aboutsummaryrefslogtreecommitdiffstats
path: root/lib/stdlib/src/digraph_utils.erl
blob: e221be15a11c29a5e413d1492fdcc210348317df (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
%%
%% %CopyrightBegin%
%% 
%% Copyright Ericsson AB 1999-2011. All Rights Reserved.
%% 
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%% 
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%% 
%% %CopyrightEnd%
%%
-module(digraph_utils).

%%% Operations on directed (and undirected) graphs.
%%%
%%% Implementation based on Launchbury, John: Graph Algorithms with a 
%%% Functional Flavour, in Jeuring, Johan, and Meijer, Erik (Eds.): 
%%% Advanced Functional Programming, Lecture Notes in Computer 
%%% Science 925, Springer Verlag, 1995.

-export([components/1, strong_components/1, cyclic_strong_components/1, 
	 reachable/2, reachable_neighbours/2, 
	 reaching/2, reaching_neighbours/2,
	 topsort/1, is_acyclic/1, 
         arborescence_root/1, is_arborescence/1, is_tree/1, 
         loop_vertices/1,
	 subgraph/2, subgraph/3, condensation/1,
	 preorder/1, postorder/1]).

%%
%%  A convenient type alias
%%

%%
%%  Exported functions
%%

-spec components(Digraph) -> [Component] when
      Digraph :: digraph(),
      Component :: [digraph:vertex()].

components(G) ->
    forest(G, fun inout/3).

-spec strong_components(Digraph) -> [StrongComponent] when
      Digraph :: digraph(),
      StrongComponent :: [digraph:vertex()].

strong_components(G) ->
    forest(G, fun in/3, revpostorder(G)).

-spec cyclic_strong_components(Digraph) -> [StrongComponent] when
      Digraph :: digraph(),
      StrongComponent :: [digraph:vertex()].

cyclic_strong_components(G) ->
    remove_singletons(strong_components(G), G, []).

-spec reachable(Vertices, Digraph) -> Reachable when
      Digraph :: digraph(),
      Vertices :: [digraph:vertex()],
      Reachable :: [digraph:vertex()].

reachable(Vs, G) when is_list(Vs) ->
    lists:append(forest(G, fun out/3, Vs, first)).

-spec reachable_neighbours(Vertices, Digraph) -> Reachable when
      Digraph :: digraph(),
      Vertices :: [digraph:vertex()],
      Reachable :: [digraph:vertex()].

reachable_neighbours(Vs, G) when is_list(Vs) ->
    lists:append(forest(G, fun out/3, Vs, not_first)).

-spec reaching(Vertices, Digraph) -> Reaching when
      Digraph :: digraph(),
      Vertices :: [digraph:vertex()],
      Reaching :: [digraph:vertex()].

reaching(Vs, G) when is_list(Vs) ->
    lists:append(forest(G, fun in/3, Vs, first)).

-spec reaching_neighbours(Vertices, Digraph) -> Reaching when
      Digraph :: digraph(),
      Vertices :: [digraph:vertex()],
      Reaching :: [digraph:vertex()].

reaching_neighbours(Vs, G) when is_list(Vs) ->
    lists:append(forest(G, fun in/3, Vs, not_first)).

-spec topsort(Digraph) -> Vertices | 'false' when
      Digraph :: digraph(),
      Vertices :: [digraph:vertex()].

topsort(G) ->
    L = revpostorder(G),
    case length(forest(G, fun in/3, L)) =:= length(digraph:vertices(G)) of
	true  -> L;
	false -> false
    end.

-spec is_acyclic(Digraph) -> boolean() when
      Digraph :: digraph().

is_acyclic(G) ->
    loop_vertices(G) =:= [] andalso topsort(G) =/= false.

-spec arborescence_root(Digraph) -> 'no' | {'yes', Root} when
      Digraph :: digraph(),
      Root :: digraph:vertex().

arborescence_root(G) ->
    case digraph:no_edges(G) =:= digraph:no_vertices(G) - 1 of
        true ->
            try
                F = fun(V, Z) ->
                            case digraph:in_degree(G, V) of
                                1 -> Z;
                                0 when Z =:= [] -> [V]
                            end
                    end,
                [Root] = lists:foldl(F, [], digraph:vertices(G)),
                {yes, Root}
            catch _:_ ->
                no
            end;
        false ->
            no
    end.

-spec is_arborescence(Digraph) -> boolean() when
      Digraph :: digraph().

is_arborescence(G) ->
    arborescence_root(G) =/= no.

-spec is_tree(Digraph) -> boolean() when
      Digraph :: digraph().

is_tree(G) ->
    (digraph:no_edges(G) =:= digraph:no_vertices(G) - 1)
    andalso (length(components(G)) =:= 1).

-spec loop_vertices(Digraph) -> Vertices when
      Digraph :: digraph(),
      Vertices :: [digraph:vertex()].

loop_vertices(G) ->
    [V || V <- digraph:vertices(G), is_reflexive_vertex(V, G)].

-spec subgraph(Digraph, Vertices) -> SubGraph when
      Digraph :: digraph(),
      Vertices :: [digraph:vertex()],
      SubGraph :: digraph().

subgraph(G, Vs) ->
    try
	subgraph_opts(G, Vs, [])
    catch
	throw:badarg ->
	    erlang:error(badarg)
    end.

-spec subgraph(Digraph, Vertices, Options) -> SubGraph when
      Digraph :: digraph(),
      SubGraph :: digraph(),
      Vertices :: [digraph:vertex()],
      Options :: [{'type', SubgraphType} | {'keep_labels', boolean()}],
      SubgraphType :: 'inherit' | [digraph:d_type()].

subgraph(G, Vs, Opts) ->
    try
	subgraph_opts(G, Vs, Opts)
    catch
	throw:badarg ->
	    erlang:error(badarg)
    end.

-spec condensation(Digraph) -> CondensedDigraph when
      Digraph :: digraph(),
      CondensedDigraph :: digraph().

condensation(G) ->
    SCs = strong_components(G),
    %% Each component is assigned a number.
    %% V2I: from vertex to number.
    %% I2C: from number to component.
    V2I = ets:new(condensation, []),
    I2C = ets:new(condensation, []),
    CFun = fun(SC, N) -> lists:foreach(fun(V) -> 
					  true = ets:insert(V2I, {V,N}) 
				       end, 
				       SC), 
			 true = ets:insert(I2C, {N, SC}), 
			 N + 1 
	   end,
    lists:foldl(CFun, 1, SCs),
    SCG = subgraph_opts(G, [], []),
    lists:foreach(fun(SC) -> condense(SC, G, SCG, V2I, I2C) end, SCs),
    ets:delete(V2I),
    ets:delete(I2C),
    SCG.

-spec preorder(Digraph) -> Vertices when
      Digraph :: digraph(),
      Vertices :: [digraph:vertex()].

preorder(G) ->
    lists:reverse(revpreorder(G)).

-spec postorder(Digraph) -> Vertices when
      Digraph :: digraph(),
      Vertices :: [digraph:vertex()].

postorder(G) ->
    lists:reverse(revpostorder(G)).

%%
%%  Local functions
%%

forest(G, SF) ->
    forest(G, SF, digraph:vertices(G)).

forest(G, SF, Vs) ->
    forest(G, SF, Vs, first).

forest(G, SF, Vs, HandleFirst) ->
    T = ets:new(forest, [set]),
    F = fun(V, LL) -> pretraverse(HandleFirst, V, SF, G, T, LL) end,
    LL = lists:foldl(F, [], Vs),
    ets:delete(T),
    LL.

pretraverse(first, V, SF, G, T, LL) ->
    ptraverse([V], SF, G, T, [], LL);
pretraverse(not_first, V, SF, G, T, LL) ->
    case ets:member(T, V) of
	false -> ptraverse(SF(G, V, []), SF, G, T, [], LL);
	true  -> LL
    end.

ptraverse([V | Vs], SF, G, T, Rs, LL) ->
    case ets:member(T, V) of
	false ->
	    ets:insert(T, {V}),
	    ptraverse(SF(G, V, Vs), SF, G, T, [V | Rs], LL);
	true ->
	    ptraverse(Vs, SF, G, T, Rs, LL)
    end;
ptraverse([], _SF, _G, _T, [], LL) ->
    LL;
ptraverse([], _SF, _G, _T, Rs, LL) ->
    [Rs | LL].

revpreorder(G) ->
    lists:append(forest(G, fun out/3)).

revpostorder(G) ->
    T = ets:new(forest, [set]),
    L = posttraverse(digraph:vertices(G), G, T, []),
    ets:delete(T),
    L.

posttraverse([V | Vs], G, T, L) ->
    L1 = case ets:member(T, V) of
	     false ->
		 ets:insert(T, {V}),
		 [V | posttraverse(out(G, V, []), G, T, L)];
	     true ->
		 L
	 end,
    posttraverse(Vs, G, T, L1);
posttraverse([], _G, _T, L) ->
    L.

in(G, V, Vs) ->
    digraph:in_neighbours(G, V) ++ Vs.

out(G, V, Vs) ->
    digraph:out_neighbours(G, V) ++ Vs.

inout(G, V, Vs) ->
    in(G, V, out(G, V, Vs)).

remove_singletons([C=[V] | Cs], G, L) ->
    case is_reflexive_vertex(V, G) of
	true  -> remove_singletons(Cs, G, [C | L]);
	false -> remove_singletons(Cs, G, L)
    end;
remove_singletons([C | Cs], G, L) ->
    remove_singletons(Cs, G, [C | L]);
remove_singletons([], _G, L) ->
    L.

is_reflexive_vertex(V, G) ->
    lists:member(V, digraph:out_neighbours(G, V)).

subgraph_opts(G, Vs, Opts) ->
    subgraph_opts(Opts, inherit, true, G, Vs).

subgraph_opts([{type, Type} | Opts], _Type0, Keep, G, Vs)
  when Type =:= inherit; is_list(Type) ->
    subgraph_opts(Opts, Type, Keep, G, Vs);
subgraph_opts([{keep_labels, Keep} | Opts], Type, _Keep0, G, Vs)
  when is_boolean(Keep) ->
    subgraph_opts(Opts, Type, Keep, G, Vs);
subgraph_opts([], inherit, Keep, G, Vs) ->
    Info = digraph:info(G),
    {_, {_, Cyclicity}} = lists:keysearch(cyclicity, 1, Info),
    {_, {_, Protection}} = lists:keysearch(protection, 1, Info),
    subgraph(G, Vs, [Cyclicity, Protection], Keep);
subgraph_opts([], Type, Keep, G, Vs) ->
    subgraph(G, Vs, Type, Keep);
subgraph_opts(_, _Type, _Keep, _G, _Vs) ->
    throw(badarg).

subgraph(G, Vs, Type, Keep) ->
    try digraph:new(Type) of
	SG ->
	    lists:foreach(fun(V) -> subgraph_vertex(V, G, SG, Keep) end, Vs),
	    EFun = fun(V) -> lists:foreach(fun(E) -> 
					       subgraph_edge(E, G, SG, Keep) 
                                           end,
                                           digraph:out_edges(G, V))
		   end,
	    lists:foreach(EFun, digraph:vertices(SG)),
	    SG
    catch
	error:badarg ->
	    throw(badarg)
    end.

subgraph_vertex(V, G, SG, Keep) ->
    case digraph:vertex(G, V) of
	false -> ok;
	_ when not Keep -> digraph:add_vertex(SG, V);
	{_V, Label} when Keep -> digraph:add_vertex(SG, V, Label)
    end.

subgraph_edge(E, G, SG, Keep) ->
    {_E, V1, V2, Label} = digraph:edge(G, E),
    case digraph:vertex(SG, V2) of
	false -> ok;
	_ when not Keep -> digraph:add_edge(SG, E, V1, V2, []);
	_ when Keep -> digraph:add_edge(SG, E, V1, V2, Label)
    end.

condense(SC, G, SCG, V2I, I2C) ->
    T = ets:new(condense, []),
    NFun = fun(Neighbour) ->
		   [{_V,I}] = ets:lookup(V2I, Neighbour),
		   ets:insert(T, {I})
	   end,
    VFun = fun(V) -> lists:foreach(NFun, digraph:out_neighbours(G, V)) end,
    lists:foreach(VFun, SC),
    digraph:add_vertex(SCG, SC),
    condense(ets:first(T), T, SC, G, SCG, I2C),
    ets:delete(T).

condense('$end_of_table', _T, _SC, _G, _SCG, _I2C) ->
    ok;
condense(I, T, SC, G, SCG, I2C) ->
    [{_,C}] = ets:lookup(I2C, I),
    digraph:add_vertex(SCG, C),
    digraph:add_edge(SCG, SC, C),
    condense(ets:next(T, I), T, SC, G, SCG, I2C).