1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
|
%% =====================================================================
%% Licensed under the Apache License, Version 2.0 (the "License"); you may
%% not use this file except in compliance with the License. You may obtain
%% a copy of the License at <http://www.apache.org/licenses/LICENSE-2.0>
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% Alternatively, you may use this file under the terms of the GNU Lesser
%% General Public License (the "LGPL") as published by the Free Software
%% Foundation; either version 2.1, or (at your option) any later version.
%% If you wish to allow use of your version of this file only under the
%% terms of the LGPL, you should delete the provisions above and replace
%% them with the notice and other provisions required by the LGPL; see
%% <http://www.gnu.org/licenses/>. If you do not delete the provisions
%% above, a recipient may use your version of this file under the terms of
%% either the Apache License or the LGPL.
%%
%% @copyright 1997-2006 Richard Carlsson
%% @author Richard Carlsson <[email protected]>
%% @end
%% =====================================================================
%% @doc Support library for abstract Erlang syntax trees.
%%
%% This module contains utility functions for working with the
%% abstract data type defined in the module {@link erl_syntax}.
%%
%% @type syntaxTree() = erl_syntax:syntaxTree(). An abstract syntax
%% tree. See the {@link erl_syntax} module for details.
-module(erl_syntax_lib).
-export([analyze_application/1, analyze_attribute/1,
analyze_export_attribute/1, analyze_file_attribute/1,
analyze_form/1, analyze_forms/1, analyze_function/1,
analyze_function_name/1, analyze_implicit_fun/1,
analyze_import_attribute/1, analyze_module_attribute/1,
analyze_record_attribute/1, analyze_record_expr/1,
analyze_record_field/1, analyze_wild_attribute/1, annotate_bindings/1,
analyze_type_application/1, analyze_type_name/1,
annotate_bindings/2, fold/3, fold_subtrees/3, foldl_listlist/3,
function_name_expansions/1, is_fail_expr/1, limit/2, limit/3,
map/2, map_subtrees/2, mapfold/3, mapfold_subtrees/3,
mapfoldl_listlist/3, new_variable_name/1, new_variable_name/2,
new_variable_names/2, new_variable_names/3, strip_comments/1,
to_comment/1, to_comment/2, to_comment/3, variables/1]).
-export_type([info_pair/0]).
%% =====================================================================
%% @spec map(Function, Tree::syntaxTree()) -> syntaxTree()
%%
%% Function = (syntaxTree()) -> syntaxTree()
%%
%% @doc Applies a function to each node of a syntax tree. The result of
%% each application replaces the corresponding original node. The order
%% of traversal is bottom-up.
%%
%% @see map_subtrees/2
-spec map(fun((erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree()),
erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
map(F, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
F(Tree);
Gs ->
Tree1 = erl_syntax:make_tree(erl_syntax:type(Tree),
[[map(F, T) || T <- G]
|| G <- Gs]),
F(erl_syntax:copy_attrs(Tree, Tree1))
end.
%% =====================================================================
%% @spec map_subtrees(Function, syntaxTree()) -> syntaxTree()
%%
%% Function = (Tree) -> Tree1
%%
%% @doc Applies a function to each immediate subtree of a syntax tree.
%% The result of each application replaces the corresponding original
%% node.
%%
%% @see map/2
-spec map_subtrees(fun((erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree()),
erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
map_subtrees(F, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
Tree;
Gs ->
Tree1 = erl_syntax:make_tree(erl_syntax:type(Tree),
[[F(T) || T <- G] || G <- Gs]),
erl_syntax:copy_attrs(Tree, Tree1)
end.
%% =====================================================================
%% @spec fold(Function, Start::term(), Tree::syntaxTree()) -> term()
%%
%% Function = (syntaxTree(), term()) -> term()
%%
%% @doc Folds a function over all nodes of a syntax tree. The result is
%% the value of `Function(X1, Function(X2, ... Function(Xn, Start)
%% ... ))', where `[X1, X2, ..., Xn]' are the nodes of
%% `Tree' in a post-order traversal.
%%
%% @see fold_subtrees/3
%% @see foldl_listlist/3
-spec fold(fun((erl_syntax:syntaxTree(), term()) -> term()),
term(), erl_syntax:syntaxTree()) -> term().
fold(F, S, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
F(Tree, S);
Gs ->
F(Tree, fold_1(F, S, Gs))
end.
fold_1(F, S, [L | Ls]) ->
fold_1(F, fold_2(F, S, L), Ls);
fold_1(_, S, []) ->
S.
fold_2(F, S, [T | Ts]) ->
fold_2(F, fold(F, S, T), Ts);
fold_2(_, S, []) ->
S.
%% =====================================================================
%% @spec fold_subtrees(Function, Start::term(), Tree::syntaxTree()) ->
%% term()
%%
%% Function = (syntaxTree(), term()) -> term()
%%
%% @doc Folds a function over the immediate subtrees of a syntax tree.
%% This is similar to `fold/3', but only on the immediate
%% subtrees of `Tree', in left-to-right order; it does not
%% include the root node of `Tree'.
%%
%% @see fold/3
-spec fold_subtrees(fun((erl_syntax:syntaxTree(), term()) -> term()),
term(), erl_syntax:syntaxTree()) -> term().
fold_subtrees(F, S, Tree) ->
foldl_listlist(F, S, erl_syntax:subtrees(Tree)).
%% =====================================================================
%% @spec foldl_listlist(Function, Start::term(), [[term()]]) -> term()
%%
%% Function = (term(), term()) -> term()
%%
%% @doc Like `lists:foldl/3', but over a list of lists.
%%
%% @see fold/3
%% @see //stdlib/lists:foldl/3
-spec foldl_listlist(fun((term(), term()) -> term()),
term(), [[term()]]) -> term().
foldl_listlist(F, S, [L | Ls]) ->
foldl_listlist(F, foldl(F, S, L), Ls);
foldl_listlist(_, S, []) ->
S.
foldl(F, S, [T | Ts]) ->
foldl(F, F(T, S), Ts);
foldl(_, S, []) ->
S.
%% =====================================================================
%% @spec mapfold(Function, Start::term(), Tree::syntaxTree()) ->
%% {syntaxTree(), term()}
%%
%% Function = (syntaxTree(), term()) -> {syntaxTree(), term()}
%%
%% @doc Combines map and fold in a single operation. This is similar to
%% `map/2', but also propagates an extra value from each
%% application of the `Function' to the next, while doing a
%% post-order traversal of the tree like `fold/3'. The value
%% `Start' is passed to the first function application, and
%% the final result is the result of the last application.
%%
%% @see map/2
%% @see fold/3
-spec mapfold(fun((erl_syntax:syntaxTree(), term()) -> {erl_syntax:syntaxTree(), term()}),
term(), erl_syntax:syntaxTree()) -> {erl_syntax:syntaxTree(), term()}.
mapfold(F, S, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
F(Tree, S);
Gs ->
{Gs1, S1} = mapfold_1(F, S, Gs),
Tree1 = erl_syntax:make_tree(erl_syntax:type(Tree), Gs1),
F(erl_syntax:copy_attrs(Tree, Tree1), S1)
end.
mapfold_1(F, S, [L | Ls]) ->
{L1, S1} = mapfold_2(F, S, L),
{Ls1, S2} = mapfold_1(F, S1, Ls),
{[L1 | Ls1], S2};
mapfold_1(_, S, []) ->
{[], S}.
mapfold_2(F, S, [T | Ts]) ->
{T1, S1} = mapfold(F, S, T),
{Ts1, S2} = mapfold_2(F, S1, Ts),
{[T1 | Ts1], S2};
mapfold_2(_, S, []) ->
{[], S}.
%% =====================================================================
%% @spec mapfold_subtrees(Function, Start::term(),
%% Tree::syntaxTree()) -> {syntaxTree(), term()}
%%
%% Function = (syntaxTree(), term()) -> {syntaxTree(), term()}
%%
%% @doc Does a mapfold operation over the immediate subtrees of a syntax
%% tree. This is similar to `mapfold/3', but only on the
%% immediate subtrees of `Tree', in left-to-right order; it
%% does not include the root node of `Tree'.
%%
%% @see mapfold/3
-spec mapfold_subtrees(fun((erl_syntax:syntaxTree(), term()) ->
{erl_syntax:syntaxTree(), term()}),
term(), erl_syntax:syntaxTree()) ->
{erl_syntax:syntaxTree(), term()}.
mapfold_subtrees(F, S, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
{Tree, S};
Gs ->
{Gs1, S1} = mapfoldl_listlist(F, S, Gs),
Tree1 = erl_syntax:make_tree(erl_syntax:type(Tree), Gs1),
{erl_syntax:copy_attrs(Tree, Tree1), S1}
end.
%% =====================================================================
%% @spec mapfoldl_listlist(Function, State, [[term()]]) ->
%% {[[term()]], term()}
%%
%% Function = (term(), term()) -> {term(), term()}
%%
%% @doc Like `lists:mapfoldl/3', but over a list of lists.
%% The list of lists in the result has the same structure as the given
%% list of lists.
-spec mapfoldl_listlist(fun((term(), term()) -> {term(), term()}),
term(), [[term()]]) -> {[[term()]], term()}.
mapfoldl_listlist(F, S, [L | Ls]) ->
{L1, S1} = mapfoldl(F, S, L),
{Ls1, S2} = mapfoldl_listlist(F, S1, Ls),
{[L1 | Ls1], S2};
mapfoldl_listlist(_, S, []) ->
{[], S}.
mapfoldl(F, S, [L | Ls]) ->
{L1, S1} = F(L, S),
{Ls1, S2} = mapfoldl(F, S1, Ls),
{[L1 | Ls1], S2};
mapfoldl(_, S, []) ->
{[], S}.
%% =====================================================================
%% @spec variables(syntaxTree()) -> set(atom())
%%
%% @type set(T) = //stdlib/sets:set(T)
%%
%% @doc Returns the names of variables occurring in a syntax tree, The
%% result is a set of variable names represented by atoms. Macro names
%% are not included.
%%
%% @see //stdlib/sets
-spec variables(erl_syntax:syntaxTree()) -> sets:set(atom()).
variables(Tree) ->
variables(Tree, sets:new()).
variables(T, S) ->
case erl_syntax:type(T) of
variable ->
sets:add_element(erl_syntax:variable_name(T), S);
macro ->
%% macro names are ignored, even if represented by variables
case erl_syntax:macro_arguments(T) of
none -> S;
As ->
variables_2(As, S)
end;
_ ->
case erl_syntax:subtrees(T) of
[] ->
S;
Gs ->
variables_1(Gs, S)
end
end.
variables_1([L | Ls], S) ->
variables_1(Ls, variables_2(L, S));
variables_1([], S) ->
S.
variables_2([T | Ts], S) ->
variables_2(Ts, variables(T, S));
variables_2([], S) ->
S.
-define(MINIMUM_RANGE, 100).
-define(START_RANGE_FACTOR, 100).
-define(MAX_RETRIES, 3). % retries before enlarging range
-define(ENLARGE_ENUM, 8). % range enlargment enumerator
-define(ENLARGE_DENOM, 1). % range enlargment denominator
default_variable_name(N) ->
list_to_atom("V" ++ integer_to_list(N)).
%% =====================================================================
%% @spec new_variable_name(Used::set(atom())) -> atom()
%%
%% @doc Returns an atom which is not already in the set `Used'. This is
%% equivalent to `new_variable_name(Function, Used)', where `Function'
%% maps a given integer `N' to the atom whose name consists of "`V'"
%% followed by the numeral for `N'.
%%
%% @see new_variable_name/2
-spec new_variable_name(sets:set(atom())) -> atom().
new_variable_name(S) ->
new_variable_name(fun default_variable_name/1, S).
%% =====================================================================
%% @spec new_variable_name(Function, Used::set(atom())) -> atom()
%%
%% Function = (integer()) -> atom()
%%
%% @doc Returns a user-named atom which is not already in the set
%% `Used'. The atom is generated by applying the given
%% `Function' to a generated integer. Integers are generated
%% using an algorithm which tries to keep the names randomly distributed
%% within a reasonably small range relative to the number of elements in
%% the set.
%%
%% This function uses the module `rand' to generate new
%% keys. The seed it uses may be initialized by calling
%% `rand:seed/1' or `rand:seed/2' before this
%% function is first called.
%%
%% @see new_variable_name/1
%% @see //stdlib/sets
%% @see //stdlib/random
-spec new_variable_name(fun((integer()) -> atom()), sets:set(atom())) -> atom().
new_variable_name(F, S) ->
R = start_range(S),
new_variable_name(R, F, S).
new_variable_name(R, F, S) ->
new_variable_name(generate(R, R), R, 0, F, S).
new_variable_name(N, R, T, F, S) when T < ?MAX_RETRIES ->
A = F(N),
case sets:is_element(A, S) of
true ->
new_variable_name(generate(N, R), R, T + 1, F, S);
false ->
A
end;
new_variable_name(N, R, _T, F, S) ->
%% Too many retries - enlarge the range and start over.
R1 = (R * ?ENLARGE_ENUM) div ?ENLARGE_DENOM,
new_variable_name(generate(N, R1), R1, 0, F, S).
%% Note that we assume that it is very cheap to take the size of
%% the given set. This should be valid for the stdlib
%% implementation of `sets'.
start_range(S) ->
erlang:max(sets:size(S) * ?START_RANGE_FACTOR, ?MINIMUM_RANGE).
%% The previous number might or might not be used to compute the
%% next number to be tried. It is currently not used.
%%
%% It is important that this function does not generate values in
%% order, but (pseudo-)randomly distributed over the range.
generate(_Key, Range) ->
_ = case rand:export_seed() of
undefined ->
rand:seed(exsplus, {753,8,73});
_ ->
ok
end,
rand:uniform(Range). % works well
%% =====================================================================
%% @spec new_variable_names(N::integer(), Used::set(atom())) -> [atom()]
%%
%% @doc Like `new_variable_name/1', but generates a list of
%% `N' new names.
%%
%% @see new_variable_name/1
-spec new_variable_names(integer(), sets:set(atom())) -> [atom()].
new_variable_names(N, S) ->
new_variable_names(N, fun default_variable_name/1, S).
%% =====================================================================
%% @spec new_variable_names(N::integer(), Function,
%% Used::set(atom())) -> [atom()]
%%
%% Function = (integer()) -> atom()
%%
%% @doc Like `new_variable_name/2', but generates a list of
%% `N' new names.
%%
%% @see new_variable_name/2
-spec new_variable_names(integer(), fun((integer()) -> atom()), sets:set(atom())) ->
[atom()].
new_variable_names(N, F, S) when is_integer(N) ->
R = start_range(S),
new_variable_names(N, [], R, F, S).
new_variable_names(N, Names, R, F, S) when N > 0 ->
Name = new_variable_name(R, F, S),
S1 = sets:add_element(Name, S),
new_variable_names(N - 1, [Name | Names], R, F, S1);
new_variable_names(0, Names, _, _, _) ->
Names.
%% =====================================================================
%% @spec annotate_bindings(Tree::syntaxTree(),
%% Bindings::ordset(atom())) -> syntaxTree()
%%
%% @type ordset(T) = //stdlib/ordsets:ordset(T)
%%
%% @doc Adds or updates annotations on nodes in a syntax tree.
%% `Bindings' specifies the set of bound variables in the
%% environment of the top level node. The following annotations are
%% affected:
%% <ul>
%% <li>`{env, Vars}', representing the input environment
%% of the subtree.</li>
%%
%% <li>`{bound, Vars}', representing the variables that
%% are bound in the subtree.</li>
%%
%% <li>`{free, Vars}', representing the free variables in
%% the subtree.</li>
%% </ul>
%% `Bindings' and `Vars' are ordered-set lists
%% (cf. module `ordsets') of atoms representing variable
%% names.
%%
%% @see annotate_bindings/1
%% @see //stdlib/ordsets
-spec annotate_bindings(erl_syntax:syntaxTree(), ordsets:ordset(atom())) ->
erl_syntax:syntaxTree().
annotate_bindings(Tree, Env) ->
{Tree1, _, _} = vann(Tree, Env),
Tree1.
%% =====================================================================
%% @spec annotate_bindings(Tree::syntaxTree()) -> syntaxTree()
%%
%% @doc Adds or updates annotations on nodes in a syntax tree.
%% Equivalent to `annotate_bindings(Tree, Bindings)' where
%% the top-level environment `Bindings' is taken from the
%% annotation `{env, Bindings}' on the root node of
%% `Tree'. An exception is thrown if no such annotation
%% should exist.
%%
%% @see annotate_bindings/2
-spec annotate_bindings(erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
annotate_bindings(Tree) ->
As = erl_syntax:get_ann(Tree),
case lists:keyfind(env, 1, As) of
{env, InVars} ->
annotate_bindings(Tree, InVars);
_ ->
erlang:error(badarg)
end.
vann(Tree, Env) ->
case erl_syntax:type(Tree) of
variable ->
%% Variable use
Bound = [],
Free = [erl_syntax:variable_name(Tree)],
{ann_bindings(Tree, Env, Bound, Free), Bound, Free};
match_expr ->
vann_match_expr(Tree, Env);
case_expr ->
vann_case_expr(Tree, Env);
if_expr ->
vann_if_expr(Tree, Env);
cond_expr ->
vann_cond_expr(Tree, Env);
receive_expr ->
vann_receive_expr(Tree, Env);
catch_expr ->
vann_catch_expr(Tree, Env);
try_expr ->
vann_try_expr(Tree, Env);
function ->
vann_function(Tree, Env);
fun_expr ->
vann_fun_expr(Tree, Env);
list_comp ->
vann_list_comp(Tree, Env);
binary_comp ->
vann_binary_comp(Tree, Env);
generator ->
vann_generator(Tree, Env);
binary_generator ->
vann_binary_generator(Tree, Env);
block_expr ->
vann_block_expr(Tree, Env);
macro ->
vann_macro(Tree, Env);
_Type ->
F = vann_list_join(Env),
{Tree1, {Bound, Free}} = mapfold_subtrees(F, {[], []},
Tree),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}
end.
vann_list_join(Env) ->
fun (T, {Bound, Free}) ->
{T1, Bound1, Free1} = vann(T, Env),
{T1, {ordsets:union(Bound, Bound1),
ordsets:union(Free, Free1)}}
end.
vann_list(Ts, Env) ->
lists:mapfoldl(vann_list_join(Env), {[], []}, Ts).
vann_function(Tree, Env) ->
Cs = erl_syntax:function_clauses(Tree),
{Cs1, {_, Free}} = vann_clauses(Cs, Env),
N = erl_syntax:function_name(Tree),
{N1, _, _} = vann(N, Env),
Tree1 = rewrite(Tree, erl_syntax:function(N1, Cs1)),
Bound = [],
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_fun_expr(Tree, Env) ->
Cs = erl_syntax:fun_expr_clauses(Tree),
{Cs1, {_, Free}} = vann_clauses(Cs, Env),
Tree1 = rewrite(Tree, erl_syntax:fun_expr(Cs1)),
Bound = [],
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_match_expr(Tree, Env) ->
E = erl_syntax:match_expr_body(Tree),
{E1, Bound1, Free1} = vann(E, Env),
Env1 = ordsets:union(Env, Bound1),
P = erl_syntax:match_expr_pattern(Tree),
{P1, Bound2, Free2} = vann_pattern(P, Env1),
Bound = ordsets:union(Bound1, Bound2),
Free = ordsets:union(Free1, Free2),
Tree1 = rewrite(Tree, erl_syntax:match_expr(P1, E1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_case_expr(Tree, Env) ->
E = erl_syntax:case_expr_argument(Tree),
{E1, Bound1, Free1} = vann(E, Env),
Env1 = ordsets:union(Env, Bound1),
Cs = erl_syntax:case_expr_clauses(Tree),
{Cs1, {Bound2, Free2}} = vann_clauses(Cs, Env1),
Bound = ordsets:union(Bound1, Bound2),
Free = ordsets:union(Free1, Free2),
Tree1 = rewrite(Tree, erl_syntax:case_expr(E1, Cs1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_if_expr(Tree, Env) ->
Cs = erl_syntax:if_expr_clauses(Tree),
{Cs1, {Bound, Free}} = vann_clauses(Cs, Env),
Tree1 = rewrite(Tree, erl_syntax:if_expr(Cs1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_cond_expr(_Tree, _Env) ->
erlang:error({not_implemented,cond_expr}).
vann_catch_expr(Tree, Env) ->
E = erl_syntax:catch_expr_body(Tree),
{E1, _, Free} = vann(E, Env),
Tree1 = rewrite(Tree, erl_syntax:catch_expr(E1)),
Bound = [],
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_try_expr(Tree, Env) ->
Es = erl_syntax:try_expr_body(Tree),
{Es1, {Bound1, Free1}} = vann_body(Es, Env),
Cs = erl_syntax:try_expr_clauses(Tree),
%% bindings in the body should be available in the success case,
{Cs1, {_, Free2}} = vann_clauses(Cs, ordsets:union(Env, Bound1)),
Hs = erl_syntax:try_expr_handlers(Tree),
{Hs1, {_, Free3}} = vann_clauses(Hs, Env),
%% the after part does not export anything, yet; this might change
As = erl_syntax:try_expr_after(Tree),
{As1, {_, Free4}} = vann_body(As, Env),
Tree1 = rewrite(Tree, erl_syntax:try_expr(Es1, Cs1, Hs1, As1)),
Bound = [],
Free = ordsets:union(Free1, ordsets:union(Free2, ordsets:union(Free3, Free4))),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_receive_expr(Tree, Env) ->
%% The timeout action is treated as an extra clause.
%% Bindings in the expiry expression are local only.
Cs = erl_syntax:receive_expr_clauses(Tree),
Es = erl_syntax:receive_expr_action(Tree),
C = erl_syntax:clause([], Es),
{[C1 | Cs1], {Bound, Free1}} = vann_clauses([C | Cs], Env),
Es1 = erl_syntax:clause_body(C1),
{T1, _, Free2} = case erl_syntax:receive_expr_timeout(Tree) of
none ->
{none, [], []};
T ->
vann(T, Env)
end,
Free = ordsets:union(Free1, Free2),
Tree1 = rewrite(Tree, erl_syntax:receive_expr(Cs1, T1, Es1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_list_comp(Tree, Env) ->
Es = erl_syntax:list_comp_body(Tree),
{Es1, {Bound1, Free1}} = vann_list_comp_body(Es, Env),
Env1 = ordsets:union(Env, Bound1),
T = erl_syntax:list_comp_template(Tree),
{T1, _, Free2} = vann(T, Env1),
Free = ordsets:union(Free1, ordsets:subtract(Free2, Bound1)),
Bound = [],
Tree1 = rewrite(Tree, erl_syntax:list_comp(T1, Es1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_list_comp_body_join() ->
fun (T, {Env, Bound, Free}) ->
{T1, Bound1, Free1} = case erl_syntax:type(T) of
binary_generator ->
vann_binary_generator(T,Env);
generator ->
vann_generator(T, Env);
_ ->
%% Bindings in filters are not
%% exported to the rest of the
%% body.
{T2, _, Free2} = vann(T, Env),
{T2, [], Free2}
end,
Env1 = ordsets:union(Env, Bound1),
{T1, {Env1, ordsets:union(Bound, Bound1),
ordsets:union(Free,
ordsets:subtract(Free1, Bound))}}
end.
vann_list_comp_body(Ts, Env) ->
F = vann_list_comp_body_join(),
{Ts1, {_, Bound, Free}} = lists:mapfoldl(F, {Env, [], []}, Ts),
{Ts1, {Bound, Free}}.
vann_binary_comp(Tree, Env) ->
Es = erl_syntax:binary_comp_body(Tree),
{Es1, {Bound1, Free1}} = vann_binary_comp_body(Es, Env),
Env1 = ordsets:union(Env, Bound1),
T = erl_syntax:binary_comp_template(Tree),
{T1, _, Free2} = vann(T, Env1),
Free = ordsets:union(Free1, ordsets:subtract(Free2, Bound1)),
Bound = [],
Tree1 = rewrite(Tree, erl_syntax:binary_comp(T1, Es1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_binary_comp_body_join() ->
fun (T, {Env, Bound, Free}) ->
{T1, Bound1, Free1} = case erl_syntax:type(T) of
binary_generator ->
vann_binary_generator(T, Env);
generator ->
vann_generator(T, Env);
_ ->
%% Bindings in filters are not
%% exported to the rest of the
%% body.
{T2, _, Free2} = vann(T, Env),
{T2, [], Free2}
end,
Env1 = ordsets:union(Env, Bound1),
{T1, {Env1, ordsets:union(Bound, Bound1),
ordsets:union(Free,
ordsets:subtract(Free1, Bound))}}
end.
vann_binary_comp_body(Ts, Env) ->
F = vann_binary_comp_body_join(),
{Ts1, {_, Bound, Free}} = lists:mapfoldl(F, {Env, [], []}, Ts),
{Ts1, {Bound, Free}}.
%% In list comprehension generators, the pattern variables are always
%% viewed as new occurrences, shadowing whatever is in the input
%% environment (thus, the pattern contains no variable uses, only
%% bindings). Bindings in the generator body are not exported.
vann_generator(Tree, Env) ->
P = erl_syntax:generator_pattern(Tree),
{P1, Bound, _} = vann_pattern(P, []),
E = erl_syntax:generator_body(Tree),
{E1, _, Free} = vann(E, Env),
Tree1 = rewrite(Tree, erl_syntax:generator(P1, E1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_binary_generator(Tree, Env) ->
P = erl_syntax:binary_generator_pattern(Tree),
{P1, Bound, _} = vann_pattern(P, Env),
E = erl_syntax:binary_generator_body(Tree),
{E1, _, Free} = vann(E, Env),
Tree1 = rewrite(Tree, erl_syntax:binary_generator(P1, E1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_block_expr(Tree, Env) ->
Es = erl_syntax:block_expr_body(Tree),
{Es1, {Bound, Free}} = vann_body(Es, Env),
Tree1 = rewrite(Tree, erl_syntax:block_expr(Es1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_body_join() ->
fun (T, {Env, Bound, Free}) ->
{T1, Bound1, Free1} = vann(T, Env),
Env1 = ordsets:union(Env, Bound1),
{T1, {Env1, ordsets:union(Bound, Bound1),
ordsets:union(Free,
ordsets:subtract(Free1, Bound))}}
end.
vann_body(Ts, Env) ->
{Ts1, {_, Bound, Free}} = lists:mapfoldl(vann_body_join(),
{Env, [], []}, Ts),
{Ts1, {Bound, Free}}.
%% Macro names must be ignored even if they happen to be variables,
%% lexically speaking.
vann_macro(Tree, Env) ->
{As, {Bound, Free}} = case erl_syntax:macro_arguments(Tree) of
none ->
{none, {[], []}};
As1 ->
vann_list(As1, Env)
end,
N = erl_syntax:macro_name(Tree),
Tree1 = rewrite(Tree, erl_syntax:macro(N, As)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_pattern(Tree, Env) ->
case erl_syntax:type(Tree) of
variable ->
V = erl_syntax:variable_name(Tree),
case ordsets:is_element(V, Env) of
true ->
%% Variable use
Bound = [],
Free = [V],
{ann_bindings(Tree, Env, Bound, Free), Bound, Free};
false ->
%% Variable binding
Bound = [V],
Free = [],
{ann_bindings(Tree, Env, Bound, Free), Bound, Free}
end;
match_expr ->
%% Alias pattern
P = erl_syntax:match_expr_pattern(Tree),
{P1, Bound1, Free1} = vann_pattern(P, Env),
E = erl_syntax:match_expr_body(Tree),
{E1, Bound2, Free2} = vann_pattern(E, Env),
Bound = ordsets:union(Bound1, Bound2),
Free = ordsets:union(Free1, Free2),
Tree1 = rewrite(Tree, erl_syntax:match_expr(P1, E1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free};
macro ->
%% The macro name must be ignored. The arguments are treated
%% as patterns.
{As, {Bound, Free}} =
case erl_syntax:macro_arguments(Tree) of
none ->
{none, {[], []}};
As1 ->
vann_patterns(As1, Env)
end,
N = erl_syntax:macro_name(Tree),
Tree1 = rewrite(Tree, erl_syntax:macro(N, As)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free};
_Type ->
F = vann_patterns_join(Env),
{Tree1, {Bound, Free}} = mapfold_subtrees(F, {[], []},
Tree),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}
end.
vann_patterns_join(Env) ->
fun (T, {Bound, Free}) ->
{T1, Bound1, Free1} = vann_pattern(T, Env),
{T1, {ordsets:union(Bound, Bound1),
ordsets:union(Free, Free1)}}
end.
vann_patterns(Ps, Env) ->
lists:mapfoldl(vann_patterns_join(Env), {[], []}, Ps).
vann_clause(C, Env) ->
{Ps, {Bound1, Free1}} = vann_patterns(erl_syntax:clause_patterns(C),
Env),
Env1 = ordsets:union(Env, Bound1),
%% Guards cannot add bindings
{G1, _, Free2} = case erl_syntax:clause_guard(C) of
none ->
{none, [], []};
G ->
vann(G, Env1)
end,
{Es, {Bound2, Free3}} = vann_body(erl_syntax:clause_body(C), Env1),
Bound = ordsets:union(Bound1, Bound2),
Free = ordsets:union(Free1,
ordsets:subtract(ordsets:union(Free2, Free3),
Bound1)),
Tree1 = rewrite(C, erl_syntax:clause(Ps, G1, Es)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_clauses_join(Env) ->
fun (C, {Bound, Free}) ->
{C1, Bound1, Free1} = vann_clause(C, Env),
{C1, {ordsets:intersection(Bound, Bound1),
ordsets:union(Free, Free1)}}
end.
vann_clauses([C | Cs], Env) ->
{C1, Bound, Free} = vann_clause(C, Env),
{Cs1, BF} = lists:mapfoldl(vann_clauses_join(Env), {Bound, Free}, Cs),
{[C1 | Cs1], BF};
vann_clauses([], _Env) ->
{[], {[], []}}.
ann_bindings(Tree, Env, Bound, Free) ->
As0 = erl_syntax:get_ann(Tree),
As1 = [{env, Env},
{bound, Bound},
{free, Free}
| delete_binding_anns(As0)],
erl_syntax:set_ann(Tree, As1).
delete_binding_anns([{env, _} | As]) ->
delete_binding_anns(As);
delete_binding_anns([{bound, _} | As]) ->
delete_binding_anns(As);
delete_binding_anns([{free, _} | As]) ->
delete_binding_anns(As);
delete_binding_anns([A | As]) ->
[A | delete_binding_anns(As)];
delete_binding_anns([]) ->
[].
%% =====================================================================
%% @spec is_fail_expr(Tree::syntaxTree()) -> boolean()
%%
%% @doc Returns `true' if `Tree' represents an
%% expression which never terminates normally. Note that the reverse
%% does not apply. Currently, the detected cases are calls to
%% `exit/1', `throw/1',
%% `erlang:error/1' and `erlang:error/2'.
%%
%% @see //erts/erlang:exit/1
%% @see //erts/erlang:throw/1
%% @see //erts/erlang:error/1
%% @see //erts/erlang:error/2
-spec is_fail_expr(erl_syntax:syntaxTree()) -> boolean().
is_fail_expr(E) ->
case erl_syntax:type(E) of
application ->
N = length(erl_syntax:application_arguments(E)),
F = erl_syntax:application_operator(E),
case catch {ok, analyze_function_name(F)} of
syntax_error ->
false;
{ok, exit} when N =:= 1 ->
true;
{ok, throw} when N =:= 1 ->
true;
{ok, {erlang, exit}} when N =:= 1 ->
true;
{ok, {erlang, throw}} when N =:= 1 ->
true;
{ok, {erlang, error}} when N =:= 1 ->
true;
{ok, {erlang, error}} when N =:= 2 ->
true;
{ok, {erlang, fault}} when N =:= 1 ->
true;
{ok, {erlang, fault}} when N =:= 2 ->
true;
_ ->
false
end;
_ ->
false
end.
%% =====================================================================
%% @spec analyze_forms(Forms) -> [{Key, term()}]
%%
%% Forms = syntaxTree() | [syntaxTree()]
%% Key = attributes | errors | exports | functions | imports
%% | module | records | warnings
%%
%% @doc Analyzes a sequence of "program forms". The given
%% `Forms' may be a single syntax tree of type
%% `form_list', or a list of "program form" syntax trees. The
%% returned value is a list of pairs `{Key, Info}', where
%% each value of `Key' occurs at most once in the list; the
%% absence of a particular key indicates that there is no well-defined
%% value for that key.
%%
%% Each entry in the resulting list contains the following
%% corresponding information about the program forms:
%% <dl>
%% <dt>`{attributes, Attributes}'</dt>
%% <dd><ul>
%% <li>`Attributes = [{atom(), term()}]'</li>
%% </ul>
%% `Attributes' is a list of pairs representing the
%% names and corresponding values of all so-called "wild"
%% attributes (as e.g. "`-compile(...)'") occurring in
%% `Forms' (cf. `analyze_wild_attribute/1').
%% We do not guarantee that each name occurs at most once in the
%% list. The order of listing is not defined.</dd>
%%
%% <dt>`{errors, Errors}'</dt>
%% <dd><ul>
%% <li>`Errors = [term()]'</li>
%% </ul>
%% `Errors' is the list of error descriptors of all
%% `error_marker' nodes that occur in
%% `Forms'. The order of listing is not defined.</dd>
%%
%% <dt>`{exports, Exports}'</dt>
%% <dd><ul>
%% <li>`Exports = [FunctionName]'</li>
%% <li>`FunctionName = atom()
%% | {atom(), integer()}
%% | {ModuleName, FunctionName}'</li>
%% <li>`ModuleName = atom()'</li>
%% </ul>
%% `Exports' is a list of representations of those
%% function names that are listed by export declaration attributes
%% in `Forms' (cf.
%% `analyze_export_attribute/1'). We do not guarantee
%% that each name occurs at most once in the list. The order of
%% listing is not defined.</dd>
%%
%% <dt>`{functions, Functions}'</dt>
%% <dd><ul>
%% <li>`Functions = [{atom(), integer()}]'</li>
%% </ul>
%% `Functions' is a list of the names of the functions
%% that are defined in `Forms' (cf.
%% `analyze_function/1'). We do not guarantee that each
%% name occurs at most once in the list. The order of listing is
%% not defined.</dd>
%%
%% <dt>`{imports, Imports}'</dt>
%% <dd><ul>
%% <li>`Imports = [{Module, Names}]'</li>
%% <li>`Module = atom()'</li>
%% <li>`Names = [FunctionName]'</li>
%% <li>`FunctionName = atom()
%% | {atom(), integer()}
%% | {ModuleName, FunctionName}'</li>
%% <li>`ModuleName = atom()'</li>
%% </ul>
%% `Imports' is a list of pairs representing those
%% module names and corresponding function names that are listed
%% by import declaration attributes in `Forms' (cf.
%% `analyze_import_attribute/1'), where each
%% `Module' occurs at most once in
%% `Imports'. We do not guarantee that each name occurs
%% at most once in the lists of function names. The order of
%% listing is not defined.</dd>
%%
%% <dt>`{module, ModuleName}'</dt>
%% <dd><ul>
%% <li>`ModuleName = atom()'</li>
%% </ul>
%% `ModuleName' is the name declared by a module
%% attribute in `Forms'. If no module name is defined
%% in `Forms', the result will contain no entry for the
%% `module' key. If multiple module name declarations
%% should occur, all but the first will be ignored.</dd>
%%
%% <dt>`{records, Records}'</dt>
%% <dd><ul>
%% <li>`Records = [{atom(), Fields}]'</li>
%% <li>`Fields = [{atom(), {Default, Type}}]'</li>
%% <li>`Default = none | syntaxTree()'</li>
%% <li>`Type = none | syntaxTree()'</li>
%% </ul>
%% `Records' is a list of pairs representing the names
%% and corresponding field declarations of all record declaration
%% attributes occurring in `Forms'. For fields declared
%% without a default value, the corresponding value for
%% `Default' is the atom `none'. Similarly, for fields declared
%% without a type, the corresponding value for `Type' is the
%% atom `none' (cf.
%% `analyze_record_attribute/1'). We do not guarantee
%% that each record name occurs at most once in the list. The
%% order of listing is not defined.</dd>
%%
%% <dt>`{warnings, Warnings}'</dt>
%% <dd><ul>
%% <li>`Warnings = [term()]'</li>
%% </ul>
%% `Warnings' is the list of error descriptors of all
%% `warning_marker' nodes that occur in
%% `Forms'. The order of listing is not defined.</dd>
%% </dl>
%%
%% The evaluation throws `syntax_error' if an ill-formed
%% Erlang construct is encountered.
%%
%% @see analyze_wild_attribute/1
%% @see analyze_export_attribute/1
%% @see analyze_function/1
%% @see analyze_import_attribute/1
%% @see analyze_record_attribute/1
%% @see erl_syntax:error_marker_info/1
%% @see erl_syntax:warning_marker_info/1
-type key() :: 'attributes' | 'errors' | 'exports' | 'functions' | 'imports'
| 'module' | 'records' | 'warnings'.
-type info_pair() :: {key(), term()}.
-spec analyze_forms(erl_syntax:forms()) -> [info_pair()].
analyze_forms(Forms) when is_list(Forms) ->
finfo_to_list(lists:foldl(fun collect_form/2, new_finfo(), Forms));
analyze_forms(Forms) ->
analyze_forms(
erl_syntax:form_list_elements(
erl_syntax:flatten_form_list(Forms))).
collect_form(Node, Info) ->
case analyze_form(Node) of
{attribute, {Name, Data}} ->
collect_attribute(Name, Data, Info);
{attribute, preprocessor} ->
Info;
{function, Name} ->
finfo_add_function(Name, Info);
{error_marker, Data} ->
finfo_add_error(Data, Info);
{warning_marker, Data} ->
finfo_add_warning(Data, Info);
_ ->
Info
end.
collect_attribute(module, M, Info) ->
finfo_set_module(M, Info);
collect_attribute(export, L, Info) ->
finfo_add_exports(L, Info);
collect_attribute(import, {M, L}, Info) ->
finfo_add_imports(M, L, Info);
collect_attribute(import, M, Info) ->
finfo_add_module_import(M, Info);
collect_attribute(file, _, Info) ->
Info;
collect_attribute(record, {R, L}, Info) ->
finfo_add_record(R, L, Info);
collect_attribute(_, {N, V}, Info) ->
finfo_add_attribute(N, V, Info).
%% Abstract datatype for collecting module information.
-record(forms, {module = none :: 'none' | {'value', atom()},
exports = [] :: [{atom(), arity()}],
module_imports = [] :: [atom()],
imports = [] :: [{atom(), [{atom(), arity()}]}],
attributes = [] :: [{atom(), term()}],
records = [] :: [{atom(), [{atom(),
field_default(),
field_type()}]}],
errors = [] :: [term()],
warnings = [] :: [term()],
functions = [] :: [{atom(), arity()}]}).
-type field_default() :: 'none' | erl_syntax:syntaxTree().
-type field_type() :: 'none' | erl_syntax:syntaxTree().
new_finfo() ->
#forms{}.
finfo_set_module(Name, Info) ->
case Info#forms.module of
none ->
Info#forms{module = {value, Name}};
{value, _} ->
Info
end.
finfo_add_exports(L, Info) ->
Info#forms{exports = L ++ Info#forms.exports}.
finfo_add_module_import(M, Info) ->
Info#forms{module_imports = [M | Info#forms.module_imports]}.
finfo_add_imports(M, L, Info) ->
Es = Info#forms.imports,
case lists:keyfind(M, 1, Es) of
{_, L1} ->
Es1 = lists:keyreplace(M, 1, Es, {M, L ++ L1}),
Info#forms{imports = Es1};
false ->
Info#forms{imports = [{M, L} | Es]}
end.
finfo_add_attribute(Name, Val, Info) ->
Info#forms{attributes = [{Name, Val} | Info#forms.attributes]}.
finfo_add_record(R, L, Info) ->
Info#forms{records = [{R, L} | Info#forms.records]}.
finfo_add_error(R, Info) ->
Info#forms{errors = [R | Info#forms.errors]}.
finfo_add_warning(R, Info) ->
Info#forms{warnings = [R | Info#forms.warnings]}.
finfo_add_function(F, Info) ->
Info#forms{functions = [F | Info#forms.functions]}.
finfo_to_list(Info) ->
[{Key, Value}
|| {Key, {value, Value}} <-
[{module, Info#forms.module},
{exports, list_value(Info#forms.exports)},
{imports, list_value(Info#forms.imports)},
{module_imports, list_value(Info#forms.module_imports)},
{attributes, list_value(Info#forms.attributes)},
{records, list_value(Info#forms.records)},
{errors, list_value(Info#forms.errors)},
{warnings, list_value(Info#forms.warnings)},
{functions, list_value(Info#forms.functions)}
]].
list_value([]) ->
none;
list_value(List) ->
{value, List}.
%% =====================================================================
%% @spec analyze_form(Node::syntaxTree()) -> {atom(), term()} | atom()
%%
%% @doc Analyzes a "source code form" node. If `Node' is a
%% "form" type (cf. `erl_syntax:is_form/1'), the returned
%% value is a tuple `{Type, Info}' where `Type' is
%% the node type and `Info' depends on `Type', as
%% follows:
%% <dl>
%% <dt>`{attribute, Info}'</dt>
%%
%% <dd>where `Info = analyze_attribute(Node)'.</dd>
%%
%% <dt>`{error_marker, Info}'</dt>
%%
%% <dd>where `Info =
%% erl_syntax:error_marker_info(Node)'.</dd>
%%
%% <dt>`{function, Info}'</dt>
%%
%% <dd>where `Info = analyze_function(Node)'.</dd>
%%
%% <dt>`{warning_marker, Info}'</dt>
%%
%% <dd>where `Info =
%% erl_syntax:warning_marker_info(Node)'.</dd>
%% </dl>
%% For other types of forms, only the node type is returned.
%%
%% The evaluation throws `syntax_error' if
%% `Node' is not well-formed.
%%
%% @see analyze_attribute/1
%% @see analyze_function/1
%% @see erl_syntax:is_form/1
%% @see erl_syntax:error_marker_info/1
%% @see erl_syntax:warning_marker_info/1
-spec analyze_form(erl_syntax:syntaxTree()) -> {atom(), term()} | atom().
analyze_form(Node) ->
case erl_syntax:type(Node) of
attribute ->
{attribute, analyze_attribute(Node)};
function ->
{function, analyze_function(Node)};
error_marker ->
{error_marker, erl_syntax:error_marker_info(Node)};
warning_marker ->
{warning_marker, erl_syntax:warning_marker_info(Node)};
_ ->
case erl_syntax:is_form(Node) of
true ->
erl_syntax:type(Node);
false ->
throw(syntax_error)
end
end.
%% =====================================================================
%% @spec analyze_attribute(Node::syntaxTree()) ->
%% preprocessor | {atom(), atom()}
%%
%% @doc Analyzes an attribute node. If `Node' represents a
%% preprocessor directive, the atom `preprocessor' is
%% returned. Otherwise, if `Node' represents a module
%% attribute "`-<em>Name</em>...'", a tuple `{Name,
%% Info}' is returned, where `Info' depends on
%% `Name', as follows:
%% <dl>
%% <dt>`{module, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_module_attribute(Node)'.</dd>
%%
%% <dt>`{export, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_export_attribute(Node)'.</dd>
%%
%% <dt>`{import, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_import_attribute(Node)'.</dd>
%%
%% <dt>`{file, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_file_attribute(Node)'.</dd>
%%
%% <dt>`{record, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_record_attribute(Node)'.</dd>
%%
%% <dt>`{Name, Info}'</dt>
%%
%% <dd>where `{Name, Info} =
%% analyze_wild_attribute(Node)'.</dd>
%% </dl>
%% The evaluation throws `syntax_error' if `Node'
%% does not represent a well-formed module attribute.
%%
%% @see analyze_module_attribute/1
%% @see analyze_export_attribute/1
%% @see analyze_import_attribute/1
%% @see analyze_file_attribute/1
%% @see analyze_record_attribute/1
%% @see analyze_wild_attribute/1
-spec analyze_attribute(erl_syntax:syntaxTree()) ->
'preprocessor' | {atom(), term()}. % XXX: underspecified
analyze_attribute(Node) ->
Name = erl_syntax:attribute_name(Node),
case erl_syntax:type(Name) of
atom ->
case erl_syntax:atom_value(Name) of
define -> preprocessor;
undef -> preprocessor;
include -> preprocessor;
include_lib -> preprocessor;
ifdef -> preprocessor;
ifndef -> preprocessor;
'if' -> preprocessor;
elif -> preprocessor;
else -> preprocessor;
endif -> preprocessor;
A ->
{A, analyze_attribute(A, Node)}
end;
_ ->
throw(syntax_error)
end.
analyze_attribute(module, Node) ->
analyze_module_attribute(Node);
analyze_attribute(export, Node) ->
analyze_export_attribute(Node);
analyze_attribute(import, Node) ->
analyze_import_attribute(Node);
analyze_attribute(file, Node) ->
analyze_file_attribute(Node);
analyze_attribute(record, Node) ->
analyze_record_attribute(Node);
analyze_attribute(_, Node) ->
%% A "wild" attribute (such as e.g. a `compile' directive).
analyze_wild_attribute(Node).
%% =====================================================================
%% @spec analyze_module_attribute(Node::syntaxTree()) ->
%% Name::atom() | {Name::atom(), Variables::[atom()]}
%%
%% @doc Returns the module name and possible parameters declared by a
%% module attribute. If the attribute is a plain module declaration such
%% as `-module(name)', the result is the module name. If the attribute
%% is a parameterized module declaration, the result is a tuple
%% containing the module name and a list of the parameter variable
%% names.
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed module attribute.
%%
%% @see analyze_attribute/1
-spec analyze_module_attribute(erl_syntax:syntaxTree()) ->
atom() | {atom(), [atom()]}.
analyze_module_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[M] ->
module_name_to_atom(M);
[M, L] ->
M1 = module_name_to_atom(M),
L1 = analyze_variable_list(L),
{M1, L1};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
analyze_variable_list(Node) ->
case erl_syntax:is_proper_list(Node) of
true ->
[erl_syntax:variable_name(V)
|| V <- erl_syntax:list_elements(Node)];
false ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_export_attribute(Node::syntaxTree()) -> [FunctionName]
%%
%% FunctionName = atom() | {atom(), integer()}
%% | {ModuleName, FunctionName}
%% ModuleName = atom()
%%
%% @doc Returns the list of function names declared by an export
%% attribute. We do not guarantee that each name occurs at most once in
%% the list. The order of listing is not defined.
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed export attribute.
%%
%% @see analyze_attribute/1
-type functionN() :: atom() | {atom(), arity()}.
-type functionName() :: functionN() | {atom(), functionN()}.
-spec analyze_export_attribute(erl_syntax:syntaxTree()) -> [functionName()].
analyze_export_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[L] ->
analyze_function_name_list(L);
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
analyze_function_name_list(Node) ->
case erl_syntax:is_proper_list(Node) of
true ->
[analyze_function_name(F)
|| F <- erl_syntax:list_elements(Node)];
false ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_function_name(Node::syntaxTree()) -> FunctionName
%%
%% FunctionName = atom() | {atom(), integer()}
%% | {ModuleName, FunctionName}
%% ModuleName = atom()
%%
%% @doc Returns the function name represented by a syntax tree. If
%% `Node' represents a function name, such as
%% "`foo/1'" or "`bloggs:fred/2'", a uniform
%% representation of that name is returned. Different nestings of arity
%% and module name qualifiers in the syntax tree does not affect the
%% result.
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed function name.
-spec analyze_function_name(erl_syntax:syntaxTree()) -> functionName().
analyze_function_name(Node) ->
case erl_syntax:type(Node) of
atom ->
erl_syntax:atom_value(Node);
arity_qualifier ->
A = erl_syntax:arity_qualifier_argument(Node),
case erl_syntax:type(A) of
integer ->
F = erl_syntax:arity_qualifier_body(Node),
F1 = analyze_function_name(F),
append_arity(erl_syntax:integer_value(A), F1);
_ ->
throw(syntax_error)
end;
module_qualifier ->
M = erl_syntax:module_qualifier_argument(Node),
case erl_syntax:type(M) of
atom ->
F = erl_syntax:module_qualifier_body(Node),
F1 = analyze_function_name(F),
{erl_syntax:atom_value(M), F1};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
append_arity(A, {Module, Name}) ->
{Module, append_arity(A, Name)};
append_arity(A, Name) when is_atom(Name) ->
{Name, A};
append_arity(A, A) ->
A;
append_arity(_A, Name) ->
Name. % quietly drop extra arity in case of conflict
%% =====================================================================
%% @spec analyze_import_attribute(Node::syntaxTree()) ->
%% {atom(), [FunctionName]} | atom()
%%
%% FunctionName = atom() | {atom(), integer()}
%% | {ModuleName, FunctionName}
%% ModuleName = atom()
%%
%% @doc Returns the module name and (if present) list of function names
%% declared by an import attribute. The returned value is an atom
%% `Module' or a pair `{Module, Names}', where
%% `Names' is a list of function names declared as imported
%% from the module named by `Module'. We do not guarantee
%% that each name occurs at most once in `Names'. The order
%% of listing is not defined.
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed import attribute.
%%
%% @see analyze_attribute/1
-spec analyze_import_attribute(erl_syntax:syntaxTree()) ->
{atom(), [functionName()]} | atom().
analyze_import_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[M] ->
module_name_to_atom(M);
[M, L] ->
M1 = module_name_to_atom(M),
L1 = analyze_function_name_list(L),
{M1, L1};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_type_name(Node::syntaxTree()) -> TypeName
%%
%% TypeName = atom()
%% | {atom(), integer()}
%% | {ModuleName, {atom(), integer()}}
%% ModuleName = atom()
%%
%% @doc Returns the type name represented by a syntax tree. If
%% `Node' represents a type name, such as
%% "`foo/1'" or "`bloggs:fred/2'", a uniform
%% representation of that name is returned.
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed type name.
-spec analyze_type_name(erl_syntax:syntaxTree()) -> typeName().
analyze_type_name(Node) ->
case erl_syntax:type(Node) of
atom ->
erl_syntax:atom_value(Node);
arity_qualifier ->
A = erl_syntax:arity_qualifier_argument(Node),
N = erl_syntax:arity_qualifier_body(Node),
case ((erl_syntax:type(A) =:= integer)
and (erl_syntax:type(N) =:= atom))
of
true ->
append_arity(erl_syntax:integer_value(A),
erl_syntax:atom_value(N));
_ ->
throw(syntax_error)
end;
module_qualifier ->
M = erl_syntax:module_qualifier_argument(Node),
case erl_syntax:type(M) of
atom ->
N = erl_syntax:module_qualifier_body(Node),
N1 = analyze_type_name(N),
{erl_syntax:atom_value(M), N1};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_wild_attribute(Node::syntaxTree()) -> {atom(), term()}
%%
%% @doc Returns the name and value of a "wild" attribute. The result is
%% the pair `{Name, Value}', if `Node' represents "`-Name(Value)'".
%%
%% Note that no checking is done whether `Name' is a
%% reserved attribute name such as `module' or
%% `export': it is assumed that the attribute is "wild".
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed wild attribute.
%%
%% @see analyze_attribute/1
-spec analyze_wild_attribute(erl_syntax:syntaxTree()) -> {atom(), term()}.
analyze_wild_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
N = erl_syntax:attribute_name(Node),
case erl_syntax:type(N) of
atom ->
case erl_syntax:attribute_arguments(Node) of
[V] ->
%% Note: does not work well with macros.
case catch {ok, erl_syntax:concrete(V)} of
{ok, Val} ->
{erl_syntax:atom_value(N), Val};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_record_attribute(Node::syntaxTree()) ->
%% {atom(), Fields}
%%
%% Fields = [{atom(), {Default, Type}}]
%% Default = none | syntaxTree()
%% Type = none | syntaxTree()
%%
%% @doc Returns the name and the list of fields of a record declaration
%% attribute. The result is a pair `{Name, Fields}', if
%% `Node' represents "`-record(Name, {...}).'",
%% where `Fields' is a list of pairs `{Label,
%% {Default, Type}}' for each field "`Label'", "`Label =
%% <em>Default</em>'", "`Label :: <em>Type</em>'", or
%% "`Label = <em>Default</em> :: <em>Type</em>'" in the declaration,
%% listed in left-to-right
%% order. If the field has no default-value declaration, the value for
%% `Default' will be the atom `none'. If the field has no type declaration,
%% the value for `Type' will be the atom `none'. We do not
%% guarantee that each label occurs at most once in the list.
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed record declaration
%% attribute.
%%
%% @see analyze_attribute/1
%% @see analyze_record_field/1
-type field() :: {atom(), {field_default(), field_type()}}.
-type fields() :: [field()].
-spec analyze_record_attribute(erl_syntax:syntaxTree()) -> {atom(), fields()}.
analyze_record_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[R, T] ->
case erl_syntax:type(R) of
atom ->
Es = analyze_record_attribute_tuple(T),
{erl_syntax:atom_value(R), Es};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
analyze_record_attribute_tuple(Node) ->
case erl_syntax:type(Node) of
tuple ->
[analyze_record_field(F)
|| F <- erl_syntax:tuple_elements(Node)];
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_record_expr(Node::syntaxTree()) ->
%% {atom(), Info} | atom()
%%
%% Info = {atom(), [{atom(), Value}]} | {atom(), atom()} | atom()
%% Value = syntaxTree()
%%
%% @doc Returns the record name and field name/names of a record
%% expression. If `Node' has type `record_expr',
%% `record_index_expr' or `record_access', a pair
%% `{Type, Info}' is returned, otherwise an atom
%% `Type' is returned. `Type' is the node type of
%% `Node', and `Info' depends on
%% `Type', as follows:
%% <dl>
%% <dt>`record_expr':</dt>
%% <dd>`{atom(), [{atom(), Value}]}'</dd>
%% <dt>`record_access':</dt>
%% <dd>`{atom(), atom()}'</dd>
%% <dt>`record_index_expr':</dt>
%% <dd>`{atom(), atom()}'</dd>
%% </dl>
%%
%% For a `record_expr' node, `Info' represents
%% the record name and the list of descriptors for the involved fields,
%% listed in the order they appear. A field descriptor is a pair
%% `{Label, Value}', if `Node' represents "`Label = <em>Value</em>'".
%% For a `record_access' node,
%% `Info' represents the record name and the field name. For a
%% `record_index_expr' node, `Info' represents the
%% record name and the name field name.
%%
%% The evaluation throws `syntax_error' if
%% `Node' represents a record expression that is not
%% well-formed.
%%
%% @see analyze_record_attribute/1
%% @see analyze_record_field/1
-type info() :: {atom(), [{atom(), erl_syntax:syntaxTree()}]}
| {atom(), atom()} | atom().
-spec analyze_record_expr(erl_syntax:syntaxTree()) -> {atom(), info()} | atom().
analyze_record_expr(Node) ->
case erl_syntax:type(Node) of
record_expr ->
A = erl_syntax:record_expr_type(Node),
case erl_syntax:type(A) of
atom ->
Fs0 = [analyze_record_field(F)
|| F <- erl_syntax:record_expr_fields(Node)],
Fs = [{N, D} || {N, {D, _T}} <- Fs0],
{record_expr, {erl_syntax:atom_value(A), Fs}};
_ ->
throw(syntax_error)
end;
record_access ->
F = erl_syntax:record_access_field(Node),
case erl_syntax:type(F) of
atom ->
A = erl_syntax:record_access_type(Node),
case erl_syntax:type(A) of
atom ->
{record_access,
{erl_syntax:atom_value(A),
erl_syntax:atom_value(F)}};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
record_index_expr ->
F = erl_syntax:record_index_expr_field(Node),
case erl_syntax:type(F) of
atom ->
A = erl_syntax:record_index_expr_type(Node),
case erl_syntax:type(A) of
atom ->
{record_index_expr,
{erl_syntax:atom_value(A),
erl_syntax:atom_value(F)}};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
Type ->
Type
end.
%% =====================================================================
%% @spec analyze_record_field(Node::syntaxTree()) -> {atom(), {Default, Type}}
%%
%% Default = none | syntaxTree()
%% Type = none | syntaxTree()
%%
%% @doc Returns the label, value-expression, and type of a record field
%% specifier. The result is a pair `{Label, {Default, Type}}', if
%% `Node' represents "`Label'", "`Label = <em>Default</em>'",
%% "`Label :: <em>Type</em>'", or
%% "`Label = <em>Default</em> :: <em>Type</em>'".
%% If the field has no value-expression, the value for
%% `Default' will be the atom `none'. If the field has no type,
%% the value for `Type' will be the atom `none'.
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed record field
%% specifier.
%%
%% @see analyze_record_attribute/1
%% @see analyze_record_expr/1
-spec analyze_record_field(erl_syntax:syntaxTree()) -> field().
analyze_record_field(Node) ->
case erl_syntax:type(Node) of
record_field ->
A = erl_syntax:record_field_name(Node),
case erl_syntax:type(A) of
atom ->
T = erl_syntax:record_field_value(Node),
{erl_syntax:atom_value(A), {T, none}};
_ ->
throw(syntax_error)
end;
typed_record_field ->
F = erl_syntax:typed_record_field_body(Node),
{N, {V, _none}} = analyze_record_field(F),
T = erl_syntax:typed_record_field_type(Node),
{N, {V, T}};
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_file_attribute(Node::syntaxTree()) ->
%% {string(), integer()}
%%
%% @doc Returns the file name and line number of a `file'
%% attribute. The result is the pair `{File, Line}' if
%% `Node' represents "`-file(File, Line).'".
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed `file'
%% attribute.
%%
%% @see analyze_attribute/1
-spec analyze_file_attribute(erl_syntax:syntaxTree()) -> {string(), integer()}.
analyze_file_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[F, N] ->
case (erl_syntax:type(F) =:= string)
and (erl_syntax:type(N) =:= integer) of
true ->
{erl_syntax:string_value(F),
erl_syntax:integer_value(N)};
false ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_function(Node::syntaxTree()) -> {atom(), integer()}
%%
%% @doc Returns the name and arity of a function definition. The result
%% is a pair `{Name, A}' if `Node' represents a
%% function definition "`Name(<em>P_1</em>, ..., <em>P_A</em>) ->
%% ...'".
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed function
%% definition.
-spec analyze_function(erl_syntax:syntaxTree()) -> {atom(), arity()}.
analyze_function(Node) ->
case erl_syntax:type(Node) of
function ->
N = erl_syntax:function_name(Node),
case erl_syntax:type(N) of
atom ->
{erl_syntax:atom_value(N),
erl_syntax:function_arity(Node)};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_implicit_fun(Node::syntaxTree()) -> FunctionName
%%
%% FunctionName = atom() | {atom(), integer()}
%% | {ModuleName, FunctionName}
%% ModuleName = atom()
%%
%% @doc Returns the name of an implicit fun expression "`fun
%% <em>F</em>'". The result is a representation of the function
%% name `F'. (Cf. `analyze_function_name/1'.)
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed implicit fun.
%%
%% @see analyze_function_name/1
-spec analyze_implicit_fun(erl_syntax:syntaxTree()) -> functionName().
analyze_implicit_fun(Node) ->
case erl_syntax:type(Node) of
implicit_fun ->
analyze_function_name(erl_syntax:implicit_fun_name(Node));
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_application(Node::syntaxTree()) -> FunctionName | Arity
%%
%% FunctionName = {atom(), Arity}
%% | {ModuleName, FunctionName}
%% Arity = integer()
%% ModuleName = atom()
%%
%% @doc Returns the name of a called function. The result is a
%% representation of the name of the applied function `F/A',
%% if `Node' represents a function application
%% "`<em>F</em>(<em>X_1</em>, ..., <em>X_A</em>)'". If the
%% function is not explicitly named (i.e., `F' is given by
%% some expression), only the arity `A' is returned.
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed application expression.
%%
%% @see analyze_function_name/1
-type appFunName() :: {atom(), arity()} | {atom(), {atom(), arity()}}.
-spec analyze_application(erl_syntax:syntaxTree()) -> appFunName() | arity().
analyze_application(Node) ->
case erl_syntax:type(Node) of
application ->
A = length(erl_syntax:application_arguments(Node)),
F = erl_syntax:application_operator(Node),
case catch {ok, analyze_function_name(F)} of
syntax_error ->
A;
{ok, N} ->
append_arity(A, N);
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_type_application(Node::syntaxTree()) -> TypeName
%%
%% TypeName = {atom(), integer()}
%% | {ModuleName, {atom(), integer()}}
%% ModuleName = atom()
%%
%% @doc Returns the name of a used type. The result is a
%% representation of the name of the used pre-defined or local type `N/A',
%% if `Node' represents a local (user) type application
%% "`<em>N</em>(<em>T_1</em>, ..., <em>T_A</em>)'", or
%% a representation of the name of the used remote type `M:N/A'
%% if `Node' represents a remote user type application
%% "`<em>M</em>:<em>N</em>(<em>T_1</em>, ..., <em>T_A</em>)'".
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed (user) type application expression.
%%
%% @see analyze_type_name/1
-type typeName() :: atom() | {module(), {atom(), arity()}} | {atom(), arity()}.
-spec analyze_type_application(erl_syntax:syntaxTree()) -> typeName().
analyze_type_application(Node) ->
case erl_syntax:type(Node) of
type_application ->
A = length(erl_syntax:type_application_arguments(Node)),
N = erl_syntax:type_application_name(Node),
case catch {ok, analyze_type_name(N)} of
{ok, TypeName} ->
append_arity(A, TypeName);
_ ->
throw(syntax_error)
end;
user_type_application ->
A = length(erl_syntax:user_type_application_arguments(Node)),
N = erl_syntax:user_type_application_name(Node),
case catch {ok, analyze_type_name(N)} of
{ok, TypeName} ->
append_arity(A, TypeName);
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec function_name_expansions(Names::[Name]) -> [{ShortName, Name}]
%%
%% Name = ShortName | {atom(), Name}
%% ShortName = atom() | {atom(), integer()}
%%
%% @doc Creates a mapping from corresponding short names to full
%% function names. Names are represented by nested tuples of atoms and
%% integers (cf. `analyze_function_name/1'). The result is a
%% list containing a pair `{ShortName, Name}' for each
%% element `Name' in the given list, where the corresponding
%% `ShortName' is the rightmost-innermost part of
%% `Name'. The list thus represents a finite mapping from
%% unqualified names to the corresponding qualified names.
%%
%% Note: the resulting list can contain more than one tuple
%% `{ShortName, Name}' for the same `ShortName',
%% possibly with different values for `Name', depending on
%% the given list.
%%
%% @see analyze_function_name/1
-type shortname() :: atom() | {atom(), arity()}.
-type name() :: shortname() | {atom(), shortname()}.
-spec function_name_expansions([name()]) -> [{shortname(), name()}].
function_name_expansions(Fs) ->
function_name_expansions(Fs, []).
function_name_expansions([F | Fs], Ack) ->
function_name_expansions(Fs,
function_name_expansions(F, F, Ack));
function_name_expansions([], Ack) ->
Ack.
function_name_expansions({A, N}, Name, Ack) when is_integer(N) ->
[{{A, N}, Name} | Ack];
function_name_expansions({_, N}, Name, Ack) ->
function_name_expansions(N, Name, Ack);
function_name_expansions(A, Name, Ack) ->
[{A, Name} | Ack].
%% =====================================================================
%% @spec strip_comments(Tree::syntaxTree()) -> syntaxTree()
%%
%% @doc Removes all comments from all nodes of a syntax tree. All other
%% attributes (such as position information) remain unchanged.
%% Standalone comments in form lists are removed; any other standalone
%% comments are changed into null-comments (no text, no indentation).
-spec strip_comments(erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
strip_comments(Tree) ->
map(fun strip_comments_1/1, Tree).
strip_comments_1(T) ->
case erl_syntax:type(T) of
form_list ->
Es = erl_syntax:form_list_elements(T),
Es1 = [E || E <- Es, erl_syntax:type(E) /= comment],
T1 = erl_syntax:copy_attrs(T, erl_syntax:form_list(Es1)),
erl_syntax:remove_comments(T1);
comment ->
erl_syntax:comment([]);
_ ->
erl_syntax:remove_comments(T)
end.
%% =====================================================================
%% @spec to_comment(Tree) -> syntaxTree()
%% @equiv to_comment(Tree, "% ")
-spec to_comment(erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
to_comment(Tree) ->
to_comment(Tree, "% ").
%% =====================================================================
%% @spec to_comment(Tree::syntaxTree(), Prefix::string()) ->
%% syntaxTree()
%%
%% @doc Equivalent to `to_comment(Tree, Prefix, F)' for a
%% default formatting function `F'. The default
%% `F' simply calls `erl_prettypr:format/1'.
%%
%% @see to_comment/3
%% @see erl_prettypr:format/1
-spec to_comment(erl_syntax:syntaxTree(), string()) -> erl_syntax:syntaxTree().
to_comment(Tree, Prefix) ->
F = fun (T) -> erl_prettypr:format(T) end,
to_comment(Tree, Prefix, F).
%% =====================================================================
%% @spec to_comment(Tree::syntaxTree(), Prefix::string(), Printer) ->
%% syntaxTree()
%%
%% Printer = (syntaxTree()) -> string()
%%
%% @doc Transforms a syntax tree into an abstract comment. The lines of
%% the comment contain the text for `Node', as produced by
%% the given `Printer' function. Each line of the comment is
%% prefixed by the string `Prefix' (this does not include the
%% initial "`%'" character of the comment line).
%%
%% For example, the result of
%% `to_comment(erl_syntax:abstract([a,b,c]))' represents
%% <pre>
%% %% [a,b,c]</pre>
%% (cf. `to_comment/1').
%%
%% Note: the text returned by the formatting function will be split
%% automatically into separate comment lines at each line break. No
%% extra work is needed.
%%
%% @see to_comment/1
%% @see to_comment/2
-spec to_comment(erl_syntax:syntaxTree(), string(),
fun((erl_syntax:syntaxTree()) -> string())) ->
erl_syntax:syntaxTree().
to_comment(Tree, Prefix, F) ->
erl_syntax:comment(split_lines(F(Tree), Prefix)).
%% =====================================================================
%% @spec limit(Tree, Depth) -> syntaxTree()
%%
%% @doc Equivalent to `limit(Tree, Depth, Text)' using the
%% text `"..."' as default replacement.
%%
%% @see limit/3
%% @see erl_syntax:text/1
-spec limit(erl_syntax:syntaxTree(), integer()) -> erl_syntax:syntaxTree().
limit(Tree, Depth) ->
limit(Tree, Depth, erl_syntax:text("...")).
%% =====================================================================
%% @spec limit(Tree::syntaxTree(), Depth::integer(),
%% Node::syntaxTree()) -> syntaxTree()
%%
%% @doc Limits a syntax tree to a specified depth. Replaces all non-leaf
%% subtrees in `Tree' at the given `Depth' by
%% `Node'. If `Depth' is negative, the result is
%% always `Node', even if `Tree' has no subtrees.
%%
%% When a group of subtrees (as e.g., the argument list of an
%% `application' node) is at the specified depth, and there
%% are two or more subtrees in the group, these will be collectively
%% replaced by `Node' even if they are leaf nodes. Groups of
%% subtrees that are above the specified depth will be limited in size,
%% as if each subsequent tree in the group were one level deeper than
%% the previous. E.g., if `Tree' represents a list of
%% integers "`[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]'", the result
%% of `limit(Tree, 5)' will represent `[1, 2, 3, 4,
%% ...]'.
%%
%% The resulting syntax tree is typically only useful for
%% pretty-printing or similar visual formatting.
%%
%% @see limit/2
-spec limit(erl_syntax:syntaxTree(), integer(), erl_syntax:syntaxTree()) ->
erl_syntax:syntaxTree().
limit(_Tree, Depth, Node) when Depth < 0 ->
Node;
limit(Tree, Depth, Node) ->
limit_1(Tree, Depth, Node).
limit_1(Tree, Depth, Node) ->
%% Depth is nonnegative here.
case erl_syntax:subtrees(Tree) of
[] ->
if Depth > 0 ->
Tree;
true ->
case is_simple_leaf(Tree) of
true ->
Tree;
false ->
Node
end
end;
Gs ->
if Depth > 1 ->
Gs1 = [[limit_1(T, Depth - 1, Node)
|| T <- limit_list(G, Depth, Node)]
|| G <- Gs],
rewrite(Tree,
erl_syntax:make_tree(erl_syntax:type(Tree),
Gs1));
Depth =:= 0 ->
%% Depth is zero, and this is not a leaf node
%% so we always replace it.
Node;
true ->
%% Depth is 1, so all subtrees are to be cut.
%% This is done groupwise.
Gs1 = [cut_group(G, Node) || G <- Gs],
rewrite(Tree,
erl_syntax:make_tree(erl_syntax:type(Tree),
Gs1))
end
end.
cut_group([], _Node) ->
[];
cut_group([T], Node) ->
%% Only if the group contains a single subtree do we try to
%% preserve it if suitable.
[limit_1(T, 0, Node)];
cut_group(_Ts, Node) ->
[Node].
is_simple_leaf(Tree) ->
case erl_syntax:type(Tree) of
atom -> true;
char -> true;
float -> true;
integer -> true;
nil -> true;
operator -> true;
tuple -> true;
underscore -> true;
variable -> true;
_ -> false
end.
%% If list has more than N elements, take the N - 1 first and
%% append Node; otherwise return list as is.
limit_list(Ts, N, Node) ->
if length(Ts) > N ->
limit_list_1(Ts, N - 1, Node);
true ->
Ts
end.
limit_list_1([T | Ts], N, Node) ->
if N > 0 ->
[T | limit_list_1(Ts, N - 1, Node)];
true ->
[Node]
end;
limit_list_1([], _N, _Node) ->
[].
%% =====================================================================
%% Utility functions
rewrite(Tree, Tree1) ->
erl_syntax:copy_attrs(Tree, Tree1).
module_name_to_atom(M) ->
case erl_syntax:type(M) of
atom ->
erl_syntax:atom_value(M);
_ ->
throw(syntax_error)
end.
%% This splits lines at line terminators and expands tab characters to
%% spaces. The width of a tab is assumed to be 8.
% split_lines(Cs) ->
% split_lines(Cs, "").
split_lines(Cs, Prefix) ->
split_lines(Cs, Prefix, 0).
split_lines(Cs, Prefix, N) ->
lists:reverse(split_lines(Cs, N, [], [], Prefix)).
split_lines([$\r, $\n | Cs], _N, Cs1, Ls, Prefix) ->
split_lines_1(Cs, Cs1, Ls, Prefix);
split_lines([$\r | Cs], _N, Cs1, Ls, Prefix) ->
split_lines_1(Cs, Cs1, Ls, Prefix);
split_lines([$\n | Cs], _N, Cs1, Ls, Prefix) ->
split_lines_1(Cs, Cs1, Ls, Prefix);
split_lines([$\t | Cs], N, Cs1, Ls, Prefix) ->
split_lines(Cs, 0, push(8 - (N rem 8), $\040, Cs1), Ls,
Prefix);
split_lines([C | Cs], N, Cs1, Ls, Prefix) ->
split_lines(Cs, N + 1, [C | Cs1], Ls, Prefix);
split_lines([], _, [], Ls, _) ->
Ls;
split_lines([], _N, Cs, Ls, Prefix) ->
[Prefix ++ lists:reverse(Cs) | Ls].
split_lines_1(Cs, Cs1, Ls, Prefix) ->
split_lines(Cs, 0, [], [Prefix ++ lists:reverse(Cs1) | Ls],
Prefix).
push(N, C, Cs) when N > 0 ->
push(N - 1, C, [C | Cs]);
push(0, _, Cs) ->
Cs.
|