entry and sets
-- this object to valid(1) or aborts, setting this
-- object to invalid(4). If the agent determines that
-- an entry has been in the underCreation(3) state for
-- an abnormally long time, it may decide that the
-- management station has crashed. If the agent makes
-- this decision, it may set this object to invalid(4)
-- to reclaim the entry. A prudent agent will
-- understand that the management station may need to
-- wait for human input and will allow for that
-- possibility in its determination of this abnormally
-- long period.
--
-- An entry in the valid(1) state is fully configured and
-- consistent and fully represents the configuration or
-- operation such a row is intended to represent. For
-- example, it could be a statistical function that is
-- configured and active, or a filter that is available
-- in the list of filters processed by the packet capture
-- process.
--
-- A manager is restricted to changing the state of an
-- entry in the following ways:
--
-- create under
-- To: valid Request Creation invalid
-- From:
-- valid OK NO OK OK
-- createRequest N/A N/A N/A N/A
-- underCreation OK NO OK OK
-- invalid NO NO NO OK
-- nonExistent NO OK NO OK
--
-- In the table above, it is not applicable to move the
-- state from the createRequest state to any other
-- state because the manager will never find the
-- variable in that state. The nonExistent state is
-- not a value of the enumeration, rather it means that
-- the entryStatus variable does not exist at all.
--
-- An agent may allow an entryStatus variable to change
-- state in additional ways, so long as the semantics
-- of the states are followed. This allowance is made
-- to ease the implementation of the agent and is made
-- despite the fact that managers should never
-- excercise these additional state transitions.
statistics OBJECT IDENTIFIER ::= { rmon 1 }
history OBJECT IDENTIFIER ::= { rmon 2 }
alarm OBJECT IDENTIFIER ::= { rmon 3 }
hosts OBJECT IDENTIFIER ::= { rmon 4 }
hostTopN OBJECT IDENTIFIER ::= { rmon 5 }
matrix OBJECT IDENTIFIER ::= { rmon 6 }
filter OBJECT IDENTIFIER ::= { rmon 7 }
capture OBJECT IDENTIFIER ::= { rmon 8 }
event OBJECT IDENTIFIER ::= { rmon 9 }
-- The Ethernet Statistics Group
--
-- Implementation of the Ethernet Statistics group is
-- optional.
--
-- The ethernet statistics group contains statistics
-- measured by the probe for each monitored interface on
-- this device. These statistics take the form of free
-- running counters that start from zero when a valid entry
-- is created.
--
-- This group currently has statistics defined only for
-- Ethernet interfaces. Each etherStatsEntry contains
-- statistics for one Ethernet interface. The probe must
-- create one etherStats entry for each monitored Ethernet
-- interface on the device.
etherStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF EtherStatsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of Ethernet statistics entries."
::= { statistics 1 }
etherStatsEntry OBJECT-TYPE
SYNTAX EtherStatsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of statistics kept for a particular
Ethernet interface. As an example, an instance of the
etherStatsPkts object might be named etherStatsPkts.1"
INDEX { etherStatsIndex }
::= { etherStatsTable 1 }
EtherStatsEntry ::= SEQUENCE {
etherStatsIndex INTEGER (1..65535),
etherStatsDataSource OBJECT IDENTIFIER,
etherStatsDropEvents Counter,
etherStatsOctets Counter,
etherStatsPkts Counter,
etherStatsBroadcastPkts Counter,
etherStatsMulticastPkts Counter,
etherStatsCRCAlignErrors Counter,
etherStatsUndersizePkts Counter,
etherStatsOversizePkts Counter,
etherStatsFragments Counter,
etherStatsJabbers Counter,
etherStatsCollisions Counter,
etherStatsPkts64Octets Counter,
etherStatsPkts65to127Octets Counter,
etherStatsPkts128to255Octets Counter,
etherStatsPkts256to511Octets Counter,
etherStatsPkts512to1023Octets Counter,
etherStatsPkts1024to1518Octets Counter,
etherStatsOwner OwnerString,
etherStatsStatus EntryStatus
}
etherStatsIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this object uniquely identifies this
etherStats entry."
::= { etherStatsEntry 1 }
etherStatsDataSource OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object identifies the source of the data that
this etherStats entry is configured to analyze. This
source can be any ethernet interface on this device.
In order to identify a particular interface, this
object shall identify the instance of the ifIndex
object, defined in RFC 1213 and RFC 1573 [4,6], for
the desired interface. For example, if an entry
were to receive data from interface #1, this object
would be set to ifIndex.1.
The statistics in this group reflect all packets
on the local network segment attached to the
identified interface.
An agent may or may not be able to tell if
fundamental changes to the media of the interface
have occurred and necessitate an invalidation of
this entry. For example, a hot-pluggable ethernet
card could be pulled out and replaced by a
token-ring card. In such a case, if the agent has
such knowledge of the change, it is recommended that
it invalidate this entry.
This object may not be modified if the associated
etherStatsStatus object is equal to valid(1)."
::= { etherStatsEntry 2 }
etherStatsDropEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of events in which packets
were dropped by the probe due to lack of resources.
Note that this number is not necessarily the number of
packets dropped; it is just the number of times this
condition has been detected."
::= { etherStatsEntry 3 }
etherStatsOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of octets of data (including
those in bad packets) received on the
network (excluding framing bits but including
FCS octets).
This object can be used as a reasonable estimate of
ethernet utilization. If greater precision is
desired, the etherStatsPkts and etherStatsOctets
objects should be sampled before and after a common
interval. The differences in the sampled values are
Pkts and Octets, respectively, and the number of
seconds in the interval is Interval. These values
are used to calculate the Utilization as follows:
Pkts * (9.6 + 6.4) + (Octets * .8)
Utilization = -------------------------------------
Interval * 10,000
The result of this equation is the value Utilization
which is the percent utilization of the ethernet
segment on a scale of 0 to 100 percent."
::= { etherStatsEntry 4 }
etherStatsPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets (including bad packets,
broadcast packets, and multicast packets) received."
::= { etherStatsEntry 5 }
etherStatsBroadcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good packets received that were
directed to the broadcast address. Note that this
does not include multicast packets."
::= { etherStatsEntry 6 }
etherStatsMulticastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good packets received that were
directed to a multicast address. Note that this
number does not include packets directed to the
broadcast address."
::= { etherStatsEntry 7 }
etherStatsCRCAlignErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets received that
had a length (excluding framing bits, but
including FCS octets) of between 64 and 1518
octets, inclusive, but but had either a bad
Frame Check Sequence (FCS) with an integral
number of octets (FCS Error) or a bad FCS with
a non-integral number of octets (Alignment Error)."
::= { etherStatsEntry 8 }
etherStatsUndersizePkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets received that were
less than 64 octets long (excluding framing bits,
but including FCS octets) and were otherwise well
formed."
::= { etherStatsEntry 9 }
etherStatsOversizePkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets received that were
longer than 1518 octets (excluding framing bits,
but including FCS octets) and were otherwise
well formed."
::= { etherStatsEntry 10 }
etherStatsFragments OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets received that were less
than 64 octets in length (excluding framing bits but
including FCS octets) and had either a bad Frame
Check Sequence (FCS) with an integral number of
octets (FCS Error) or a bad FCS with a non-integral
number of octets (Alignment Error).
Note that it is entirely normal for
etherStatsFragments to increment. This is because
it counts both runts (which are normal occurrences
due to collisions) and noise hits."
::= { etherStatsEntry 11 }
etherStatsJabbers OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets received that were
longer than 1518 octets (excluding framing bits,
but including FCS octets), and had either a bad
Frame Check Sequence (FCS) with an integral number
of octets (FCS Error) or a bad FCS with a
non-integral number of octets (Alignment Error).
Note that this definition of jabber is different
than the definition in IEEE-802.3 section 8.2.1.5
(10BASE5) and section 10.3.1.4 (10BASE2). These
documents define jabber as the condition where any
packet exceeds 20 ms. The allowed range to detect
jabber is between 20 ms and 150 ms."
::= { etherStatsEntry 12 }
etherStatsCollisions OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The best estimate of the total number of collisions
on this Ethernet segment.
The value returned will depend on the location of
the RMON probe. Section 8.2.1.3 (10BASE-5) and
section 10.3.1.3 (10BASE-2) of IEEE standard 802.3
states that a station must detect a collision, in
the receive mode, if three or more stations are
transmitting simultaneously. A repeater port must
detect a collision when two or more stations are
transmitting simultaneously. Thus a probe placed on
a repeater port could record more collisions than a
probe connected to a station on the same segment
would.
Probe location plays a much smaller role when
considering 10BASE-T. 14.2.1.4 (10BASE-T) of IEEE
standard 802.3 defines a collision as the
simultaneous presence of signals on the DO and RD
circuits (transmitting and receiving at the same
time). A 10BASE-T station can only detect
collisions when it is transmitting. Thus probes
placed on a station and a repeater, should report
the same number of collisions.
Note also that an RMON probe inside a repeater
should ideally report collisions between the
repeater and one or more other hosts (transmit
collisions as defined by IEEE 802.3k) plus receiver
collisions observed on any coax segments to which
the repeater is connected."
::= { etherStatsEntry 13 }
etherStatsPkts64Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets (including bad
packets) received that were 64 octets in length
(excluding framing bits but including FCS octets)."
::= { etherStatsEntry 14 }
etherStatsPkts65to127Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets (including bad
packets) received that were between
65 and 127 octets in length inclusive
(excluding framing bits but including FCS octets)."
::= { etherStatsEntry 15 }
etherStatsPkts128to255Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets (including bad
packets) received that were between
128 and 255 octets in length inclusive
(excluding framing bits but including FCS octets)."
::= { etherStatsEntry 16 }
etherStatsPkts256to511Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets (including bad
packets) received that were between
256 and 511 octets in length inclusive
(excluding framing bits but including FCS octets)."
::= { etherStatsEntry 17 }
etherStatsPkts512to1023Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets (including bad
packets) received that were between
512 and 1023 octets in length inclusive
(excluding framing bits but including FCS octets)."
::= { etherStatsEntry 18 }
etherStatsPkts1024to1518Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets (including bad
packets) received that were between
1024 and 1518 octets in length inclusive
(excluding framing bits but including FCS octets)."
::= { etherStatsEntry 19 }
etherStatsOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { etherStatsEntry 20 }
etherStatsStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this etherStats entry."
::= { etherStatsEntry 21 }
-- The History Control Group
-- Implementation of the History Control group is optional.
--
-- The history control group controls the periodic statistical
-- sampling of data from various types of networks. The
-- historyControlTable stores configuration entries that each
-- define an interface, polling period, and other parameters.
-- Once samples are taken, their data is stored in an entry
-- in a media-specific table. Each such entry defines one
-- sample, and is associated with the historyControlEntry that
-- caused the sample to be taken. Each counter in the
-- etherHistoryEntry counts the same event as its
-- similarly-named counterpart in the etherStatsEntry,
-- except that each value here is a cumulative sum during a
-- sampling period.
--
-- If the probe keeps track of the time of day, it should
-- start the first sample of the history at a time such that
-- when the next hour of the day begins, a sample is
-- started at that instant. This tends to make more
-- user-friendly reports, and enables comparison of reports
-- from different probes that have relatively accurate time
-- of day.
--
-- The probe is encouraged to add two history control entries
-- per monitored interface upon initialization that describe
-- a short term and a long term polling period. Suggested
-- parameters are 30 seconds for the short term polling period
-- and 30 minutes for the long term period.
historyControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF HistoryControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of history control entries."
::= { history 1 }
historyControlEntry OBJECT-TYPE
SYNTAX HistoryControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of parameters that set up a periodic sampling
of statistics. As an example, an instance of the
historyControlInterval object might be named
historyControlInterval.2"
INDEX { historyControlIndex }
::= { historyControlTable 1 }
HistoryControlEntry ::= SEQUENCE {
historyControlIndex INTEGER (1..65535),
historyControlDataSource OBJECT IDENTIFIER,
historyControlBucketsRequested INTEGER (1..65535),
historyControlBucketsGranted INTEGER (1..65535),
historyControlInterval INTEGER (1..3600),
historyControlOwner OwnerString,
historyControlStatus EntryStatus
}
historyControlIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry in the
historyControl table. Each such entry defines a
set of samples at a particular interval for an
interface on the device."
::= { historyControlEntry 1 }
historyControlDataSource OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object identifies the source of the data for
which historical data was collected and
placed in a media-specific table on behalf of this
historyControlEntry. This source can be any
interface on this device. In order to identify
a particular interface, this object shall identify
the instance of the ifIndex object, defined
in RFC 1213 and RFC 1573 [4,6], for the desired
interface. For example, if an entry were to receive
data from interface #1, this object would be set
to ifIndex.1.
The statistics in this group reflect all packets
on the local network segment attached to the
identified interface.
An agent may or may not be able to tell if fundamental
changes to the media of the interface have occurred
and necessitate an invalidation of this entry. For
example, a hot-pluggable ethernet card could be
pulled out and replaced by a token-ring card. In
such a case, if the agent has such knowledge of the
change, it is recommended that it invalidate this
entry.
This object may not be modified if the associated
historyControlStatus object is equal to valid(1)."
::= { historyControlEntry 2 }
historyControlBucketsRequested OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The requested number of discrete time intervals
over which data is to be saved in the part of the
media-specific table associated with this
historyControlEntry.
When this object is created or modified, the probe
should set historyControlBucketsGranted as closely to
this object as is possible for the particular probe
implementation and available resources."
DEFVAL { 50 }
::= { historyControlEntry 3 }
historyControlBucketsGranted OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of discrete sampling intervals
over which data shall be saved in the part of
the media-specific table associated with this
historyControlEntry.
When the associated historyControlBucketsRequested
object is created or modified, the probe
should set this object as closely to the requested
value as is possible for the particular
probe implementation and available resources. The
probe must not lower this value except as a result
of a modification to the associated
historyControlBucketsRequested object.
There will be times when the actual number of
buckets associated with this entry is less than
the value of this object. In this case, at the
end of each sampling interval, a new bucket will
be added to the media-specific table.
When the number of buckets reaches the value of
this object and a new bucket is to be added to the
media-specific table, the oldest bucket associated
with this historyControlEntry shall be deleted by
the agent so that the new bucket can be added.
When the value of this object changes to a value less
than the current value, entries are deleted
from the media-specific table associated with this
historyControlEntry. Enough of the oldest of these
entries shall be deleted by the agent so that their
number remains less than or equal to the new value of
this object.
When the value of this object changes to a value
greater than the current value, the number of
associated media- specific entries may be allowed to
grow."
::= { historyControlEntry 4 }
historyControlInterval OBJECT-TYPE
SYNTAX INTEGER (1..3600)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The interval in seconds over which the data is
sampled for each bucket in the part of the
media-specific table associated with this
historyControlEntry. This interval can
be set to any number of seconds between 1 and
3600 (1 hour).
Because the counters in a bucket may overflow at their
maximum value with no indication, a prudent manager
will take into account the possibility of overflow
in any of the associated counters. It is important
to consider the minimum time in which any counter
could overflow on a particular media type and set
the historyControlInterval object to a value less
than this interval. This is typically most
important for the 'octets' counter in any
media-specific table. For example, on an Ethernet
network, the etherHistoryOctets counter could
overflow in about one hour at the Ethernet's maximum
utilization.
This object may not be modified if the associated
historyControlStatus object is equal to valid(1)."
DEFVAL { 1800 }
::= { historyControlEntry 5 }
historyControlOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { historyControlEntry 6 }
historyControlStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this historyControl entry.
Each instance of the media-specific table associated
with this historyControlEntry will be deleted by the
agent if this historyControlEntry is not equal to
valid(1)."
::= { historyControlEntry 7 }
-- The Ethernet History Group
-- Implementation of the Ethernet History group is optional.
--
-- The Ethernet History group records periodic
-- statistical samples from a network and stores them
-- for later retrieval. Once samples are taken, their
-- data is stored in an entry in a media-specific
-- table. Each such entry defines one sample, and is
-- associated with the historyControlEntry that caused
-- the sample to be taken. This group defines the
-- etherHistoryTable, for Ethernet networks.
--
etherHistoryTable OBJECT-TYPE
SYNTAX SEQUENCE OF EtherHistoryEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of Ethernet history entries."
::= { history 2 }
etherHistoryEntry OBJECT-TYPE
SYNTAX EtherHistoryEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An historical sample of Ethernet statistics on a
particular Ethernet interface. This sample is
associated with the historyControlEntry which set up
the parameters for a regular collection of these
samples. As an example, an instance of the
etherHistoryPkts object might be named
etherHistoryPkts.2.89"
INDEX { etherHistoryIndex , etherHistorySampleIndex }
::= { etherHistoryTable 1 }
EtherHistoryEntry ::= SEQUENCE {
etherHistoryIndex INTEGER (1..65535),
etherHistorySampleIndex INTEGER (1..2147483647),
etherHistoryIntervalStart TimeTicks,
etherHistoryDropEvents Counter,
etherHistoryOctets Counter,
etherHistoryPkts Counter,
etherHistoryBroadcastPkts Counter,
etherHistoryMulticastPkts Counter,
etherHistoryCRCAlignErrors Counter,
etherHistoryUndersizePkts Counter,
etherHistoryOversizePkts Counter,
etherHistoryFragments Counter,
etherHistoryJabbers Counter,
etherHistoryCollisions Counter,
etherHistoryUtilization INTEGER (0..10000)
}
etherHistoryIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The history of which this entry is a part. The
history identified by a particular value of this
index is the same history as identified
by the same value of historyControlIndex."
::= { etherHistoryEntry 1 }
etherHistorySampleIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies the particular
sample this entry represents among all samples
associated with the same historyControlEntry.
This index starts at 1 and increases by one
as each new sample is taken."
::= { etherHistoryEntry 2 }
etherHistoryIntervalStart OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime at the start of the interval
over which this sample was measured. If the probe
keeps track of the time of day, it should start
the first sample of the history at a time such that
when the next hour of the day begins, a sample is
started at that instant. Note that following this
rule may require the probe to delay collecting the
first sample of the history, as each sample must be
of the same interval. Also note that the sample which
is currently being collected is not accessible in this
table until the end of its interval."
::= { etherHistoryEntry 3 }
etherHistoryDropEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of events in which packets
were dropped by the probe due to lack of resources
during this sampling interval. Note that this number
is not necessarily the number of packets dropped, it
is just the number of times this condition has been
detected."
::= { etherHistoryEntry 4 }
etherHistoryOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of octets of data (including
those in bad packets) received on the
network (excluding framing bits but including
FCS octets)."
::= { etherHistoryEntry 5 }
etherHistoryPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets (including bad packets)
received during this sampling interval."
::= { etherHistoryEntry 6 }
etherHistoryBroadcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of good packets received during this
sampling interval that were directed to the
broadcast address."
::= { etherHistoryEntry 7 }
etherHistoryMulticastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of good packets received during this
sampling interval that were directed to a
multicast address. Note that this number does not
include packets addressed to the broadcast address."
::= { etherHistoryEntry 8 }
etherHistoryCRCAlignErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets received during this sampling
interval that had a length (excluding framing bits
but including FCS octets) between 64 and 1518
octets, inclusive, but had either a bad Frame Check
Sequence (FCS) with an integral number of octets
(FCS Error) or a bad FCS with a non-integral number
of octets (Alignment Error)."
::= { etherHistoryEntry 9 }
etherHistoryUndersizePkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets received during this
sampling interval that were less than 64 octets
long (excluding framing bits but including FCS
octets) and were otherwise well formed."
::= { etherHistoryEntry 10 }
etherHistoryOversizePkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets received during this
sampling interval that were longer than 1518
octets (excluding framing bits but including
FCS octets) but were otherwise well formed."
::= { etherHistoryEntry 11 }
etherHistoryFragments OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets received during this
sampling interval that were less than 64 octets in
length (excluding framing bits but including FCS
octets) had either a bad Frame Check Sequence (FCS)
with an integral number of octets (FCS Error) or a bad
FCS with a non-integral number of octets (Alignment
Error).
Note that it is entirely normal for
etherHistoryFragments to increment. This is because
it counts both runts (which are normal occurrences
due to collisions) and noise hits."
::= { etherHistoryEntry 12 }
etherHistoryJabbers OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets received during this
sampling interval that were longer than 1518 octets
(excluding framing bits but including FCS octets),
and had either a bad Frame Check Sequence (FCS)
with an integral number of octets (FCS Error) or
a bad FCS with a non-integral number of octets
(Alignment Error).
Note that this definition of jabber is different
than the definition in IEEE-802.3 section 8.2.1.5
(10BASE5) and section 10.3.1.4 (10BASE2). These
documents define jabber as the condition where any
packet exceeds 20 ms. The allowed range to detect
jabber is between 20 ms and 150 ms."
::= { etherHistoryEntry 13 }
etherHistoryCollisions OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The best estimate of the total number of collisions
on this Ethernet segment during this sampling
interval.
The value returned will depend on the location of
the RMON probe. Section 8.2.1.3 (10BASE-5) and
section 10.3.1.3 (10BASE-2) of IEEE standard 802.3
states that a station must detect a collision, in
the receive mode, if three or more stations are
transmitting simultaneously. A repeater port must
detect a collision when two or more stations are
transmitting simultaneously. Thus a probe placed on
a repeater port could record more collisions than a
probe connected to a station on the same segment
would.
Probe location plays a much smaller role when
considering 10BASE-T. 14.2.1.4 (10BASE-T) of IEEE
standard 802.3 defines a collision as the
simultaneous presence of signals on the DO and RD
circuits (transmitting and receiving at the same
time). A 10BASE-T station can only detect
collisions when it is transmitting. Thus probes
placed on a station and a repeater, should report
the same number of collisions.
Note also that an RMON probe inside a repeater
should ideally report collisions between the
repeater and one or more other hosts (transmit
collisions as defined by IEEE 802.3k) plus receiver
collisions observed on any coax segments to which
the repeater is connected."
::= { etherHistoryEntry 14 }
etherHistoryUtilization OBJECT-TYPE
SYNTAX INTEGER (0..10000)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The best estimate of the mean physical layer
network utilization on this interface during this
sampling interval, in hundredths of a percent."
::= { etherHistoryEntry 15 }
-- The Alarm Group
-- Implementation of the Alarm group is optional.
--
-- The Alarm Group requires the implementation of the Event
-- group.
--
-- The Alarm group periodically takes
-- statistical samples from variables in the probe and
-- compares them to thresholds that have been
-- configured. The alarm table stores configuration
-- entries that each define a variable, polling period,
-- and threshold parameters. If a sample is found to
-- cross the threshold values, an event is generated.
-- Only variables that resolve to an ASN.1 primitive
-- type of INTEGER (INTEGER, Counter, Gauge, or
-- TimeTicks) may be monitored in this way.
--
-- This function has a hysteresis mechanism to limit
-- the generation of events. This mechanism generates
-- one event as a threshold is crossed in the
-- appropriate direction. No more events are generated
-- for that threshold until the opposite threshold is
-- crossed.
--
-- In the case of a sampling a deltaValue, a probe may
-- implement this mechanism with more precision if it
-- takes a delta sample twice per period, each time
-- comparing the sum of the latest two samples to the
-- threshold. This allows the detection of threshold
-- crossings that span the sampling boundary. Note
-- that this does not require any special configuration
-- of the threshold value. It is suggested that probes
-- implement this more precise algorithm.
alarmTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlarmEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of alarm entries."
::= { alarm 1 }
alarmEntry OBJECT-TYPE
SYNTAX AlarmEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of parameters that set up a periodic checking
for alarm conditions. For example, an instance of the
alarmValue object might be named alarmValue.8"
INDEX { alarmIndex }
::= { alarmTable 1 }
AlarmEntry ::= SEQUENCE {
alarmIndex INTEGER (1..65535),
alarmInterval INTEGER,
alarmVariable OBJECT IDENTIFIER,
alarmSampleType INTEGER,
alarmValue INTEGER,
alarmStartupAlarm INTEGER,
alarmRisingThreshold INTEGER,
alarmFallingThreshold INTEGER,
alarmRisingEventIndex INTEGER (0..65535),
alarmFallingEventIndex INTEGER (0..65535),
alarmOwner OwnerString,
alarmStatus EntryStatus
}
alarmIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry in the
alarm table. Each such entry defines a
diagnostic sample at a particular interval
for an object on the device."
::= { alarmEntry 1 }
alarmInterval OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The interval in seconds over which the data is
sampled and compared with the rising and falling
thresholds. When setting this variable, care
should be taken in the case of deltaValue
sampling - the interval should be set short enough
that the sampled variable is very unlikely to
increase or decrease by more than 2^31 - 1 during
a single sampling interval.
This object may not be modified if the associated
alarmStatus object is equal to valid(1)."
::= { alarmEntry 2 }
alarmVariable OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The object identifier of the particular variable to
be sampled. Only variables that resolve to an ASN.1
primitive type of INTEGER (INTEGER, Counter, Gauge,
or TimeTicks) may be sampled.
Because SNMP access control is articulated entirely
in terms of the contents of MIB views, no access
control mechanism exists that can restrict the value
of this object to identify only those objects that
exist in a particular MIB view. Because there is
thus no acceptable means of restricting the read
access that could be obtained through the alarm
mechanism, the probe must only grant write access to
this object in those views that have read access to
all objects on the probe.
During a set operation, if the supplied variable
name is not available in the selected MIB view, a
badValue error must be returned. If at any time the
variable name of an established alarmEntry is no
longer available in the selected MIB view, the probe
must change the status of this alarmEntry to
invalid(4).
This object may not be modified if the associated
alarmStatus object is equal to valid(1)."
::= { alarmEntry 3 }
alarmSampleType OBJECT-TYPE
SYNTAX INTEGER {
absoluteValue(1),
deltaValue(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The method of sampling the selected variable and
calculating the value to be compared against the
thresholds. If the value of this object is
absoluteValue(1), the value of the selected variable
will be compared directly with the thresholds at the
end of the sampling interval. If the value of this
object is deltaValue(2), the value of the selected
variable at the last sample will be subtracted from
the current value, and the difference compared with
the thresholds.
This object may not be modified if the associated
alarmStatus object is equal to valid(1)."
::= { alarmEntry 4 }
alarmValue OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the statistic during the last sampling
period. For example, if the sample type is
deltaValue, this value will be the difference
between the samples at the beginning and end of the
period. If the sample type is absoluteValue, this
value will be the sampled value at the end of the
period.
This is the value that is compared with the rising and
falling thresholds.
The value during the current sampling period is not
made available until the period is completed and will
remain available until the next period completes."
::= { alarmEntry 5 }
alarmStartupAlarm OBJECT-TYPE
SYNTAX INTEGER {
risingAlarm(1),
fallingAlarm(2),
risingOrFallingAlarm(3)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The alarm that may be sent when this entry is first
set to valid. If the first sample after this entry
becomes valid is greater than or equal to the
risingThreshold and alarmStartupAlarm is equal to
risingAlarm(1) or risingOrFallingAlarm(3), then a
single rising alarm will be generated. If the first
sample after this entry becomes valid is less than
or equal to the fallingThreshold and
alarmStartupAlarm is equal to fallingAlarm(2) or
risingOrFallingAlarm(3), then a single falling alarm
will be generated.
This object may not be modified if the associated
alarmStatus object is equal to valid(1)."
::= { alarmEntry 6 }
alarmRisingThreshold OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A threshold for the sampled statistic. When the
current sampled value is greater than or equal to
this threshold, and the value at the last sampling
interval was less than this threshold, a single
event will be generated. A single event will also
be generated if the first sample after this entry
becomes valid is greater than or equal to this
threshold and the associated alarmStartupAlarm is
equal to risingAlarm(1) or risingOrFallingAlarm(3).
After a rising event is generated, another such event
will not be generated until the sampled value
falls below this threshold and reaches the
alarmFallingThreshold.
This object may not be modified if the associated
alarmStatus object is equal to valid(1)."
::= { alarmEntry 7 }
alarmFallingThreshold OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A threshold for the sampled statistic. When the
current sampled value is less than or equal to this
threshold, and the value at the last sampling
interval was greater than this threshold, a single
event will be generated. A single event will also
be generated if the first sample after this entry
becomes valid is less than or equal to this
threshold and the associated alarmStartupAlarm is
equal to fallingAlarm(2) or risingOrFallingAlarm(3).
After a falling event is generated, another such event
will not be generated until the sampled value
rises above this threshold and reaches the
alarmRisingThreshold.
This object may not be modified if the associated
alarmStatus object is equal to valid(1)."
::= { alarmEntry 8 }
alarmRisingEventIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The index of the eventEntry that is
used when a rising threshold is crossed. The
eventEntry identified by a particular value of
this index is the same as identified by the same value
of the eventIndex object. If there is no
corresponding entry in the eventTable, then
no association exists. In particular, if this value
is zero, no associated event will be generated, as
zero is not a valid event index.
This object may not be modified if the associated
alarmStatus object is equal to valid(1)."
::= { alarmEntry 9 }
alarmFallingEventIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The index of the eventEntry that is
used when a falling threshold is crossed. The
eventEntry identified by a particular value of
this index is the same as identified by the same value
of the eventIndex object. If there is no
corresponding entry in the eventTable, then
no association exists. In particular, if this value
is zero, no associated event will be generated, as
zero is not a valid event index.
This object may not be modified if the associated
alarmStatus object is equal to valid(1)."
::= { alarmEntry 10 }
alarmOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { alarmEntry 11 }
alarmStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this alarm entry."
::= { alarmEntry 12 }
-- The Host Group
-- Implementation of the Host group is optional.
--
-- The host group discovers new hosts on the network by
-- keeping a list of source and destination MAC Addresses seen
-- in good packets. For each of these addresses, the host
-- group keeps a set of statistics. The hostControlTable
-- controls which interfaces this function is performed on,
-- and contains some information about the process. On
-- behalf of each hostControlEntry, data is collected on an
-- interface and placed in both the hostTable and the
-- hostTimeTable. If the monitoring device finds itself
-- short of resources, it may delete entries as needed. It
-- is suggested that the device delete the least recently
-- used entries first.
-- The hostTable contains entries for each address
-- discovered on a particular interface. Each entry
-- contains statistical data about that host. This table is
-- indexed by the MAC address of the host, through which a
-- random access may be achieved.
-- The hostTimeTable contains data in the same format as the
-- hostTable, and must contain the same set of hosts, but is
-- indexed using hostTimeCreationOrder rather than
-- hostAddress.
-- The hostTimeCreationOrder is an integer which reflects
-- the relative order in which a particular entry was
-- discovered and thus inserted into the table. As this
-- order, and thus the index, is among those entries
-- currently in the table, the index for a particular entry
-- may change if an (earlier) entry is deleted. Thus the
-- association between hostTimeCreationOrder and
-- hostTimeEntry may be broken at any time.
-- The hostTimeTable has two important uses. The first is the
-- fast download of this potentially large table. Because the
-- index of this table runs from 1 to the size of the table,
-- inclusive, its values are predictable. This allows very
-- efficient packing of variables into SNMP PDU's and allows
-- a table transfer to have multiple packets outstanding.
-- These benefits increase transfer rates tremendously.
-- The second use of the hostTimeTable is the efficient
-- discovery by the management station of new entries added
-- to the table. After the management station has downloaded
-- the entire table, it knows that new entries will be added
-- immediately after the end of the current table. It can
-- thus detect new entries there and retrieve them easily.
-- Because the association between hostTimeCreationOrder and
-- hostTimeEntry may be broken at any time, the management
-- station must monitor the related hostControlLastDeleteTime
-- object. When the management station thus detects a
-- deletion, it must assume that any such associations have
--- been broken, and invalidate any it has stored locally.
-- This includes restarting any download of the
-- hostTimeTable that may have been in progress, as well as
-- rediscovering the end of the hostTimeTable so that it may
-- detect new entries. If the management station does not
-- detect the broken association, it may continue to refer
-- to a particular host by its creationOrder while
-- unwittingly retrieving the data associated with another
-- host entirely. If this happens while downloading the
-- host table, the management station may fail to download
-- all of the entries in the table.
hostControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF HostControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of host table control entries."
::= { hosts 1 }
hostControlEntry OBJECT-TYPE
SYNTAX HostControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of parameters that set up the discovery of
hosts on a particular interface and the collection
of statistics about these hosts. For example, an
instance of the hostControlTableSize object might be
named hostControlTableSize.1"
INDEX { hostControlIndex }
::= { hostControlTable 1 }
HostControlEntry ::= SEQUENCE {
hostControlIndex INTEGER (1..65535),
hostControlDataSource OBJECT IDENTIFIER,
hostControlTableSize INTEGER,
hostControlLastDeleteTime TimeTicks,
hostControlOwner OwnerString,
hostControlStatus EntryStatus
}
hostControlIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry in the
hostControl table. Each such entry defines
a function that discovers hosts on a particular
interface and places statistics about them in the
hostTable and the hostTimeTable on behalf of this
hostControlEntry."
::= { hostControlEntry 1 }
hostControlDataSource OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object identifies the source of the data for
this instance of the host function. This source
can be any interface on this device. In order
to identify a particular interface, this object shall
identify the instance of the ifIndex object, defined
in RFC 1213 and RFC 1573 [4,6], for the desired
interface. For example, if an entry were to receive
data from interface #1, this object would be set to
ifIndex.1.
The statistics in this group reflect all packets
on the local network segment attached to the
identified interface.
An agent may or may not be able to tell if
fundamental changes to the media of the interface
have occurred and necessitate an invalidation of
this entry. For example, a hot-pluggable ethernet
card could be pulled out and replaced by a
token-ring card. In such a case, if the agent has
such knowledge of the change, it is recommended that
it invalidate this entry.
This object may not be modified if the associated
hostControlStatus object is equal to valid(1)."
::= { hostControlEntry 2 }
hostControlTableSize OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of hostEntries in the hostTable and the
hostTimeTable associated with this hostControlEntry."
::= { hostControlEntry 3 }
hostControlLastDeleteTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime when the last entry
was deleted from the portion of the hostTable
associated with this hostControlEntry. If no
deletions have occurred, this value shall be zero."
::= { hostControlEntry 4 }
hostControlOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { hostControlEntry 5 }
hostControlStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this hostControl entry.
If this object is not equal to valid(1), all
associated entries in the hostTable, hostTimeTable,
and the hostTopNTable shall be deleted by the
agent."
::= { hostControlEntry 6 }
hostTable OBJECT-TYPE
SYNTAX SEQUENCE OF HostEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of host entries."
::= { hosts 2 }
hostEntry OBJECT-TYPE
SYNTAX HostEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of statistics for a particular host
that has been discovered on an interface of this
device. For example, an instance of the
hostOutBroadcastPkts object might be named
hostOutBroadcastPkts.1.6.8.0.32.27.3.176"
INDEX { hostIndex, hostAddress }
::= { hostTable 1 }
HostEntry ::= SEQUENCE {
hostAddress OCTET STRING,
hostCreationOrder INTEGER (1..65535),
hostIndex INTEGER (1..65535),
hostInPkts Counter,
hostOutPkts Counter,
hostInOctets Counter,
hostOutOctets Counter,
hostOutErrors Counter,
hostOutBroadcastPkts Counter,
hostOutMulticastPkts Counter
}
hostAddress OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The physical address of this host."
::= { hostEntry 1 }
hostCreationOrder OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that defines the relative ordering of
the creation time of hosts captured for a
particular hostControlEntry. This index shall
be between 1 and N, where N is the value of
the associated hostControlTableSize. The ordering
of the indexes is based on the order of each entry's
insertion into the table, in which entries added
earlier have a lower index value than entries added
later.
It is important to note that the order for a
particular entry may change as an (earlier) entry
is deleted from the table. Because this order may
change, management stations should make use of the
hostControlLastDeleteTime variable in the
hostControlEntry associated with the relevant
portion of the hostTable. By observing
this variable, the management station may detect
the circumstances where a previous association
between a value of hostCreationOrder
and a hostEntry may no longer hold."
::= { hostEntry 2 }
hostIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The set of collected host statistics of which
this entry is a part. The set of hosts
identified by a particular value of this
index is associated with the hostControlEntry
as identified by the same value of hostControlIndex."
::= { hostEntry 3 }
hostInPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of good packets transmitted to this
address since it was added to the hostTable."
::= { hostEntry 4 }
hostOutPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets, including bad packets,
transmitted by this address since it was added
to the hostTable."
::= { hostEntry 5 }
hostInOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of octets transmitted to this address
since it was added to the hostTable (excluding
framing bits but including FCS octets), except for
those octets in bad packets."
::= { hostEntry 6 }
hostOutOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of octets transmitted by this address
since it was added to the hostTable (excluding
framing bits but including FCS octets), including
those octets in bad packets."
::= { hostEntry 7 }
hostOutErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of bad packets transmitted by this address
since this host was added to the hostTable."
::= { hostEntry 8 }
hostOutBroadcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of good packets transmitted by this
address that were directed to the broadcast address
since this host was added to the hostTable."
::= { hostEntry 9 }
hostOutMulticastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of good packets transmitted by this
address that were directed to a multicast address
since this host was added to the hostTable.
Note that this number does not include packets
directed to the broadcast address."
::= { hostEntry 10 }
-- host Time Table
hostTimeTable OBJECT-TYPE
SYNTAX SEQUENCE OF HostTimeEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of time-ordered host table entries."
::= { hosts 3 }
hostTimeEntry OBJECT-TYPE
SYNTAX HostTimeEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of statistics for a particular host
that has been discovered on an interface of this
device. This collection includes the relative
ordering of the creation time of this object. For
example, an instance of the hostTimeOutBroadcastPkts
object might be named
hostTimeOutBroadcastPkts.1.687"
INDEX { hostTimeIndex, hostTimeCreationOrder }
::= { hostTimeTable 1 }
HostTimeEntry ::= SEQUENCE {
hostTimeAddress OCTET STRING,
hostTimeCreationOrder INTEGER (1..65535),
hostTimeIndex INTEGER (1..65535),
hostTimeInPkts Counter,
hostTimeOutPkts Counter,
hostTimeInOctets Counter,
hostTimeOutOctets Counter,
hostTimeOutErrors Counter,
hostTimeOutBroadcastPkts Counter,
hostTimeOutMulticastPkts Counter
}
hostTimeAddress OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The physical address of this host."
::= { hostTimeEntry 1 }
hostTimeCreationOrder OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry in
the hostTime table among those entries associated
with the same hostControlEntry. This index shall
be between 1 and N, where N is the value of
the associated hostControlTableSize. The ordering
of the indexes is based on the order of each entry's
insertion into the table, in which entries added
earlier have a lower index value than entries added
later. Thus the management station has the ability to
learn of new entries added to this table without
downloading the entire table.
It is important to note that the index for a
particular entry may change as an (earlier) entry
is deleted from the table. Because this order may
change, management stations should make use of the
hostControlLastDeleteTime variable in the
hostControlEntry associated with the relevant
portion of the hostTimeTable. By observing
this variable, the management station may detect
the circumstances where a download of the table
may have missed entries, and where a previous
association between a value of hostTimeCreationOrder
and a hostTimeEntry may no longer hold."
::= { hostTimeEntry 2 }
hostTimeIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The set of collected host statistics of which
this entry is a part. The set of hosts
identified by a particular value of this
index is associated with the hostControlEntry
as identified by the same value of hostControlIndex."
::= { hostTimeEntry 3 }
hostTimeInPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of good packets transmitted to this
address since it was added to the hostTimeTable."
::= { hostTimeEntry 4 }
hostTimeOutPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of god packets transmitted by this
address since it was added to the hostTimeTable."
::= { hostTimeEntry 5 }
hostTimeInOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of octets transmitted to this address
since it was added to the hostTimeTable (excluding
framing bits but including FCS octets), except for
those octets in bad packets."
::= { hostTimeEntry 6 }
hostTimeOutOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of octets transmitted by this address
since it was added to the hostTimeTable (excluding
framing bits but including FCS octets), including
those octets in bad packets."
::= { hostTimeEntry 7 }
hostTimeOutErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of bad packets transmitted by this address
since this host was added to the hostTimeTable."
::= { hostTimeEntry 8 }
hostTimeOutBroadcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of good packets transmitted by this
address that were directed to the broadcast address
since this host was added to the hostTimeTable."
::= { hostTimeEntry 9 }
hostTimeOutMulticastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of good packets transmitted by this
address that were directed to a multicast address
since this host was added to the hostTimeTable.
Note that this number does not include packets
directed to the broadcast address."
::= { hostTimeEntry 10 }
-- The Host Top "N" Group
-- Implementation of the Host Top N group is optional.
--
-- The Host Top N group requires the implementation of the
-- host group.
--
-- The Host Top N group is used to prepare reports that
-- describe the hosts that top a list ordered by one of
-- their statistics.
-- The available statistics are samples of one of their
-- base statistics, over an interval specified by the
-- management station. Thus, these statistics are rate
-- based. The management station also selects how many such
-- hosts are reported.
-- The hostTopNControlTable is used to initiate the
-- generation of such a report. The management station
-- may select the parameters of such a report, such as
-- which interface, which statistic, how many hosts,
-- and the start and stop times of the sampling. When
-- the report is prepared, entries are created in the
-- hostTopNTable associated with the relevant
-- hostTopNControlEntry. These entries are static for
-- each report after it has been prepared.
hostTopNControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF HostTopNControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of top N host control entries."
::= { hostTopN 1 }
hostTopNControlEntry OBJECT-TYPE
SYNTAX HostTopNControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of parameters that control the creation of a
report of the top N hosts according to several
metrics. For example, an instance of the
hostTopNDuration object might be named
hostTopNDuration.3"
INDEX { hostTopNControlIndex }
::= { hostTopNControlTable 1 }
HostTopNControlEntry ::= SEQUENCE {
hostTopNControlIndex INTEGER (1..65535),
hostTopNHostIndex INTEGER (1..65535),
hostTopNRateBase INTEGER,
hostTopNTimeRemaining INTEGER,
hostTopNDuration INTEGER,
hostTopNRequestedSize INTEGER,
hostTopNGrantedSize INTEGER,
hostTopNStartTime TimeTicks,
hostTopNOwner OwnerString,
hostTopNStatus EntryStatus
}
hostTopNControlIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry
in the hostTopNControl table. Each such
entry defines one top N report prepared for
one interface."
::= { hostTopNControlEntry 1 }
hostTopNHostIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The host table for which a top N report will be
prepared on behalf of this entry. The host table
identified by a particular value of this index is
associated with the same host table as identified by
the same value of hostIndex.
This object may not be modified if the associated
hostTopNStatus object is equal to valid(1)."
::= { hostTopNControlEntry 2 }
hostTopNRateBase OBJECT-TYPE
SYNTAX INTEGER {
hostTopNInPkts(1),
hostTopNOutPkts(2),
hostTopNInOctets(3),
hostTopNOutOctets(4),
hostTopNOutErrors(5),
hostTopNOutBroadcastPkts(6),
hostTopNOutMulticastPkts(7)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The variable for each host that the hostTopNRate
variable is based upon.
This object may not be modified if the associated
hostTopNStatus object is equal to valid(1)."
::= { hostTopNControlEntry 3 }
hostTopNTimeRemaining OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The number of seconds left in the report currently
being collected. When this object is modified by
the management station, a new collection is started,
possibly aborting a currently running report. The
new value is used as the requested duration of this
report, which is loaded into the associated
hostTopNDuration object.
When this object is set to a non-zero value, any
associated hostTopNEntries shall be made
inaccessible by the monitor. While the value of
this object is non-zero, it decrements by one per
second until it reaches zero. During this time, all
associated hostTopNEntries shall remain
inaccessible. At the time that this object
decrements to zero, the report is made accessible in
the hostTopNTable. Thus, the hostTopN table needs
to be created only at the end of the collection
interval."
DEFVAL { 0 }
::= { hostTopNControlEntry 4 }
hostTopNDuration OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of seconds that this report has collected
during the last sampling interval, or if this
report is currently being collected, the number
of seconds that this report is being collected
during this sampling interval.
When the associated hostTopNTimeRemaining object is
set, this object shall be set by the probe to the
same value and shall not be modified until the next
time the hostTopNTimeRemaining is set.
This value shall be zero if no reports have been
requested for this hostTopNControlEntry."
DEFVAL { 0 }
::= { hostTopNControlEntry 5 }
hostTopNRequestedSize OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum number of hosts requested for the top N
table.
When this object is created or modified, the probe
should set hostTopNGrantedSize as closely to this
object as is possible for the particular probe
implementation and available resources."
DEFVAL { 10 }
::= { hostTopNControlEntry 6 }
hostTopNGrantedSize OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The maximum number of hosts in the top N table.
When the associated hostTopNRequestedSize object is
created or modified, the probe should set this
object as closely to the requested value as is
possible for the particular implementation and
available resources. The probe must not lower this
value except as a result of a set to the associated
hostTopNRequestedSize object.
Hosts with the highest value of hostTopNRate shall be
placed in this table in decreasing order of this rate
until there is no more room or until there are no more
hosts."
::= { hostTopNControlEntry 7 }
hostTopNStartTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime when this top N report was
last started. In other words, this is the time that
the associated hostTopNTimeRemaining object was
modified to start the requested report."
::= { hostTopNControlEntry 8 }
hostTopNOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { hostTopNControlEntry 9 }
hostTopNStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this hostTopNControl entry.
If this object is not equal to valid(1), all
associated hostTopNEntries shall be deleted by the
agent."
::= { hostTopNControlEntry 10 }
hostTopNTable OBJECT-TYPE
SYNTAX SEQUENCE OF HostTopNEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of top N host entries."
::= { hostTopN 2 }
hostTopNEntry OBJECT-TYPE
SYNTAX HostTopNEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of statistics for a host that is part of a
top N report. For example, an instance of the
hostTopNRate object might be named
hostTopNRate.3.10"
INDEX { hostTopNReport, hostTopNIndex }
::= { hostTopNTable 1 }
HostTopNEntry ::= SEQUENCE {
hostTopNReport INTEGER (1..65535),
hostTopNIndex INTEGER (1..65535),
hostTopNAddress OCTET STRING,
hostTopNRate INTEGER
}
hostTopNReport OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This object identifies the top N report of which
this entry is a part. The set of hosts
identified by a particular value of this
object is part of the same report as identified
by the same value of the hostTopNControlIndex object."
::= { hostTopNEntry 1 }
hostTopNIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry in
the hostTopN table among those in the same report.
This index is between 1 and N, where N is the
number of entries in this table. Increasing values
of hostTopNIndex shall be assigned to entries with
decreasing values of hostTopNRate until index N
is assigned to the entry with the lowest value of
hostTopNRate or there are no more hostTopNEntries."
::= { hostTopNEntry 2 }
hostTopNAddress OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The physical address of this host."
::= { hostTopNEntry 3 }
hostTopNRate OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The amount of change in the selected variable
during this sampling interval. The selected
variable is this host's instance of the object
selected by hostTopNRateBase."
::= { hostTopNEntry 4 }
-- The Matrix Group
-- Implementation of the Matrix group is optional.
--
-- The Matrix group consists of the matrixControlTable,
-- matrixSDTable and the matrixDSTable. These tables
-- store statistics for a particular conversation
-- between two addresses. As the device detects a new
-- conversation, including those to a non-unicast
-- address, it creates a new entry in both of the
-- matrix tables. It must only create new entries
-- based on information received in good packets. If
-- the monitoring device finds itself short of
-- resources, it may delete entries as needed. It is
-- suggested that the device delete the least recently
-- used entries first.
matrixControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF MatrixControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of information entries for the
traffic matrix on each interface."
::= { matrix 1 }
matrixControlEntry OBJECT-TYPE
SYNTAX MatrixControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Information about a traffic matrix on a particular
interface. For example, an instance of the
matrixControlLastDeleteTime object might be named
matrixControlLastDeleteTime.1"
INDEX { matrixControlIndex }
::= { matrixControlTable 1 }
MatrixControlEntry ::= SEQUENCE {
matrixControlIndex INTEGER (1..65535),
matrixControlDataSource OBJECT IDENTIFIER,
matrixControlTableSize INTEGER,
matrixControlLastDeleteTime TimeTicks,
matrixControlOwner OwnerString,
matrixControlStatus EntryStatus
}
matrixControlIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry in the
matrixControl table. Each such entry defines
a function that discovers conversations on a
particular interface and places statistics about
them in the matrixSDTable and the matrixDSTable on
behalf of this matrixControlEntry."
::= { matrixControlEntry 1 }
matrixControlDataSource OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object identifies the source of
the data from which this entry creates a traffic
matrix. This source can be any interface on this
device. In order to identify a particular
interface, this object shall identify the instance
of the ifIndex object, defined in RFC 1213 and RFC
1573 [4,6], for the desired interface. For example,
if an entry were to receive data from interface #1,
this object would be set to ifIndex.1.
The statistics in this group reflect all packets
on the local network segment attached to the
identified interface.
An agent may or may not be able to tell if
fundamental changes to the media of the interface
have occurred and necessitate an invalidation of
this entry. For example, a hot-pluggable ethernet
card could be pulled out and replaced by a
token-ring card. In such a case, if the agent has
such knowledge of the change, it is recommended that
it invalidate this entry.
This object may not be modified if the associated
matrixControlStatus object is equal to valid(1)."
::= { matrixControlEntry 2 }
matrixControlTableSize OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of matrixSDEntries in the matrixSDTable
for this interface. This must also be the value of
the number of entries in the matrixDSTable for this
interface."
::= { matrixControlEntry 3 }
matrixControlLastDeleteTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime when the last entry
was deleted from the portion of the matrixSDTable
or matrixDSTable associated with this
matrixControlEntry. If no deletions have occurred,
this value shall be zero."
::= { matrixControlEntry 4 }
matrixControlOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { matrixControlEntry 5 }
matrixControlStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this matrixControl entry.
If this object is not equal to valid(1), all
associated entries in the matrixSDTable and the
matrixDSTable shall be deleted by the agent."
::= { matrixControlEntry 6 }
matrixSDTable OBJECT-TYPE
SYNTAX SEQUENCE OF MatrixSDEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of traffic matrix entries indexed by
source and destination MAC address."
::= { matrix 2 }
matrixSDEntry OBJECT-TYPE
SYNTAX MatrixSDEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of statistics for communications between
two addresses on a particular interface. For example,
an instance of the matrixSDPkts object might be named
matrixSDPkts.1.6.8.0.32.27.3.176.6.8.0.32.10.8.113"
INDEX { matrixSDIndex,
matrixSDSourceAddress, matrixSDDestAddress }
::= { matrixSDTable 1 }
MatrixSDEntry ::= SEQUENCE {
matrixSDSourceAddress OCTET STRING,
matrixSDDestAddress OCTET STRING,
matrixSDIndex INTEGER (1..65535),
matrixSDPkts Counter,
matrixSDOctets Counter,
matrixSDErrors Counter
}
matrixSDSourceAddress OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The source physical address."
::= { matrixSDEntry 1 }
matrixSDDestAddress OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The destination physical address."
::= { matrixSDEntry 2 }
matrixSDIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The set of collected matrix statistics of which
this entry is a part. The set of matrix statistics
identified by a particular value of this index
is associated with the same matrixControlEntry
as identified by the same value of
matrixControlIndex."
::= { matrixSDEntry 3 }
matrixSDPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets transmitted from the source
address to the destination address (this number
includes bad packets)."
::= { matrixSDEntry 4 }
matrixSDOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of octets (excluding framing bits but
including FCS octets) contained in all packets
transmitted from the source address to the
destination address."
::= { matrixSDEntry 5 }
matrixSDErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of bad packets transmitted from
the source address to the destination address."
::= { matrixSDEntry 6 }
-- Traffic matrix tables from destination to source
matrixDSTable OBJECT-TYPE
SYNTAX SEQUENCE OF MatrixDSEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of traffic matrix entries indexed by
destination and source MAC address."
::= { matrix 3 }
matrixDSEntry OBJECT-TYPE
SYNTAX MatrixDSEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of statistics for communications between
two addresses on a particular interface. For example,
an instance of the matrixSDPkts object might be named
matrixSDPkts.1.6.8.0.32.10.8.113.6.8.0.32.27.3.176"
INDEX { matrixDSIndex,
matrixDSDestAddress, matrixDSSourceAddress }
::= { matrixDSTable 1 }
MatrixDSEntry ::= SEQUENCE {
matrixDSSourceAddress OCTET STRING,
matrixDSDestAddress OCTET STRING,
matrixDSIndex INTEGER (1..65535),
matrixDSPkts Counter,
matrixDSOctets Counter,
matrixDSErrors Counter
}
matrixDSSourceAddress OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The source physical address."
::= { matrixDSEntry 1 }
matrixDSDestAddress OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The destination physical address."
::= { matrixDSEntry 2 }
matrixDSIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The set of collected matrix statistics of which
this entry is a part. The set of matrix statistics
identified by a particular value of this index
is associated with the same matrixControlEntry
as identified by the same value of
matrixControlIndex."
::= { matrixDSEntry 3 }
matrixDSPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets transmitted from the source
address to the destination address (this number
includes bad packets)."
::= { matrixDSEntry 4 }
matrixDSOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of octets (excluding framing bits
but including FCS octets) contained in all packets
transmitted from the source address to the
destination address."
::= { matrixDSEntry 5 }
matrixDSErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of bad packets transmitted from
the source address to the destination address."
::= { matrixDSEntry 6 }
-- The Filter Group
-- Implementation of the Filter group is optional.
--
-- The Filter group allows packets to be captured with an
-- arbitrary filter expression. A logical data and
-- event stream or "channel" is formed by the packets
-- that match the filter expression.
--
-- This filter mechanism allows the creation of an arbitrary
-- logical expression with which to filter packets. Each
-- filter associated with a channel is OR'ed with the others.
-- Within a filter, any bits checked in the data and status
-- are AND'ed with respect to other bits in the same filter.
-- The NotMask also allows for checking for inequality.
-- Finally, the channelAcceptType object allows for
-- inversion of the whole equation.
--
-- If a management station wishes to receive a trap to alert
-- it that new packets have been captured and are available
-- for download, it is recommended that it set up an alarm
-- entry that monitors the value of the relevant
-- channelMatches instance.
--
-- The channel can be turned on or off, and can also
-- generate events when packets pass through it.
filterTable OBJECT-TYPE
SYNTAX SEQUENCE OF FilterEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of packet filter entries."
::= { filter 1 }
filterEntry OBJECT-TYPE
SYNTAX FilterEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of parameters for a packet filter applied on a
particular interface. As an example, an instance of
the filterPktData object might be named
filterPktData.12"
INDEX { filterIndex }
::= { filterTable 1 }
FilterEntry ::= SEQUENCE {
filterIndex INTEGER (1..65535),
filterChannelIndex INTEGER (1..65535),
filterPktDataOffset INTEGER,
filterPktData OCTET STRING,
filterPktDataMask OCTET STRING,
filterPktDataNotMask OCTET STRING,
filterPktStatus INTEGER,
filterPktStatusMask INTEGER,
filterPktStatusNotMask INTEGER,
filterOwner OwnerString,
filterStatus EntryStatus
}
filterIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry
in the filter table. Each such entry defines
one filter that is to be applied to every packet
received on an interface."
::= { filterEntry 1 }
filterChannelIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object identifies the channel of which this
filter is a part. The filters identified by a
particular value of this object are associated with
the same channel as identified by the same value of
the channelIndex object."
::= { filterEntry 2 }
filterPktDataOffset OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The offset from the beginning of each packet where
a match of packet data will be attempted. This offset
is measured from the point in the physical layer
packet after the framing bits, if any. For example,
in an Ethernet frame, this point is at the beginning
of the destination MAC address.
This object may not be modified if the associated
filterStatus object is equal to valid(1)."
DEFVAL { 0 }
::= { filterEntry 3 }
filterPktData OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The data that is to be matched with the input
packet. For each packet received, this filter and
the accompanying filterPktDataMask and
filterPktDataNotMask will be adjusted for the
offset. The only bits relevant to this match
algorithm are those that have the corresponding
filterPktDataMask bit equal to one. The following
three rules are then applied to every packet:
(1) If the packet is too short and does not have data
corresponding to part of the filterPktData, the
packet will fail this data match.
(2) For each relevant bit from the packet with the
corresponding filterPktDataNotMask bit set to
zero, if the bit from the packet is not equal to
the corresponding bit from the filterPktData,
then the packet will fail this data match.
(3) If for every relevant bit from the packet with the
corresponding filterPktDataNotMask bit set to one,
the bit from the packet is equal to the
corresponding bit from the filterPktData, then
the packet will fail this data match.
Any packets that have not failed any of the three
matches above have passed this data match. In
particular, a zero length filter will match any
packet.
This object may not be modified if the associated
filterStatus object is equal to valid(1)."
::= { filterEntry 4 }
filterPktDataMask OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The mask that is applied to the match process.
After adjusting this mask for the offset, only those
bits in the received packet that correspond to bits
set in this mask are relevant for further processing
by the match algorithm. The offset is applied to
filterPktDataMask in the same way it is applied to the
filter. For the purposes of the matching algorithm,
if the associated filterPktData object is longer
than this mask, this mask is conceptually extended
with '1' bits until it reaches the length of the
filterPktData object.
This object may not be modified if the associated
filterStatus object is equal to valid(1)."
::= { filterEntry 5 }
filterPktDataNotMask OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The inversion mask that is applied to the match
process. After adjusting this mask for the offset,
those relevant bits in the received packet that
correspond to bits cleared in this mask must all be
equal to their corresponding bits in the
filterPktData object for the packet to be accepted.
In addition, at least one of those relevant bits in
the received packet that correspond to bits set in
this mask must be different to its corresponding bit
in the filterPktData object.
For the purposes of the matching algorithm, if the
associated filterPktData object is longer than this
mask, this mask is conceptually extended with '0'
bits until it reaches the length of the
filterPktData object.
This object may not be modified if the associated
filterStatus object is equal to valid(1)."
::= { filterEntry 6 }
filterPktStatus OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status that is to be matched with the input
packet. The only bits relevant to this match
algorithm are those that have the corresponding
filterPktStatusMask bit equal to one. The following
two rules are then applied to every packet:
(1) For each relevant bit from the packet status
with the corresponding filterPktStatusNotMask bit
set to zero, if the bit from the packet status is
not equal to the corresponding bit from the
filterPktStatus, then the packet will fail this
status match.
(2) If for every relevant bit from the packet status
with the corresponding filterPktStatusNotMask bit
set to one, the bit from the packet status is
equal to the corresponding bit from the
filterPktStatus, then the packet will fail this
status match.
Any packets that have not failed either of the two
matches above have passed this status match. In
particular, a zero length status filter will match any
packet's status.
The value of the packet status is a sum. This sum
initially takes the value zero. Then, for each
error, E, that has been discovered in this packet,
2 raised to a value representing E is added to the
sum. The errors and the bits that represent them are
dependent on the media type of the interface that
this channel is receiving packets from.
The errors defined for a packet captured off of an
Ethernet interface are as follows:
bit # Error
0 Packet is longer than 1518 octets
1 Packet is shorter than 64 octets
2 Packet experienced a CRC or Alignment
error
For example, an Ethernet fragment would have a
value of 6 (2^1 + 2^2).
As this MIB is expanded to new media types, this
object will have other media-specific errors
defined.
For the purposes of this status matching algorithm,
if the packet status is longer than this
filterPktStatus object, this object is conceptually
extended with '0' bits until it reaches the size of
the packet status.
This object may not be modified if the associated
filterStatus object is equal to valid(1)."
::= { filterEntry 7 }
filterPktStatusMask OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The mask that is applied to the status match
process. Only those bits in the received packet
that correspond to bits set in this mask are
relevant for further processing by the status match
algorithm. For the purposes of the matching
algorithm, if the associated filterPktStatus object
is longer than this mask, this mask is conceptually
extended with '1' bits until it reaches the size of
the filterPktStatus. In addition, if a packet
status is longer than this mask, this mask is
conceptually extended with '0' bits until it reaches
the size of the packet status.
This object may not be modified if the associated
filterStatus object is equal to valid(1)."
::= { filterEntry 8 }
filterPktStatusNotMask OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The inversion mask that is applied to the status
match process. Those relevant bits in the received
packet status that correspond to bits cleared in
this mask must all be equal to their corresponding
bits in the filterPktStatus object for the packet to
be accepted. In addition, at least one of those
relevant bits in the received packet status that
correspond to bits set in this mask must be
different to its corresponding bit in the
filterPktStatus object for the packet to be
accepted.
For the purposes of the matching algorithm, if the
associated filterPktStatus object or a packet status
is longer than this mask, this mask is conceptually
extended with '0' bits until it reaches the longer
of the lengths of the filterPktStatus object and the
packet status.
This object may not be modified if the associated
filterStatus object is equal to valid(1)."
::= { filterEntry 9 }
filterOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { filterEntry 10 }
filterStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this filter entry."
::= { filterEntry 11 }
channelTable OBJECT-TYPE
SYNTAX SEQUENCE OF ChannelEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of packet channel entries."
::= { filter 2 }
channelEntry OBJECT-TYPE
SYNTAX ChannelEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of parameters for a packet channel applied on a
particular interface. As an example, an instance of
the channelMatches object might be named
channelMatches.3"
INDEX { channelIndex }
::= { channelTable 1 }
ChannelEntry ::= SEQUENCE {
channelIndex INTEGER (1..65535),
channelIfIndex INTEGER (1..65535),
channelAcceptType INTEGER,
channelDataControl INTEGER,
channelTurnOnEventIndex INTEGER (0..65535),
channelTurnOffEventIndex INTEGER (0..65535),
channelEventIndex INTEGER (0..65535),
channelEventStatus INTEGER,
channelMatches Counter,
channelDescription DisplayString (SIZE (0..127)),
channelOwner OwnerString,
channelStatus EntryStatus
}
channelIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry in the
channel table. Each such entry defines one channel,
a logical data and event stream.
It is suggested that before creating a channel, an
application should scan all instances of the
filterChannelIndex object to make sure that there
are no pre-existing filters that would be
inadvertently be linked to the channel."
::= { channelEntry 1 }
channelIfIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value of this object uniquely identifies the
interface on this remote network monitoring device
to which the associated filters are applied to allow
data into this channel. The interface identified by
a particular value of this object is the same
interface as identified by the same value of the
ifIndex object, defined in RFC 1213 and RFC 1573
[4,6].
The filters in this group are applied to all packets
on the local network segment attached to the
identified interface.
An agent may or may not be able to tell if
fundamental changes to the media of the interface
have occurred and necessitate an invalidation of
this entry. For example, a hot-pluggable ethernet
card could be pulled out and replaced by a
token-ring card. In such a case, if the agent has
such knowledge of the change, it is recommended that
it invalidate this entry.
This object may not be modified if the associated
channelStatus object is equal to valid(1)."
::= { channelEntry 2 }
channelAcceptType OBJECT-TYPE
SYNTAX INTEGER {
acceptMatched(1),
acceptFailed(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object controls the action of the filters
associated with this channel. If this object is equal
to acceptMatched(1), packets will be accepted to this
channel if they are accepted by both the packet data
and packet status matches of an associated filter. If
this object is equal to acceptFailed(2), packets will
be accepted to this channel only if they fail either
the packet data match or the packet status match of
each of the associated filters.
In particular, a channel with no associated filters
will match no packets if set to acceptMatched(1)
case and will match all packets in the
acceptFailed(2) case.
This object may not be modified if the associated
channelStatus object is equal to valid(1)."
::= { channelEntry 3 }
channelDataControl OBJECT-TYPE
SYNTAX INTEGER {
on(1),
off(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object controls the flow of data through this
channel. If this object is on(1), data, status and
events flow through this channel. If this object is
off(2), data, status and events will not flow
through this channel."
DEFVAL { off }
::= { channelEntry 4 }
channelTurnOnEventIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value of this object identifies the event
that is configured to turn the associated
channelDataControl from off to on when the event is
generated. The event identified by a particular value
of this object is the same event as identified by the
same value of the eventIndex object. If there is no
corresponding entry in the eventTable, then no
association exists. In fact, if no event is intended
for this channel, channelTurnOnEventIndex must be
set to zero, a non-existent event index.
This object may not be modified if the associated
channelStatus object is equal to valid(1)."
::= { channelEntry 5 }
channelTurnOffEventIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value of this object identifies the event
that is configured to turn the associated
channelDataControl from on to off when the event is
generated. The event identified by a particular value
of this object is the same event as identified by the
same value of the eventIndex object. If there is no
corresponding entry in the eventTable, then no
association exists. In fact, if no event is intended
for this channel, channelTurnOffEventIndex must be
set to zero, a non-existent event index.
This object may not be modified if the associated
channelStatus object is equal to valid(1)."
::= { channelEntry 6 }
channelEventIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value of this object identifies the event
that is configured to be generated when the
associated channelDataControl is on and a packet
is matched. The event identified by a particular
value of this object is the same event as identified
by the same value of the eventIndex object. If
there is no corresponding entry in the eventTable,
then no association exists. In fact, if no event is
intended for this channel, channelEventIndex must be
set to zero, a non-existent event index.
This object may not be modified if the associated
channelStatus object is equal to valid(1)."
::= { channelEntry 7 }
channelEventStatus OBJECT-TYPE
SYNTAX INTEGER {
eventReady(1),
eventFired(2),
eventAlwaysReady(3)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The event status of this channel.
If this channel is configured to generate events
when packets are matched, a means of controlling
the flow of those events is often needed. When
this object is equal to eventReady(1), a single
event may be generated, after which this object
will be set by the probe to eventFired(2). While
in the eventFired(2) state, no events will be
generated until the object is modified to
eventReady(1) (or eventAlwaysReady(3)). The
management station can thus easily respond to a
notification of an event by re-enabling this object.
If the management station wishes to disable this
flow control and allow events to be generated
at will, this object may be set to
eventAlwaysReady(3). Disabling the flow control
is discouraged as it can result in high network
traffic or other performance problems."
DEFVAL { eventReady }
::= { channelEntry 8 }
channelMatches OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this channel has matched a
packet. Note that this object is updated even when
channelDataControl is set to off."
::= { channelEntry 9 }
channelDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..127))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A comment describing this channel."
::= { channelEntry 10 }
channelOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { channelEntry 11 }
channelStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this channel entry."
::= { channelEntry 12 }
-- The Packet Capture Group
-- Implementation of the Packet Capture group is optional.
--
-- The Packet Capture Group requires implementation of the
-- Filter Group.
--
-- The Packet Capture group allows packets to be captured
-- upon a filter match. The bufferControlTable controls
-- the captured packets output from a channel that is
-- associated with it. The captured packets are placed
-- in entries in the captureBufferTable. These entries are
-- associated with the bufferControlEntry on whose behalf they
-- were stored.
bufferControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF BufferControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of buffers control entries."
::= { capture 1 }
bufferControlEntry OBJECT-TYPE
SYNTAX BufferControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of parameters that control the collection of
a stream of packets that have matched filters. As
an example, an instance of the
bufferControlCaptureSliceSize object might be named
bufferControlCaptureSliceSize.3"
INDEX { bufferControlIndex }
::= { bufferControlTable 1 }
BufferControlEntry ::= SEQUENCE {
bufferControlIndex INTEGER (1..65535),
bufferControlChannelIndex INTEGER (1..65535),
bufferControlFullStatus INTEGER,
bufferControlFullAction INTEGER,
bufferControlCaptureSliceSize INTEGER,
bufferControlDownloadSliceSize INTEGER,
bufferControlDownloadOffset INTEGER,
bufferControlMaxOctetsRequested INTEGER,
bufferControlMaxOctetsGranted INTEGER,
bufferControlCapturedPackets INTEGER,
bufferControlTurnOnTime TimeTicks,
bufferControlOwner OwnerString,
bufferControlStatus EntryStatus
}
bufferControlIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry
in the bufferControl table. The value of this
index shall never be zero. Each such
entry defines one set of packets that is
captured and controlled by one or more filters."
::= { bufferControlEntry 1 }
bufferControlChannelIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"An index that identifies the channel that is the
source of packets for this bufferControl table.
The channel identified by a particular value of this
index is the same as identified by the same value of
the channelIndex object.
This object may not be modified if the associated
bufferControlStatus object is equal to valid(1)."
::= { bufferControlEntry 2 }
bufferControlFullStatus OBJECT-TYPE
SYNTAX INTEGER {
spaceAvailable(1),
full(2)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This object shows whether the buffer has room to
accept new packets or if it is full.
If the status is spaceAvailable(1), the buffer is
accepting new packets normally. If the status is
full(2) and the associated bufferControlFullAction
object is wrapWhenFull, the buffer is accepting new
packets by deleting enough of the oldest packets
to make room for new ones as they arrive. Otherwise,
if the status is full(2) and the
bufferControlFullAction object is lockWhenFull,
then the buffer has stopped collecting packets.
When this object is set to full(2) the probe must
not later set it to spaceAvailable(1) except in the
case of a significant gain in resources such as
an increase of bufferControlOctetsGranted. In
particular, the wrap-mode action of deleting old
packets to make room for newly arrived packets
must not affect the value of this object."
::= { bufferControlEntry 3 }
bufferControlFullAction OBJECT-TYPE
SYNTAX INTEGER {
lockWhenFull(1),
wrapWhenFull(2) -- FIFO
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Controls the action of the buffer when it
reaches the full status. When in the lockWhenFull(1)
state and a packet is added to the buffer that
fills the buffer, the bufferControlFullStatus will
be set to full(2) and this buffer will stop capturing
packets."
::= { bufferControlEntry 4 }
bufferControlCaptureSliceSize OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum number of octets of each packet
that will be saved in this capture buffer.
For example, if a 1500 octet packet is received by
the probe and this object is set to 500, then only
500 octets of the packet will be stored in the
associated capture buffer. If this variable is set
to 0, the capture buffer will save as many octets
as is possible.
This object may not be modified if the associated
bufferControlStatus object is equal to valid(1)."
DEFVAL { 100 }
::= { bufferControlEntry 5 }
bufferControlDownloadSliceSize OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum number of octets of each packet
in this capture buffer that will be returned in
an SNMP retrieval of that packet. For example,
if 500 octets of a packet have been stored in the
associated capture buffer, the associated
bufferControlDownloadOffset is 0, and this
object is set to 100, then the captureBufferPacket
object that contains the packet will contain only
the first 100 octets of the packet.
A prudent manager will take into account possible
interoperability or fragmentation problems that may
occur if the download slice size is set too large.
In particular, conformant SNMP implementations are not
required to accept messages whose length exceeds 484
octets, although they are encouraged to support larger
datagrams whenever feasible."
DEFVAL { 100 }
::= { bufferControlEntry 6 }
bufferControlDownloadOffset OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The offset of the first octet of each packet
in this capture buffer that will be returned in
an SNMP retrieval of that packet. For example,
if 500 octets of a packet have been stored in the
associated capture buffer and this object is set to
100, then the captureBufferPacket object that
contains the packet will contain bytes starting
100 octets into the packet."
DEFVAL { 0 }
::= { bufferControlEntry 7 }
bufferControlMaxOctetsRequested OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The requested maximum number of octets to be
saved in this captureBuffer, including any
implementation-specific overhead. If this variable
is set to -1, the capture buffer will save as many
octets as is possible.
When this object is created or modified, the probe
should set bufferControlMaxOctetsGranted as closely
to this object as is possible for the particular probe
implementation and available resources. However, if
the object has the special value of -1, the probe
must set bufferControlMaxOctetsGranted to -1."
DEFVAL { -1 }
::= { bufferControlEntry 8 }
bufferControlMaxOctetsGranted OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The maximum number of octets that can be
saved in this captureBuffer, including overhead.
If this variable is -1, the capture buffer will save
as many octets as possible.
When the bufferControlMaxOctetsRequested object is
created or modified, the probe should set this object
as closely to the requested value as is possible for
the particular probe implementation and available
resources.
However, if the request object has the special value
of -1, the probe must set this object to -1.
The probe must not lower this value except as a result
of a modification to the associated
bufferControlMaxOctetsRequested object.
When this maximum number of octets is reached
and a new packet is to be added to this
capture buffer and the corresponding
bufferControlFullAction is set to wrapWhenFull(2),
enough of the oldest packets associated with this
capture buffer shall be deleted by the agent so
that the new packet can be added. If the
corresponding bufferControlFullAction is set to
lockWhenFull(1), the new packet shall be discarded.
In either case, the probe must set
bufferControlFullStatus to full(2).
When the value of this object changes to a value less
than the current value, entries are deleted from
the captureBufferTable associated with this
bufferControlEntry. Enough of the
oldest of these captureBufferEntries shall be
deleted by the agent so that the number of octets
used remains less than or equal to the new value of
this object.
When the value of this object changes to a value
greater than the current value, the number of
associated captureBufferEntries may be allowed to
grow."
::= { bufferControlEntry 9 }
bufferControlCapturedPackets OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets currently in this
captureBuffer."
::= { bufferControlEntry 10 }
bufferControlTurnOnTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime when this capture buffer was
first turned on."
::= { bufferControlEntry 11 }
bufferControlOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { bufferControlEntry 12 }
bufferControlStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this buffer Control Entry."
::= { bufferControlEntry 13 }
captureBufferTable OBJECT-TYPE
SYNTAX SEQUENCE OF CaptureBufferEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of packets captured off of a channel."
::= { capture 2 }
captureBufferEntry OBJECT-TYPE
SYNTAX CaptureBufferEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A packet captured off of an attached network. As an
example, an instance of the captureBufferPacketData
object might be named captureBufferPacketData.3.1783"
INDEX { captureBufferControlIndex, captureBufferIndex }
::= { captureBufferTable 1 }
CaptureBufferEntry ::= SEQUENCE {
captureBufferControlIndex INTEGER (1..65535),
captureBufferIndex INTEGER (1..2147483647),
captureBufferPacketID INTEGER,
captureBufferPacketData OCTET STRING,
captureBufferPacketLength INTEGER,
captureBufferPacketTime INTEGER,
captureBufferPacketStatus INTEGER
}
captureBufferControlIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The index of the bufferControlEntry with which
this packet is associated."
::= { captureBufferEntry 1 }
captureBufferIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry
in the captureBuffer table associated with a
particular bufferControlEntry. This index will
start at 1 and increase by one for each new packet
added with the same captureBufferControlIndex.
Should this value reach 2147483647, the next packet
added with the same captureBufferControlIndex shall
cause this value to wrap around to 1."
::= { captureBufferEntry 2 }
captureBufferPacketID OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that describes the order of packets
that are received on a particular interface.
The packetID of a packet captured on an
interface is defined to be greater than the
packetID's of all packets captured previously on
the same interface. As the captureBufferPacketID
object has a maximum positive value of 2^31 - 1,
any captureBufferPacketID object shall have the
value of the associated packet's packetID mod 2^31."
::= { captureBufferEntry 3 }
captureBufferPacketData OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The data inside the packet, starting at the
beginning of the packet plus any offset specified in
the associated bufferControlDownloadOffset,
including any link level headers. The length of the
data in this object is the minimum of the length of
the captured packet minus the offset, the length of
the associated bufferControlCaptureSliceSize minus
the offset, and the associated
bufferControlDownloadSliceSize. If this minimum is
less than zero, this object shall have a length of
zero."
::= { captureBufferEntry 4 }
captureBufferPacketLength OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The actual length (off the wire) of the packet stored
in this entry, including FCS octets."
::= { captureBufferEntry 5 }
captureBufferPacketTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of milliseconds that had passed since
this capture buffer was first turned on when this
packet was captured."
::= { captureBufferEntry 6 }
captureBufferPacketStatus OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A value which indicates the error status of this
packet.
The value of this object is defined in the same way as
filterPktStatus. The value is a sum. This sum
initially takes the value zero. Then, for each
error, E, that has been discovered in this packet,
2 raised to a value representing E is added to the
sum.
The errors defined for a packet captured off of an
Ethernet interface are as follows:
bit # Error
0 Packet is longer than 1518 octets
1 Packet is shorter than 64 octets
2 Packet experienced a CRC or Alignment
error
3 First packet in this capture buffer after
it was detected that some packets were
not processed correctly.
4 Packet's order in buffer is only
approximate (May only be set for packets
sent from the probe)
For example, an Ethernet fragment would have a
value of 6 (2^1 + 2^2).
As this MIB is expanded to new media types, this
object will have other media-specific errors defined."
::= { captureBufferEntry 7 }
-- The Event Group
-- Implementation of the Event group is optional.
--
-- The Event group controls the generation and notification
-- of events from this device. Each entry in the eventTable
-- describes the parameters of the event that can be
-- triggered. Each event entry is fired by an associated
-- condition located elsewhere in the MIB. An event entry
-- may also be associated- with a function elsewhere in the
-- MIB that will be executed when the event is generated. For
-- example, a channel may be turned on or off by the firing
-- of an event.
--
-- Each eventEntry may optionally specify that a log entry
-- be created on its behalf whenever the event occurs.
-- Each entry may also specify that notification should
-- occur by way of SNMP trap messages. In this case, the
-- community for the trap message is given in the associated
-- eventCommunity object. The enterprise and specific trap
-- fields of the trap are determined by the condition that
-- triggered the event. Two traps are defined: risingAlarm
-- and fallingAlarm. If the eventTable is triggered by a
-- condition specified elsewhere, the enterprise and
-- specific trap fields must be specified for traps
-- generated for that condition.
eventTable OBJECT-TYPE
SYNTAX SEQUENCE OF EventEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of events to be generated."
::= { event 1 }
eventEntry OBJECT-TYPE
SYNTAX EventEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of parameters that describe an event to be
generated when certain conditions are met. As an
example, an instance of the eventLastTimeSent object
might be named eventLastTimeSent.6"
INDEX { eventIndex }
::= { eventTable 1 }
EventEntry ::= SEQUENCE {
eventIndex INTEGER (1..65535),
eventDescription DisplayString (SIZE (0..127)),
eventType INTEGER,
eventCommunity OCTET STRING (SIZE (0..127)),
eventLastTimeSent TimeTicks,
eventOwner OwnerString,
eventStatus EntryStatus
}
eventIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry in the
event table. Each such entry defines one event that
is to be generated when the appropriate conditions
occur."
::= { eventEntry 1 }
eventDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..127))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A comment describing this event entry."
::= { eventEntry 2 }
eventType OBJECT-TYPE
SYNTAX INTEGER {
none(1),
log(2),
snmp-trap(3), -- send an SNMP trap
log-and-trap(4)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The type of notification that the probe will make
about this event. In the case of log, an entry is
made in the log table for each event. In the case of
snmp-trap, an SNMP trap is sent to one or more
management stations."
::= { eventEntry 3 }
eventCommunity OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..127))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"If an SNMP trap is to be sent, it will be sent to
the SNMP community specified by this octet string.
In the future this table will be extended to include
the party security mechanism. This object shall be
set to a string of length zero if it is intended that
that mechanism be used to specify the destination of
the trap."
::= { eventEntry 4 }
eventLastTimeSent OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime at the time this event
entry last generated an event. If this entry has
not generated any events, this value will be
zero."
::= { eventEntry 5 }
eventOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it.
If this object contains a string starting with
'monitor' and has associated entries in the log
table, all connected management stations should
retrieve those log entries, as they may have
significance to all management stations connected to
this device"
::= { eventEntry 6 }
eventStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this event entry.
If this object is not equal to valid(1), all
associated log entries shall be deleted by the
agent."
::= { eventEntry 7 }
--
logTable OBJECT-TYPE
SYNTAX SEQUENCE OF LogEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of events that have been logged."
::= { event 2 }
logEntry OBJECT-TYPE
SYNTAX LogEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A set of data describing an event that has been
logged. For example, an instance of the
logDescription object might be named
logDescription.6.47"
INDEX { logEventIndex, logIndex }
::= { logTable 1 }
LogEntry ::= SEQUENCE {
logEventIndex INTEGER (1..65535),
logIndex INTEGER (1..2147483647),
logTime TimeTicks,
logDescription DisplayString (SIZE (0..255))
}
logEventIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The event entry that generated this log
entry. The log identified by a particular
value of this index is associated with the same
eventEntry as identified by the same value
of eventIndex."
::= { logEntry 1 }
logIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies an entry
in the log table amongst those generated by the
same eventEntries. These indexes are
assigned beginning with 1 and increase by one
with each new log entry. The association
between values of logIndex and logEntries
is fixed for the lifetime of each logEntry.
The agent may choose to delete the oldest
instances of logEntry as required because of
lack of memory. It is an implementation-specific
matter as to when this deletion may occur."
::= { logEntry 2 }
logTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime when this log entry was
created."
::= { logEntry 3 }
logDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An implementation dependent description of the
event that activated this log entry."
::= { logEntry 4 }
-- These definitions use the TRAP-TYPE macro as
-- defined in RFC 1215 [10]
-- Remote Network Monitoring Traps
risingAlarm TRAP-TYPE
ENTERPRISE rmon
VARIABLES { alarmIndex, alarmVariable, alarmSampleType,
alarmValue, alarmRisingThreshold }
DESCRIPTION
"The SNMP trap that is generated when an alarm
entry crosses its rising threshold and generates
an event that is configured for sending SNMP
traps."
::= 1
fallingAlarm TRAP-TYPE
ENTERPRISE rmon
VARIABLES { alarmIndex, alarmVariable, alarmSampleType,
alarmValue, alarmFallingThreshold }
DESCRIPTION
"The SNMP trap that is generated when an alarm
entry crosses its falling threshold and generates
an event that is configured for sending SNMP
traps."
::= 2
END
|